
Chapter 1 

 

Introduction 

 

To establish the characteristic features which distinguish 

stability problems from ordinary problems, let us consider a 

simple example.  

 

1.1 A simple Problem 

 

Figure 1.1 shows a column built in at one end and loaded 

eccentrically at the other. Incidentally, in dealing with 

columns, rods, shafts, etc., we shall always assume that they 

are prismatic (cylindric),homogeneous, elastic, and obey 



Hooke's law, unless a statement of the contrary is made. Let 

l be the length of the column, α = EI its flexural rigidity, e 

the eccentricity of the load, and f the deflection at the free 

end. If the coordinate system of Figure 1.1 is  

 

Refer to Figure 1.1 

 

used and the slope of the deflection curve is assumed to be 

small compared with unity, the bending moment in section x 

is M = P(𝑒 + 𝑓 − 𝑦), and hence the (linearized) differential 

equation of the deflection curve is 

 

            αyn = P 𝑒 + 𝑓 − 𝑦             (1.1)                           



 

With the notation 

 
2 0,

P



 

          (1.2) 

 

the differential equation (1.1) becomes 

 
2 2'' ( ).y y e f         (1.3) 

 

Since the lower end is bulit in, and since f is the (unknown) 

deflection at the upper end, the boundary conditions are  

(0) '(0) 0,y y     ( )y l f         (1.4) 



 

 

The general solution of (1.3),  

                   cos sin ,y A x B x e f            (1.5) 

contains three unknown constants, A,B, and f. They can be 

determined by means of the boundary conditions (1.4). In 

this way we obtain the solution 

                    
1 cos

cos

x
y e

l






 

           (1.6) 

and the end deflection 

                      
1

( 1) .
cos

f e
l

 
           (1.7) 

Equation (1.6) already exhibits one of the typical features of 

stability problems. In contrast to the results obtained in 

ordinary situations of the theory of structures, the deflections 



are not proportional to the load. This is illustrated by Figure 

1.2, where i  denotes the radius of inertia of the cross 

section and /f i  is plotted versus /kl l P   for various 

values of /e i . The deviation from proportionality occurs in 

spite of the fact that the relations used have been linearized 

on the assumption that the slope of the deflection curve 

remains small. The deviation is explained by the fact that it 

has been necessary to account for the deformation while 

setting up the expression for the bending moment. In simple 

bending problems this is not necessary; actually, most of the 

content of the theory of structures and the theory of elasticity 

are based on the assumption that the equilibrium conditions 

are satisfied by the forces acting on the undeformed system. 



In stability problems this assumption, which is essential for 

Kirchhoff's general uniqueness theorem[30], must be 

dropped, and, in fact, we will see that in many situations the 

deformation of a structure will not be uniquely determined 

by the loading. 

The curves in Figure 1.2 have a common vertical asymptote 

at / 2kl   , that is, for 

 

                        

2
2

1 2
.

4
P

l

 
 

          (1.8) 
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This implies that, no matter how small the eccentricity *, the 

deflections become infinite for the critical value (1.8) of the 



load. Moreover, the result remains true for apparently 

centrically loaded columns, since small eccentricities can 

never completely be avoided. 

Actually, the linearized differential equation loses its validity 

long before the deflection f  becomes comparable with the 

length l . Thus the curves of Figure 1.2 are reliable solely in 

the vicinity of the horizontal axis. Moreover, most columns 

will leave the range of validity of Hooke's law and will even 

break long before the load reaches the critical value(1.8). 

The load for which the column fails approaches 1P  with 

decreasing eccentricity e . If it were possible to make e  

exactly zero, the section 0 / 2l    of the axis l  and 

the asymptote would take the place of the curves in Figure 



1.2. The deflection then would be zero for any load 1P P  

and become arbitrary for the critical load (1.8). The 

uniqueness of the solution would become lost, and the 

column would be apt to buckle, at least under any attempt to 

further increase the load. 

A more elaborate investigation of the linearized problem 

along the lines to be developed in Section 1.2 shows that, for 
0e   and 1P P  (Figure 1.3), the straight shape of the 

column represents a stable equilibrium configuration in the 

sense that small perturbations result in oscillations confined 

to the immediate vicinity of the equilibrium position. For 

1P P  and infinite number of additional equilibrium 

configuration appear ( as is the case in neutral equilibrium) 



in which the column is bent. For 1P P  the straight shape is 

again the only equilibrium configuration, but it has become 

unstable; and arbitrary small perturbation is followed by a 

rapid increase of the deflections and by the destruction of the 

column. Thus it becomes clear that buckling is a stability 

problem. 

Buckling of columns and rods was first investigated by 

Euler [16]. He showed that the vertical line at ** has to be 

replaced by a curve as indicated in Figure 1.3 if the analysis 

is based on the exact differential equation of the deflection 

curve. For 1P P  this curve represents stable equilibrium, 

while the points 1P P  on the P - axis correspond to 

unstable equilibrium positions. In the case of a slender rod, 



the deflections corresponding to stable equilibrium may 

become considerable. However, columns in most structures 

fail while the deflections are still very small ; in such cases 

1P  may still be considered the critical load, also referred to 

as the buckling load. 

 

Problem 

1. In Figure 1.4 an instability problem of a different type is 

shown. The structure consists of two bars hinged with a 

initial slope arcsin /h l   and loaded subsequently. Verify 

the relation 

 

                 

2 2 1/22 [ ( 2 ) 1]
h f

P EF l l hf f
l


   

     (1.9) 



 

between the deflection f  of the middle hinge and the load 
P . Plot /f l  versus /(2 )P EF  for / 1/10h l  , and discuss 

the stability of the system.  
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1.2. Classical Approaches 

 

If the end conditions are varied, the buckling problem of 

Section 1.1 appears in five different versions as indicated in 



Table 1.1. Euler has shown that the buckling load is 

 

                        
2
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          (1.10) 

 

where the notations defined in Section 1.1 are used and k  

is a numerical factor varying from case to case as shown at 

the bottom of Table 1.1. This formula is 
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based on the assumption that the load P , acting at the upper 

end of the column, remains constant with respect to 

magnitude and direction in the process of buckling. The 



problem treated in Section 1.1 reappears as Case 3 in Table 

1.1. The value 
1

4
k   is confirmed by a comparison of (1.8) 

and (1.10) 

There exist several approaches to stability problems. We will 

presently discuss some of these approaches by applying 

them to Euler's buckling Case 5 in its linearized form. To 

exhibit the underlying ideas, let us compare the actual 

problem with one of a single degree of freedom: a particle * 

(Figure1.5) moving without friction along a parabola  

 

                      
21

2
y ax

              (1.11) 

 



under the influence of its own weight mg . According to the 

preliminary definitions given in Section 1.1, the only 

equilibrium position O  is stable as  
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long as 0a  . For 0a  it becomes neutral, and for 0a   

it is unstable. 

Starting from the observation that mechanical systems are 

never perfect, we may assume that the parabola is slightly 

rotated (Figure 1.6) about the origin and hence has the 

(approximate) equation 

                  
21

,
2

y ax bx     1.b            (1.12) 
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The equilibrium position is shifted to the lowest point of the 

rotated parabola. 

Since 

                     

dy
ax b

dx
 

            (1.13) 

the abscissa of this point is  

                      
0 .

b
x

a


             (1.14) 

For 0a  this value tends to infinity, however small 0b   

is chosen, and this is symptomatic for the loss of stability of 

the equilibrium position O  of the perfect system (Figure 



1.5). 

It is the approach just described which has been used in the 

determination of the buckling load (1.8). In order to treat 

Case 5 in an analogous way, let us introduce, as an 

imperfection, an eccentricity at the upper end of the  
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column. Equilibrium requires the presence of the reactions 
P and /Pe l  as indicated in Figure 1.7. The deflection 

curve is subject to the differential equation  

                       
'' ( )

e
y P y x

l
   

        (1.15) 

and to the boundary conditions  



                       (0) '(0) 0,y y             (1.16) 

If the notation of (1.2) is used, (1.15) takes the form 

                     

2 2'' .
e

y y x
l

   
         (1.17) 

The general solution  

                     
cos sin ,

e
y A x B x x

l
          (1.18) 

subjected to the boundary conditions (1.16), becomes 

                       
sin

( )
sin

x x
y e

l l




 

        (1.19) 

Since (0 )y x l   for kl  , the buckling load is 

                         

2
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P

l

 
 

      (1.20) 

Thus the value 1k   in Table 1.1 is confirmed. 



The approach just described is based on the presence of 

imperfections and on the observation that, for a certain value 

of the load, the equilibrium configuration becomes so far 

removed from the one of the unloaded system that the 

structure is endangered. It is obvious that this idea can be 

applied to more complicated systems. It may be referred to 

as the imperfection method and is characterized by the 

question: What is the value of the load for which the static 

displacements of the imperfect system become excessive or 

even infinite(as in the linear cases treated so far)? 

Another approach is concerned with the equilibrium 

configurations of the perfect system. In the case of the 

parabola (1.11) of Figure 1.5, the transition between stability 

and instability of the isolated equilibrium position x=0, in 



which we are interested and which will henceforth be 

denoted as trivial, takes place when the parameter a  

vanishes. For 0a   the parabola coincides with the 
x axis , and any point 0x   on it represents what is called 

a nontrivial equilibrium position. Thus the loss of stability of 

the trivial equilibrium position is indicated by the 

appearance of nontrivial equilibrium positions in its vicinity. 

In order to apply this approach to Euler's problem in Case 5, 

we set the eccentricity e  in Figure 1.7 equal to zero. The 

load P then acts directly on the upper hinge, and the 

reactions /Pe l  disappear. The differential equation of the 

deflection curve becomes  

                        '' 0y y              (1.21) 



The boundary conditions are still given by (1.16). The 

general solution of (1.21) is  

                       cos siny A x B x          (1.22) 

The first boundary condition (1.16) requires that  

                         0;A               (1.23) 

from the second one we obtain 

                     sin 0B l             (1.24) 

For arbitrary values of k  (and hence of P ) this equation 

requires that 0B   and hence 0y  :  the only 

equilibrium configuration is the trivial one. For  

               ml m    (m=1,2,...)         (1.25) 

(the values 1, 2...m     do not furnish anything else, and 
0m  corresponds to the unloaded column), condition (1.24) 



is satisfied with arbitrary values of B and thus supplies an 

infinity of nontrivial equilibrium configurations. 

Problems of this type are called eigenvalue problems. The ** 

or the corresponding loads  
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            (1.26) 

are called the eigenvalues of the problem, and the 

corresponding solutions  

                      
( ) sinm m

m x
y x B

l


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           (1.27) 

are the eigenfunctions. The values mP for which nontrivial 

equilibrium configurations exist are also referred to as 

Euler's loads of order m. The present approach does not 

single out any one of these loads. However, it follows from 



the previous approach and from the methods to be discussed 

presently that the actual buckling load is 1P it coincides with 

(1.20). 

The approach just discussed is based on the observation that 

the transition from stability to instability of a (trivial) 

equilibrium configurations in the vicinity of the trivial one. 

This approach will be referred to as the equilibrium method; 

it is characterized by the question : what are the values of the 

load for which the perfect system admits nontrivial 

equilibrium configurations ? 

In order to explain a third approach, based on the potential 

energy of the system, we need a few definitions. Let 

1 2( , ,.... )nV x x x be a function vanishing for the values 

1 2 , .... 0nx x x    of its arguments. If the variables 



( 1,.... )mx m n are interpreted as Cartesian coordinates in a 

space of n dimensions, V is zero at the origin. The function 
V is called positive (negative) definite if it is positive 

(negative) for any other set of argument 1 1, ,.... nx x x within a 

sufficiently small vicinity 

                     
0mx g 

             (1.28) 

of the origin. If V is of one sign in (1.28) but assumes the 

value zero at points in (1.28) other than the origin, it is 

called (positive or negative) semidefinite. If V assumes 

values of either sign within an arbitrarily small domain 

(1.28), it is referred to as indefinite. 

The particle of Figure 1.5 has the potential energy 
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2
V mgy mgax 

           (1.29) 



provided that we take ( 0) 0V x   . The function ( )V x is 

positive definite if and only if 0a  . Thus the trivial 

equilibrium position is stable exactly as long as the potential 

energy is positive definite. 

In exploring the vicinity (1.28) of the equilibrium 

configuration it is essential that only admissible 

configurations are considered, that is, configurations 

satisfying all the kinematic constraints. In Figure 1.5, for 

example, V is positive definite on the parabola, but not if all 

points is the vicinity of 0 are considered. In the case of a 

column (Table 1.1), admissible configurations are 

represented by continuous functions ( )y x having continuous 

first derivatives and satisfying the kinematic (or geometric) 

end conditions. The requirements concerning continuity are 



necessary since we want to exclude fracture of the column. 

(In the case of a string, continuity of the first derivative 

would not be required.) In Case 3(Table 1.1)the kinematic 

end conditions are 
'(0) 0, (0) 0.y y  They represent 

kinematic (geometric) constraints, while the condition 
'' ( ) 0y l  , which states that the bending moment vanishes at 

the free end, is merely concerned with the forces and is 

therefore called a dynamic end condition. 

In order to apply the concept of definiteness to a continuum 

(e.g., to a column) it must be slightly generalized. Here, the 

potential energy depends on one or more functions of one or 

more variables, representing the displacement field. In 

Euler's problem for instance, V is a so-called functional(i.e., 

a function of a function) of the form [ ( )]V y x , where y(x) is 



an arbitrary admissible function. To the origin of Figure 1.5 

there corresponds the trivial equilibrium configuration 
0y  of the column (the origin in function space); to any 

other point on the parabola there corresponds a deflected 

shape y(x) (a point in function space outside the origin). The 

potential energy is positive definite if 

                [ 0] 0,V y     [ ( ) 0 ] 0 ,V y x        (1.30) 

where y(x) is an arbitrary admissible function sufficiently 

close to the trivial function 0y  . In a similar way, negative, 

semi-, and indefinite functions are generalized. 

In an elastic system the potential energy is the sum  

                   
( ) ( )i eV V V               (1.31) 

of the energy ( )iV of the internal forces, also referred to as 



the deformation energy, and the energy ( )eV of the external 

loads. In the case of a column, it follows from the 

differential equation of the deflection curve that 
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(1.32) 

As a consequence of the deflection the ends of the column 

approach each other by  
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0 0 0

1
( ) ( 1 ' 1) '

2

l l l

ds dx y dx y dx      
  

(1.33) 

where only terms up to the second degree in 'y are retained. 

Thus the potential energy of the constant load P is 

                      
( ) 2

0

'
2

l

e P
V y dx  

           
(1.34) 

and the total potential energy (1.31) of the system becomes 



                    
2 2

0 0

'' '
2 2

l l
P

V y dx y dx

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(1.35) 

It is so normalized that it vanishes in the trivial equilibrium 

configuration 0y  . For 0P  and, in fact, also for 

sufficiently small positive values of P the functional V is 

positive in any nontrivial admissible configuration ( )y x ; 

thus, by analogy with the particle of Figure 1.5, the trivial 

equilibrium configuration is stable. For sufficiently large 

values of P , however, V will be negative, a least for 

certain admissible configuration ( )y x : now V is not 

positive definite; the trivial equilibrium configuration 

therefore is unstable. The transition is characterized by the 

existence of at least one nontrivial admissible configuration 

1( )y x in which 0V  , while there is still no admissible 



configuration with 0V  . 

It is clear that, under appropriate continuity conditions, 

1[ ( )]V y x is stationary. Thus, our problem is to find the 

smallest value 1P of P for which V is stationary in a 

nontrivial admissible configuration 1( )y x . In other words, 

we have to find the smallest value 1P of P for which the 

variational problem  

                   0 0

'' '' ' ' 0,

l l

V y y dx P y y dx      
    

(1.36) 

restricted to admissible variations ( )y x of ( )y x , has a 

nontrivial solution. A function ( ) ( )x y x  is called an 

admissible variation of ( )y x if it results in a new 

admissible configuration ( ) ( )y x x in the vicinity of 
( )y x . It conforms to the kinematic constraints and thus 



satisfies the kinematic boundary conditions.  

Apart from the sign, V may be interpreted as the virtual 

work done by the internal and external forces in an 

admissible virtual displacement y . Our problem therefore 

is equivalent to the one of finding the smallest load for 

which a nontrivial equilibrium configuration exists. It 

follows that for problems of the type considered here the 

energy approach is equivalent to the equilibrium method. In 

fact, it is easy to see that  

                ' ( ) ' ',y y      ' ' ( ) ' ' ' ' ,y y            (1.37) 

Thus, (1.36) takes the form  

                      0 0

'' '' ' ' 0,

l l

V y dx P y dx           (1.38) 

In Euler's Case 5 the kinematic boundary conditions (1.16) 



imply (0) ( ) 0l   . By partial integration we obtain, in place 

of (1.38), 

                   
0

0

( '''' '') '' ' 0.

l
l

V y Py dx y       
        

(1.39) 

Since ( )x is an arbitrary admissible function, (1.39) yields 

the differential equation 

                    '''' '' 0y Py                 (1.40) 

and the dynamic boundary conditions 

                     
''(0) ''( ) 0.y y l 

             (1.41) 

Integrating (1.40) subject to the boundary conditions (1.41) 

and (1.16), we obtain the differential equation (1.21). It has 

been shown that the smallest value 1P of P  for which a 

nontrivial solution of (1.21) and (1.16) exists is given by 



(1.20). Thus the result is the same as in the previous 

approaches. 

The approach discussed here is based on the observation that 

the transition from stability to instability may be indicated 

by the fact that V ceases to be positive definite. The 

approach is called the energy method; it is characterized by 

the question: What is the value of the load for which the 

potential energy of the perfect system ceases to be positive 

definite? 

While the methods considered so far are of a purely static 

nature, a last approach to be discussed is kinetic. It is 

concerned with the motion of the system in the vicinity of 

the equilibrium configuration.  

In the case of the particle of Figure 1.5 the differential 



equation of motion is  

                        

dV
ms

ds
 

      (1.42) 

Linearization and use (1.29) yield  

                       
dV

mx mgax
dx

   
         (1.43) 

or  

                        0x agx            (1.44) 

According to the preliminary definitions given in Section 1.1, 

the equilibrium position 0x   is stable exactly as long as the 

general solution of (1.44) is bounded. Thus, we once more 

obtain the stability condition 0a 
.
 

In a similar way the vibrations of the column (Figure 1.8) 

under the influence of the load P  can be investigated. If   



denotes the (constant) mass per unit length, the inertia forces 

are  

                      
( , )dT y t d  

       (1.45) 

Besides, the reactions 1 2, ,P Q Q  must be introduced. 

According to d'Alembert's principle, the deflection curve is 

determined by  

               
1

0

''( , ) ( , ) ( , )( )

x

y x t Py x t Q x y t x d        
     

(1.46) 

and  

                   (0, ) ( , ) 0y t y l t              (1.47) 

 

Instead of a differential equation we have obtained an 

integro-differential equation. It can be simplified by 



differentiation with respect to x. In a first step we have 

  

                    
1

0

'''( , ) '( , ) ( , )

x

y x t Py x t Q y t d       
    

 (1.48) 

Differentiating once more, we obtain  

                  ''''( , ) ''( , ) ( , )y x t Py x t y x t             (1.49) 

or simply  

                     '''' '' 0y Py y             (1.50) 

This differential equation is of the fourth order and requires 

two more boundary conditions, 

                        ''(0, ) ''( , ) 0y t y l t         (1.51) 

besides (1.47), stating that the bending moment is zero at 

either end. They formally follow from the equilibrium of the 

whole column in the sense of d'Alembert together with the 



requirement that Equation (1.46), which has been abandoned 

in favor of the weaker statement (1.50), is at least satisfied 

for 0x   and x l . 

In the theory of oscillations, it is shown that the general 

solution of (1.50),(1.47), and (1.51) is obtained by 

superposition of an infinite number of so-called natural 

vibrations. 

        
( , ) sin ( cos sin )m m m m m

m x
y x t A t B t

l


   (m=1,2,...)        (1.52) 

The question now is whether or not all these natural 

vibrations remain arbitrarily small for sufficiently small 

initial perturbations, i.e., for sufficiently small values of the 

mA
 and mB . Inserting (1.52) in (1.50), we obtain the equations 



               

2 2 2 2
2

2 2
( )m

m m
p

l l

 
     (m=1,2,...) (1.53) 

for the circular frequencies m of the natural vibrations. As 

long as all the terms in parentheses are positive, the 

expressions (1.52) are harmonic oscillations with amplitudes 

determined by the initial conditions. If one of the terms in 

parentheses is negative, the corresponding m is imaginary 

and the oscillation (1.52) is unbounded for arbitrary small 

perturbations, since 

                 cos cosh ,i t t     sin sinhi t i t     (1.54) 

where ( 1)i   . A similar result is obtained in the case where 

one of the m is zero. Thus the straight column is stable 

exactly as long as P is smaller than any one of the terms 
2 2 2/m l  , that is, for 1P P , where 1P  is again the buckling load 



(1.20). 

This last approach is based on the observation that small 

perturbations of the equilibrium result in motions which are 

apt to become dangerous. The approach is called the 

vibration method: it is characterized by the question: What is 

the value of the load for which the most general free motion 

of the perfect system in the vicinity of the equilibrium 

position ceases to be bounded? 

 

Problems 

 

1. Verify the buckling load (Table 1.1) in Euler's Case 1 by 

means of the imperfection method, based on an inaccurate 

alignment of the ends (Figure 1.9). 



2. Solve Euler's problem in Case 4 by means of the 

equilibrium approach. 

3. Verify the buckling load (Table 1.1) in Euler's Case 2 by 

means of the energy method. 

4. The system of Figure 1.10 consists of two rigid rods of 

mass m  and length l , hinged without friction and loaded 

by P  and their own weights. Neglect the weight of the body 

carrying the bottom hinge. Apply the vibration approach to 

verify the value 1P mg  of the load at which buckling occurs. 

5. Show that for 0m   the corresponding natural vibration of 

the column in Figure 1.8 is unbounded. 

 

1.3. Critical Review 

 



In Section 1.2 we have applied four different approaches to 

the solution of one and the same problem. Three of these 

approaches to the solution of one and the same problem. 

Three of these approaches (the imperfection, equilibrium, 

and energy methods) are based on static concepts, while the 

fourth (the vibration method) is a kinetic approach. Each one 

of the four methods is characterized by a specific question. 

Although three seems to be little connection between these 

questions, the result, as far as the buckling load 1P
 
of the 

column in Case 5 is concerned, is the same. 

A more careful appreciation of the results, however, reveals 

certain differences. Some of the approaches lead directly to 

the buckling load 1P  ; in other cases an infinity of critical 

loads mP  is obtained, containing 1P  as their smallest value. 



The result depends on the precise formulation of the 

characteristic question. A slight modification of the 

imperfection approach, for example, would be sufficient to 

obtain the critical loads of higher orders. Moreover, it often 

happens in the practical application of the energy method 

that the characteristic question is forgotten in the course of 

the calculations and that the variational problem which is 

finally obtained is solved in a purely formal way, supplying 

Euler's loads of all orders. 

It is not difficult to formulate the characteristic questions in 

the four approaches in such a way that in the case of the 

column considered in Section 1.2 and in similar situations 

the results coincide, supplying the one and only buckling 

load. However, the fact remains that we are confronted with 



four entirely different questions. It is by no means evident 

that the answers to these four questions should always be the 

same. In fact, even in Euler's problem, when the questions 

have been reformulated so as to supply solely the critical 

load of the first order, some differences remain. According 

to the kinetic approach, for instance, there is no doubt that 

the column is unstable under any load 1P P . One is tempted 

to draw the same conclusion from the energy method, but 

not the slightest information of this kind is supplied by either 

the imperfection or the equilibrium approach. 

The situation is still less satisfactory if a wider class of 

problems is taken into consideration. There are numerous 

instances where the results of the various approaches are 

inconsistent. Some of these cases will be discussed in the 



remainder of this section. 

An important branch of the theory of stability is concerned 

with rotating systems such as shafts. For an observer taking 

part in the rotation, at least part of the loading consists in the 

centrifugal and Coriolis forces. It follows that any critical 

state will be associated with an angular velocity, and it is, in 

fact, rather the critical angular velocities than the critical 

loads which have to be determined.  

If the problem of the critical speed of a shaft of noncircular 

cross section is simplified and linearized the situation of 

Figure 1.11 is obtained. Here 
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the particle m , representing the concentrated mass of a disk 

fixed on the shaft, is supposed to be attracted by the axes of 

a coordinate system rotating uniformly with the angular 

velocity  . The restoring forces, assumed to be linear and 

determined by the elastic constants 1c  and 2c , represent the 

rigidities of the shaft with respect to its two principal 

directions. It is obvious that the origin O  is the only 

equilibrium position, and that it corresponds to a straight 

shaft with its axis coinciding with the z-axis. We are 

interested in its stability. 

Since the restitutive forces are defined in a coordinate 

system rotating with the shaft, it is convenient to consider 

the problem as one of relative equilibrium or motion, 

introducing, besides 1c x , 2c y , the centrifugal force 
2 ( , )m x y  



and the Coriolis forces 2 ( , )m y x   . The Coriolis force does no 

work in an actual motion. Thus the total potential energy is  

              
2 2 2 2

1 2

1
[( ) ( ) )]

2
V c m x c m y    

      (1.55) 

Formulating Newton's law, we obtain the differential 

equations 
21

22

2 ( ) 0

2 ( ) 0

c
x y x

m

c
y x y

m

 

 


    


   
          

(1.56) 

for the motion in the vicinity of the equilibrium position. 

The differential equations (1.56) are linear and homogenous 

and hence are solved by setting  
, .it itx Ae y Be          (1.57) 

Inserting this in (1.56), we obtain the homogeneous linear 



system of equations 
2 21

2 22

( ) 2 0

2 ( ) 0

c
A B

m

c
A B

m

  

  


    


   
         

(1.58) 

for A  and B . The trivial solution 0A B  represents 

equilibrium at O . Nontrivial solutions, corresponding to 

motions in the vicinity of O , require that the determinant of 

(1.58) vanish, i.e., that the so-called characteristic equation 
4 2 2 2 21 2 1 2( ) ( 2 ) ( )( ) 0

c c c c

m m m m
            

  (1.59) 

be satisfied. The roots of (1.59) are given by  
2 2 2 2 1/21 2 2 1 1 2

1,2 2

1 1
[ ( ) 2 ]

2 4

c c c c c c

m m m
  

  
   

       (1.60) 

Provided 0   and 1c  and 2c  are positive, the values 
2

1  

and 
2

2  are real and have distinct absolute values. Thus the 



four roots of (1.59) occur in pairs: 1 1,   and 2 2,  . They are 

either real or purely imaginary, and the four of them are 

distinct as long as none is zero. The general solution is 

obtained by superposition and is limited as long as all the 

roots are imaginary, i.e., so long as 
2

1 0   and 
2

2 0  . In fact, 

if, for example, 
2

1 0  , the corresponding fundamental 

solutions (1.57) can be written in terms of cos t  and sin t  

with 1i  . If, on the other hand, 
2

1 0  , they may be replaced 

by 1cosh t
 
and 1sinh t . If, finally, 

2

1 0   then 1  is a double 

root, and (1.57) has to be replaced by a slightly more 

complicated solution which can be shown to be unbounded.  

In the special case when 1 2c c , let us assume that 1 2c c . 

Inspecting the coefficients in (1.59), we readily find, by 

means of Vieta's relations, that 
2

1 0   and  



2 2 21 2

2

2 21 2

2

0,( , )

0, ( )

c c

m m

c c

m m

  

 


   


  
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(1.61) 

It follows that, according to the kinetic approach, there is a 

single and finite domain 
2

1 2/ /c m c m   of critical angular 

velocities (Figure 1.12). On  
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the other hand, we conclude from (1.55) that V  is positive 

definite only for 
2

2 /c m  . On the strength of the energy 

method, therefore, the infinite domain 
2

1 /c m   ought to be 

critical. We finally see that nontrivial equilibrium positions, 

i.e., constant nonvanishing solutions of (1.56), exist if and 



only if 0   is a root of the characteristic equation (1.59). It 

follows that the equilibrium approach supplies the two limits, 
2

1 1 /c m   and 
2

2 2 /c m   of the unstable domain, but gives no 

indication concerning the region between them. The same 

result would be furnished by the imperfection method. 

Experiments confirm the prediction of the kinetic approach. 

In fact, it will become evident that the equilibrium at O  is 

stabilized, for 
2

2 /c m  , by the Coriolis force, which does not 

appear in any one of the static methods. We learn from this 

example that there are simple problems of practical 

importance where the kinetic approach alone supplies a 

correct answer.  

The case 1 2c c c  , hitherto excluded, correspond to the more 

common situation of a shaft with a single flexural rigidity 



(e.g., a shaft with circular cross section). Physically, the 

problem is still the same, but from a methodological point of 

view it is entirely changed. The limits of the unstable 

domain (Figure 1.12) now conicide. Thus, 1 2 /c m    is the 

only angular velocity that is possibly critical. However, for 
2 2

1 /c m   , the differential equations of motion become  

12 0,x y   12 0,y x   (1.62) 

and their general solution,  

1 1

1 1

cos 2 sin 2

sin 2 cos 2

x A t B t C

y A t B t D

 

 

  

        
(1.63) 

is bounded. Here the kinetic approach fails to supply a 

critical value. In accordance with the energy method any 

1   ought to be critical, and the remaining approaches 



yield 1  as the only critical angular velocity. 

Experimentally, 1
 
is confirmed as the only critical speed. It 

follows that there are problems where even the kinetic 

approach fails if imperfections are disregarded. This is 

confirmed when the problem when the problem is treated in 

a coordinate system at rest. Here it presents itself as a 

vibration problem, and there is no perturbation and hence no 

resonance so long as the system is perfect.  

Another example is shown in Figure 1.13 The particle m  

moves in the fixed plane ,x y under the influence of the 

attractions 1c x , 2c y  from the  
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coordinate axes and a force r  perpendicular to the radius 

vector and proportional to the distance from the origin O , 

which point is again the only equilibrium position. The force 
r is not conservative. The potential of the remaining forces 

is  
2 2

1 2

1
( )

2
V c x c y 

         (1.64) 

The differential equations of motion 

               1 0,
c

x x y
m m


         2 0,

c
y x y

m m


        (1.65) 

are again solved by (1.57). The equations obtained for A  

and B  are 
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        (1.66) 



and the characteristic equation (the condition for the 

existence of a nontrivial solution) is  
2

4 21 2 1 2

2
( ) 0

c c c c

m m


  

 
   

       (1.67) 

Its roots are given by 
2 2 2 1/2

1 2 1 2

1
{ [( ) 4 ] }

2
c c c c

m
      

        (1.68) 

It is sufficient for our purpose to consider two special cases. 

If 1 2 0c c c   , then (1.68) reduces to 
2 1

( )c i
m

   
           (1.69) 

It is not difficult to see that, for arbitrary values 0  , two of 

the roots, which now consist of two conjugate pairs, have 

positive real parts. The corresponding fundamental solutions 

can be written in terms of coste t   and sinte t  , where   is 



real and 0  . It follows that, according to the vibration 

approach, the origin is unstable even though by (1.64) the 

potential energy is positive definite. Moreover, because of 

(1.67), none of the roots is zero, and this implies that the 

instability is not indicated by the presence of nontrivial 

equilibrium positions. 

For 1 2 0c    and 2 / 3c   , Equation (1.68) becomes 

 
2 1

(5 13)
6 m


   

          (1.70) 

Since now both values of 2  are negative, the roots are 

purely imaginary, and the system is stable although V  is not 

definite. 

The cases considered so far were concerned with particles 



and hence were especially simple. They revealed 

shortcomings of the classical approaches which are 

fundamental and may be found also in more complicated 

systems. 

As an example, let us consider a column loaded tangentially 

(Figure 1.14). This is only a slight modification of Euler's 

problem in Case 3: the load P , still of constant magnitude, 

is assumed to be tangential to the deflection curve in the 

process of buckling instead of retaining of retaining its 

original direction. 
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In an assumed nontrivial equilibrium position (Figure 1.14), 



the sign of the bending moment caused by the tangential 

load does not agree with the sense of curvature. Accordingly, 

there is no nontrivial equilibrium position, and the 

equilibrium approach does not indicate any danger of 

buckling. In order to confirm this result, we note that (for 

small inclinations) the differential equation of the deflection 

curve is 
'' ( ) ' ( )l ly P y y Py l x              (1.71) 

and that the end conditions are 
(0) '(0) 0,y y   ( ) ly l y , '( ) 'ly l y      (1.72) 

The general solution of (1.71) is 
cos sin ' ( )l ly A x B x y l x y              (1.73) 

where is   is given by (1.2). The end conditions yield the 



linear and homogenous system 
' 0

' 0

cos sin 0

sin cos 0

l l

l

A y l y

B y

A l B l
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

 

 

   


  


  
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(1.74) 

for , , ,l lA B y y . A nontrivial equilibrium configuration 

corresponds to a nontrivial solution of this system. Equating 

the determinant to zero, we obtain  

1 0 1

0 1 0
0

cos sin 0 0

sin cos 0 0

l

l l

l l



 

   






    

(1.75) 



If we develop this with respect to the last column, we are left 

with a three-row determinant. Developing once more with 

respect to the last column, we find 
2 2(cos sin ) 0l l               (1.76) 

This confirms the fact that there is no nontrivial equilibrium 

configuration for 0P  . It seems rather improbable, however, 

that the column should not buckle. It will be shown in 

Section 5.2 that the static approaches are illegitimate in this 

problem and the column actually buckles under a critical 

load obtained by means of the vibration method. 

Another example, where it is clear a priori that any static 

approach must fail, is of a column loaded by a pulsating 

compression, for example, by 



cosP Q S t  , ( 0, 0)Q S     (1.77) 

Case 5(Table 1.1) is particularly simple. The differential 

equation of motion and the end conditions have been 

established in Section 1.2. They are given by (1.50), (1.47), 

and (1.51), where now P  is no longer constant but has to be 

inserted from (1.77). The solution will be given in Section 

6.2. 

We conclude from there examples that even in a linear 

theory there are numerous cases where one or more of the 

approaches discussed in Section 1.2 fail, or where the results 

obtained by different methods are inconsistent. Additional 

complications are to be expected in nonlinear problems. Our 

next aim is to establish a method which is valid without 



restriction, and it is obvious that such a method must be 

based on a concept of stability defined more rigorously than 

has so far been done. 

 

Problems 

1. Show by means of the kinetic approach that in Figure 1.11 

the limits of the unstable domain 
2

1 2/ /c m c m   are 

themselves unstable. 

2. Consider the particle m , attracted by the axes of a rotating 

coordinate system , ,x y  as a model of a disk on a shaft with 

two distinct flexural rigidities. Introduce an 
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imperfection (Figure 1.15) by assuming that the restoring 

forces act at x a  and y b  , where a  and b  are constants. 

Show that the result is the one obtained by the equilibrium 

approach.  

3. Treat the problem of Figure 1.11 in a coordinate system at 

rest and show that, for 1 2c c c  , the equilibrium at O  is 

stable as long as there are no imperfections. 

4. Treat the tangentially loaded column of Figure 1.14 by 

means of the imperfection approach, assuming the presence 

of a small eccentricity. 

5. Show some stages of the deformation for the column of 

Problem 5 above by plotting the deflection curve for 
/ 2( 1,....,6).l n n   . 



 

1.4. The Stability Concept 

 

The approaches considered so far are concerned with (1) the 

deflection of the imperfect system, (2) the nontrivial 

equilibrium configurations of the perfect system, (3) the 

potential energy, and (4) the motion after the equilibrium has 

been momentarily disturbed. Actually, we are not interested 

in nontrivial equilibrium configurations or in the potential 

energy. The only things we are concerned with are large 

displacements, measured from the equilibrium configuration 

in the unloaded state, since they are apt to endanger the 

system. 

The loading of a given system may consist of a number of 



forces. If we assume that they are increased proportionally 

from zero, the instantaneous state of loading may be 

described by a parameter P  which will be briefly referred 

to as the load. While P  is increased, there occur two 

possible reasons for large displacement. In the first place, the 

equilibrium configuration of the system is altered by the 

application of the load. The corresponding displacements are 

often small and proportional to the loading. This is the case 

in the situation which is commonly treated in the linear 

theory of elasticity. If the increase of the displacements is 

faster and if, for a certain value of the load, the 

displacements become excessive or even infinite (as in the 

case of Figure 1.1), we talk of a latent instability of the 

system, since this effect is usually caused by imperfections 



and is overlooked if imperfections are not taken into account. 

The term kinetic instability describes the same effect. The 

system will be referred to as unstable and its load as critical 

whenever a static or a kinetic instability occurs. The smallest 

critical load will be denoted by 1P . 

The two types of instability are different. It is true that in 

certain cases, as in Euler's problem (Section 1.2), they occur 

under the same load. However, in many other problems (e.g., 

in some of the cases treated in Section 1.2) they are 

independent and must be considered separately. It is clear 

that instabilities of the equilibrium are always obtained by 

the kinetic approach. In order to take care of latent 

instabilities, however, the possibility of imperfections has to 



be kept in mind. 

To make our definitions more precise, let us consider a 

system with a finite degree of freedom, n , subjected to 

constant loads. Let the coordinates ( 1... )kq k n  be measured 

from the equilibrium configuration 0( 1... )kq k n   of the 

unloaded system. Then the equilibrium of the loaded system 

will be described by the coordinates  
( )k kq a p   ( 1 , 2 , . . . . )k n          (1.78) 

where the ( )ka p  are functions of the loading. A static 

instability is described by excessive values of at least one 
( )ka p . What values are to be considered as excessive 

depends on the system and on its allowable stresses. In many 

cases (as in the problem of Figure 1.1) the decision is 



simplified by the fact that the ( )ka p  become infinite under 

a certain finite loading.  

For the study of the motion caused by perturbations, let us 

use a new set of coordinates, 

k k kq q a   ( 1,2,.... )k n              (1.79) 

measured from the equilibrium configuration of the loaded 

system. The corresponding generalized velocities are  

 

k kq q    ( 1,2,.... )k n       (1.80) 

We confine our attention to free motions, 
( )k kq q t   ( 1 , 2 , . . . . )k n       (1.81) 

caused by single perturbations of the type that can be 

described by a set of initial conditions 



0(0)k kq q  , 0(0)k kq q ,  ( 1,2,.... )k n   (1.82) 

With these preparations we might define kinetic stability in 

the loaded state by the requirement that all the functions 
( )kq t  remain arbitrarily small for any time 0t   provided the 

initial values 0kq  and 0kq  have been chosen sufficiently 

small. This definition, however, is asymmetric; although the 

0kq , in addition to the 0kq , are required to be sufficiently 

small, no condition resembling the one for ( )kq t is 

formulated for the ( )kq t . It is convenient to use a symmetric 

definition and to define stable equilibrium by the conditions 

that the ( )kq t  and the ( )kq t  remain arbitrarily small for 

any 0t  , provided the 0kq  and the 0kq  are chosen 

sufficiently small.  



There is a simple way of interpreting this definition in 

geometrical terms. In a euclidean space of 2n dimensions, 

the so-called phase space with cartesian coordinates 

0 0, ( 1,... )k kq q k n  , the configuration and the state of motion of 

the system are represented by a phase point ( , )k kP q q . The 

motion of P  in phase space describes the motion of the 

system in physical space. If ( , )k kq qq  denotes the radius 

vector of P  in phase space, the equation 
2 2 2 2 2 2

1 1n nq q q q       q        (1.83) 

where   is a constant, represents a hypersphere of radius * 

and center O. According to the definition given above, the 

equilibrium, corresponding to the origin in phase space, is 

stable if and only if the phase point remains within a 

hypersphere (1.83) of arbitrarily small radius, provided its 



initial position is within a hypersphere of sufficiently small 

radius and center O.  

These definitions refer to systems with a finite degree of 

freedom n. Many systems of practical interest, and in 

particular structures(e.g., Euler's column), are continuous 

and hence have an infinite degree of freedom. Strictly 

speaking, one is not allowed to generalize the results 

obtained for finite n and to use them in cases where n is 

infinite. As a matter of fact, Shield and Green [58] have 

pointed out some difficulties inherent in this generalization. 

The problem is still being discussed. Recent work by Shield 

[59] and by Koiter [31,32] indicates that a satisfactory 

solution will eventually be found. In any case there is not 

much choice at the present time. It seems that the 



generalization is reliable in most cases if carried out with 

due caution. A case which is critical in a certain respect will 

be discussed in Section 2.7. 

From the definitions given above it follows that the stability 

of the equilibrium should be investigated by means of the 

kinetic method. In order to establish the path of a phase 

point released sufficiently close to the origin, the differential 

equations of motion must be integrated. At the same time the 

possibility of latent instabilities, caused by imperfections of 

the system, should be kept in mind.  

In most cases of practical interest it is cumbersome to carry 

out this program. The static approaches are considerably 

simpler. Although their connectior with our definitions is not 

obvious, it is a fact that they have been applied to structures, 



until very recently, with amazing success. Thus the question 

arises in what cases and why the kinetic method, which is 

the direct one, may be replaced by the simpler static 

approaches. The answer to this question calls for a 

classification of mechanical systems based on the forces to 

which they are subjected. 

 

Problem 

1. Interpret the motion of a harmonic oscillator, having a 

single degree of freedom and the circular frequency  , in 

the phase plane. 

 

1.5. Forces and Systems 

Figure 1.16 shows a force F  whose point of application P  



is deplaced from 1P  to 2P  along the curve C. The work of 

this force  
2

1

p

p

W d  F r

         (1.84) 
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is usually introduced as a line integral, under the tacit 

assumption that F  is a stationary field force ( )F r , defined 

without reference to the body on which it acts.  

Many forces(e.g., pulsating loads) also depend on time. 

They are functions of the form ( , )F r t  and are referred to as 

instationary. Other forces (as the drag of a projectile) depend 

on the velocity v r  of their point of application and hence 



have the form ( , )F r v . In such cases the work (1.84) is not a 

mere line integral: it cannot be computed unless the motion 
( )r t  of the point of application is known. If this is the case, 

the work becomes a time integral  
2 2

1 1

t t

t t
W dt Ldt  F v           (1.85) 

where the times 1t  and 2t  correspond to the positions 1P  

and 2P  on C and  
L  F v                (1.86) 

is the power or rate of work of F . 

Again, many forces, particularly all kinds of reactions, 

cannot be defined without reference to the body on which 

they act. If this body is finite, a question arises in connection 

with the point of application. In the case of a rolling wheel 



(Figure 1.17) there are three points A which might be 

considered as possible points of application of the normal 

pressure N and the static friction F : the material points (on 

the wheel and on the guiding body) in which constant takes 

place, and the instantanuous center of the wheel. The first 

two points are instantaneously at rest; the third one moves 

with the velocity v. A similar problem arises in connection 

with the string force S in Figure 1.18. 

 

Refer to Figure 1.17 

 

It is easy to check that in all applications of the concept of 

work(energy principle, principle of virtual work, equations 

of Lagrange, etc.) it is always the displacement of the 



material point of the moving body which is used in the 

proofs. Thus (1.84) and (1.85) have to be supplemented by 

the statement that dr  or v  refers to the material point of 

application on the body in consideration. 
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Certain forces are usually referred to as conservative 

because they are compatible with the notion of conservation 

of energy in a purely mechanical sense. The current 

definition, requiring that the work (1.84) be independent of 

the curve C (Figure 1.16) connecting 1P with 2P , is 

meaningful only for stationary field forces defined without 

reference to the body on which they act. There are not many 



forces of this kind and hardly any systems containing no 

other types of forces. In order to take care of real situations, 

let us define a conservative force by the condition that its 

work W in any admissible displacement of the system on 

which it acts depends solely on the initial and final 

configurations of the system. 

Let the coordinates of a system be denoted by ( 1.... )kq k n . 

Unless a statement to the contrary is made, we shall restrict 

ourselves to holonomic and scleronomic systems [86,pp. 43 

and 45]. Because of the first limitation, the most general 

admissible displacement is described by an arbitrary set of 

increments kdq  of the coordinates. Similarly, any set of 

generalized velocities kq  represents an admissible state of 



motion. On account of the second restriction, the radius 

vector of an arbitrary material element of the system has the 

form ( )kr q , that is, it does not depend explicitly on the time. 

It follows that  

1

n

k

k k

d dq
q







r
r

           
(1.87) 

Hence, the elementary work in a real displacement of a force 

acting on the system is  

1

n

k k

k

dW d P dq


  F r

           (1.88) 

where 

k

k

P
q


 



r
F    (k=1,2,.....,n)  (1.89) 

Similarly, the rate of work in a real motion is  

1

n

k k

k

L P q



          (1.90) 



If F is conservative, and ( )( 1... )kV q k n denotes its 

potential, the elementary work is also given by  

1

n

k

k k

V
dW dV dq

q


   




      
(1.91) 

Comparing (1.88) with (1.91), we find  

k

k k

V
P

q q

 
   

 

r
F     (k=1,2,....n) (1.92) 

Now r  and V are independent of the generalized velocities 

kq and the time t. It follows from (1.92) that, in general, only 

forces that depend exclusively on the configuration of the 

system can be conservative. 

It will become evident in the following chapters that, in 

connection with instability problems, it is important to know 

whether or not a given force is conservative. With this 



purpose in mind, let us set up a list of the types of forces we 

must expect. In the first place we distinguish between active 

forces or loads and reactive forces or reactions. The first are 

given a priori as functions of the kq , kq and t. The latter are 

known a priori and have to be obtained along with the 

motion, by integrating the differential equations of motion. 

In a scleronomic system the work of the reactions is never 

positive. Reactions can therefore be classified (Table 1.2) as 

either nonworking (e.g., normal pressure and static dry 

friction) or dissipative (doing negative work, e.g., kinetic dry 

friction). According to our definition the nonworking 

reactions have to be considered as conservative. They 

represent a first exception from the rule given above since 



they cannot be derived from a potential energy.  

 

Refer to Table 1.2 

 

Table 1.3 gives a similar classification of loads. Those that 

depend explicitly on the time (e.g., pulsating loads) are 

called instationary and never conservative. Stationary loads 

may be classified as either velocity-dependent or velocity-

independent. In the first case the dependence on the velocity 

may 

 

Refer to Table 1.3 

 

be such that the work in a real motion (as is the case with 



Coriolis forces, Lorentz forces, and gyroscopic moments) is 

always zero. Such loads are called gyroscopic; they are 

obviously conservative, and they represent a second 

exception from the rule given above. Velocity-dependent 

loads doing positive work are unimportant in the present 

context; those doing negative work (e.g., fluid friction or air 

drag) are referred to as dissipative. Among the velocity-

independent loads there are those which can be derived from 

a stationary, single-valued potential(e.g., gravitational 

forces). Borrowing an expression from hydrodynamics, we 

will call them noncirculatory. Loads of this type are 

conservative. All other velocity-independent loads will be 

referred to as circulatory. 

Circulatory loads are more common than is usually supposed. 



They are doing work on bodies moving cyclically through 

the same positions and hence play an important role in 

power-transmitting devices such as cranks,  

 

Refer to Figure 1.19 

 

shafts, pulleys, etc. The force F  shown in Figure 1.19 is 

assumed to be rigidly connected with a rigid body and hence 

is constant for an observer moving with the body. In the 

translation A B   it does a certain amount of work. If, 

however, the translation is preceded and followed by 

rotations through / 2  and / 2 , respectively, the same 

final position is attained without work; thus, F is circulatory. 



A couple of constant moment vector M , as shown in Figure 

1.20, is likewise circulatory. In fact, in a rotation through * 

about the  

 

Refer to Figure 1.20 

 

axis z the work of M is positive. In two successive rotations 

through   about the axes x and y the same final position is 

attained, but now the work of M is zero. 

If all the forces (loads and reactions) acting on the system 

are conservative, we talk of a conservative system. (In Tables 

1.2 and 1.3 the conservative forces are underscored.) A 

conservative system contains no other forces than 

nonworking reactions and loads of the noncirculatory and 



gyroscopic types. The systems in which we are interested 

always contain nonworking reactions and noncirculatory 

loads. In Euler's problem, for example, all reactions are 

nonworking, and the external load P as well as the elastic 

stresses (the internal loads) are noncirculatoty. If, in addition, 

gyroscopic loads are present, we shall talk of a gyroscopic 

conservative system; if not, we will refer to it as 

nongyroscopic. 

On the other hand, a system is nonconservative if it contains 

at least one nonconservative force, i.e., a dissipative reaction 

or a load of the dissipative, circulatory, or instationary types. 

According to which of these is the case, we shall refer to the 

system as dissipative, circulatory, or instationary. 

Instationary systems are also called heteronomous, whereas 



the term autonomous is used for systems free of instationary 

forces. 

In the most general case, forces of all kinds will be represent. 

If, however, besides conservative forces (which are 

practically always present) only dissipative forces occur, we 

shall call the system purely dissipatvie. In a similar sense we 

may refer to a system as purely circulatory or purely 

instationary. 

If the system is conservative, the total work of the internal 

and external forces can be represented by a potential 

energies of all loads. By analogy to (1.88) and (1.92), the 

elementary work in a real motion then is given by 

1

n

k k

k

dW P dq



         (1.93) 



where 

k

k

V
P

q


 

    (k=1,2,...,n)   (1.94) 

Moreover, the principle of virtual work, applied to the actual 

motion, supplies the energy theorem in the form 
dT

L
dt


           (1.95) 

where T is the kinetic energy of the system and L is the total 

rate of work. Integrating (1.95) we finally obtain the 

theorem of conservation energy 
T V E            (1.96) 

where E is the constant total energy of the system. This 

theorem is valid for any conservative system, whether 

gyroscopic or not. 



As a first example, Figure 1.21 shows a particle m moving in 

a uniformly rotating coordinate system under the action of 

its weight. Obviously, the weight (0,0, )W mg  and the 

centrifugal force 2 ( , ,0)Z m x y   are noncirculatory, and the 

Coriolis force 2 ( , )C m y x    is gyroscopic. Thus the system, 

i.e., the particle, is conservative; if 0  , the particle is also 

gyroscopic. If ( )t  , Z  and C  become instationary and 

hence the particle is heteronomous. If air drag is taken into 

account, the particle is dissipative. 

The double pendulum of Figure 1.22, equipped with 

restoring moments acting in the hinges, may be considered a 

simplified model of an elastic rod  

 

Refer to Figure 1.21 



 

built in at the upper end. So long as the force F  is absent, 

the system is conservative and nongyroscopic. With F  

acting in the axis of the second pendulum, it becomes purely 

circulatory, since F  is a force of the type shown in Figure 

1.19. The spherical pendulum (Figure 1.23), if acted upon by 

a  

 

Refer to Figure 1.22 

 

couple of constant moment vector (as discussed in 

connection with Figure 1.20), is likewise circulatory. 

In Table 1.4 we once more find the classification of 

mechanical systems as either conservative system is either 



nongyroscopic or gyroscopic. In the second class only the 

most important subclasses are listed: those of the purely 

dissipative, purely circulatory, and purely instationary types. 

The examples added in each column show that in all five 

subclasses practically significant stability problems arise. 

Incidentally, the problem of critical speed, shown in column 

two, is gyroscopic only if treated in a coordinate frame 

rotating with the shaft. Treatment of the buckling problem 

under the influence of  

 

Refer to Figure 1.23 

 

damping (column three) seems uncommon, but is perfect 

order once the kinetic nature of the stability concept (Section 



1.4) has been recognized.  

 

Refer to Table 1.4 

 

Problem  

1. An automobile is driven around a corner with increasing 

speed. On the floor of the trunk a loose nut is rolling. 

Introduce all forces acting on the nut (from the viewpoint of 

the driver) and classify them. 

 

1.6. Lagrange's Stability Theorem 

 

In a holonomic system the increment iq of a single 

coordinate iq represents an admissible displacement. 



Applying the principle of virtual work in turn to these 

elementary displacements, one obtains Lagrange's equations 

[86, p.180] 

i

i i

d T T
Q

dt q q

 
 

      (i=1,2,...,n)(1.97) 

where the generalized forces iQ  are the coefficients of the * 

in the expression of the virtual work 

1

n

i i

k

W Q q 



         (1.98) 

In the case of a conservative system, most texts claim that 

the generalized forces can be expressed by 

i

i

V
Q

q


 

             
(1.99) 

in terms of the potential energy. In this way, the special form  



0
i i

d L L

dt q q

 
 

      (i=1,2,...,n) (1.100) 

of Lagrange's equations is obtained, where 
L T V               (1.101) 

is the so-called kinetic potential of the system. 

Actually, Equations (1.99) and therefore (1.100) only apply 

if the conservative system is nongyroscopic. It has been 

shown in (1.88) and (1.92) that the actual work in a real 

motion of a conservative system is 

1

n

i

i

dW Pdp


   w h e r ei

i

V
P

q


 

     
(1.102) 

Here, the forces and displacements belong to the same 

motion, namely, the actual one. On the other hand, the 



principle of virtual work is based on the expression (1.98) of 

the virtual work, where the iQ  are obtained from the real 

forces (i.e., the ones acting in the real motion), while the * 

represent the virtual displacement (which is admissible but 

arbitrary). Here, the forces and the displacements belong to 

different motions. Hence, the second equation (1.102) does 

not necessarily imply (1.99). It is true that the iQ  coincide 

with the iP  so long as the forces acting in the system only 

depend on the iq  and on t. However, they are different as 

soon as forces dependent on the iq  are present. The only 

such forces admitted in a conservative system are gyroscopic. 

Their work in an actual displacement is always zero; in a 

virtual displacement, the work vanishes only exceptionally. 

Since they do not occur in the potential energy, these forces 



would get lost if Lagrange's equations were applied in the 

form of Equations (1.100) and (1.101) 

Let 

i i iQ P G     (i=1,2,3,...,n)     (1.103) 

where the iP  are defined by (1.102), whereas the 

generalized gyroscopic forces iG  follow from their virtual 

work 

1

n

g i i

k

W G q 


             (1.104) 

It then follows from (1.97) that, for a gyroscopic 

conservative system, Lagrange's equations can be written  

i

i i

d L L
G

dt q q

 
 

      (i=1,2,...,n)(1.105) 

As an example, consider the particle of Figure 1.21 moving 



under its own weight in a uniformly rotating coordinate 

frame. The kinetic energy is  

2 2 21
( )

2
T m x y z  

         (1.106) 

The potential energy of the weight and the centrifugal force 

is  

2 2 21
( )

2
V m x y mgz   

          (1.107) 

Thus the kinetic potential becomes 
2 2 2 2 2 21

[ ( ) 2 ]
2

L T V m x y z x y gz       
    (1.108) 

The Coriolis force is conservative but gyroscopic. From its 

virtual work 
2 ( )gW m y x x y    

        (1.109) 



we obtain the generalized gyroscopic forces 
2xG m y     2yG m x     0zG   (1.110) 

If (1.108) and (1.110) are inserted, Lagrange's equations 

(1.105) supply the differential equations of motion, 
22 0,x y x     

22 0,y x y     0z g   (1.111) 

They include the gyroscopic terms and are easily checked by 

means of Newton's law. 

Lagrange's equations are a powerful tool whenever the 

stability of an equilibrium configuration is to be investigated 

by means of the kinetic method. It has been stated at the end 

of Section 1.4 that this is not always necessary. In fact, a first 

shortcut in the form of a general theorem has been provided 

by Lagrange. This theorem, usually formulated for 



nongyroscopic conservative systems (i.e., for systems 

belonging to the first subclass in Table 1.4.), is actually more 

general [84]; it applies to all systems containing only 

(nongyroscopic or gyroscopic) conservative and dissipative 

forces, i.e., to systems of the first three subclasses in Table 

1.4. 

Let the total energy (1.96) of the system be a continuous 

function of the coordinates kq  and the generalized velocities 

kq . Equation (1.83) represents a hypersphere of radius  

about the origin O in phase space. According to a well-

known theorem of Weierstrass, the energy E assumes a 

minimum value   on this sphere. In scleronomic systems, 

the kinetic energy T is a positive definite function of the kq , 

dependent also the kq . If V is a positive definite function of 



the kq , then ( , )k kE q q  is positive definite in phase space. It 

follows that 0   provided   is sufficiently small. Since 

E is a continuous function, the initial values 0kq  and 0kq  can 

always be chosen so as to make E  . In a system 

containing only conservative and dissipative forces, E does 

not increase. It follows that oE E   . The phase point 

remains inside the hypersphere of radius  , and hence the 

equilibrium is stable. We thus have proved the: 

 

THEOREM OF LAGRANGE. Provided the total energy is 

continuous, the equilibrium of a system containing only 

conservative and dissipative forces is stable whenever the 

potential energy is positive definite. 



 

Note that the inversion of this theorem is not true. The 

particle shown in Figure 1.11 is conservative. Its potential 

energy (1.55) is positive definite so long as 2

1 /c m  , and it has 

been shown (Figure 1.12)that, in this range, the equilibrium 

is, in fact, stable. For 2

2 /c m  , however, the equilibrium again 

becomes stable although V is negative definite.  

Lagrange's theorem is the only general principle supplying 

immediate results for an extensive class of systems, whether 

or not their differential equations are linear. In order to 

obtain more results of a fairly general nature, it is convenient 

to linearize the differential equations of motion. We have 

repeatedly made use of this possibility, e.g., in connection 

with the particle of Figure 1.5. Even though such a 



linearization is not always legitimate (and, in certain cases, 

may prove impossible), it provides a good starting point for 

any investigation of a more refined nature. It is true that, 

with respect to static instabilities, defined by large rather 

than small values of the displacements, a given system and 

its linearized version may behave differently. Figure 1.3 

shows that a static instability may be less detrimental than it 

appears from a study of the linear case. There are also 

examples where the opposite is true. On the other hand, it is 

usually possible generalize the results obtained with respect 

to the kinetic instability of a given linear system, since here 

the definition is based on small values of the kq  and kq  . 

In fact, Lyapunov [44], Chetayev [9]. and others (see, for 



example [45,10]) have established a number of stability 

theorems for nonlinear systems, which, although not quite as 

general as Lagrange's principle, will allow us to transfer 

most of our essential results from linear to nonlinear systems. 

Therefore, it seems that a reasonable plan to be adopted in 

any stability investigation and, in particular, in the structure 

of the following chapters consists of first considering the 

linear system and then proceeding to the nonlinear one. Of 

course, this implies that we restrict ourselves to systems that 

can be linearized. Moreover, we have to keep in mind that, 

with respect to static instabilities, a generalization usually is 

impossible. 

 

Problems 



 

1. Check the differential equations (1.65) of the particle 

shown in Figure 1.13 by means of Lagrange's equations. 

2. Show that the particle in Figure 1.24, moving between 

prestrained springs, does not obey a single linear differential 

equation of motion. 

 

Refer to Figure 1.24  

 

1.7. Linear Systems 

 

Whenever the motion of a system is governed by a single set 

of linear differential equations, containing an equation for 

each degree of freedom, the system will be referred to as 



linear. If we denote the coordinates by kq  and exclude the 

unimportant (and practically nonexistent) case where the 

forces depend on ,k kq q
,… the differential equations of 

motion have the form 

1

( ) 0
n

ik k ik k ik k i

k

m q g q c q h


      (i=1,2,...,n)  (1.112) 

where the , ,ik ik ikm g c  and ih  depend on the properties of the 

system and on its loading. For the examples treated in the 

foregoing sections this is readily verified. The various types 

of systems listed in Table 1.4 can be distinguished in (1.112) 

by means of the properties of the coefficients. 

If at least one of the coefficients or one of the quantities ih  

is a function of time, the system is obviously heteronomous. 

In order to obtain the various classes of autonomous systems, 



we restrict ourselves from now on to constant coefficients 

and constant values of ih . The general solution of the 

inhomogeneous system (1.112) is obtained by superposition 

of a particular integral and the general solution of the 

reduced (homogeneous) system 

1

( ) 0
n

ik k ik k ik k

k

m q g q c q


       (i=1,2,...,n) (1.113) 

An especially simple particular solution of (1.112) is given 

by   

i iq a      (i=1,2,...,n)  (1.114) 

where the ia  are constants satisfying the linear equations 

1

n

ik k i

k

c a h


      (i=1,2,...,n)  (1.115) 

Exactly the same relations (1.114) and (1.115) are obtained 

if we inquire about the equilibrium configuration 



corresponds to a particular integral of the type (1.114). 

Moreover, if a new set of coordinates, 

i i iq q a        (i=1,2,...,n)     (1.116) 

is introduced, measured from the equilibrium configuration 

ia , the system (1.112) reduces to (1.113). Thus, the general 

solution of the reduced system (1.113) represents the motion 

in the vicinity of the equilibrium configuration ia .  

It is obvious that the distinction between the two solutions 

just discussed corresponds to the distinction, introduced in 

Section 1.4, between latent instabilies of the system (static 

instabilities) and instabilities of the equilibrium (kinetic 

instabilities). It is always possible to introduce the 

coordinates kiq  in such a way that the ih  in (1.112) are zero 

so long as the system is unloaded. If the ih  are nonzero in 



loaded state, they represent constant generalized forces in 

the sense of Lagrange. They determine, in conjunction with 

the ikc , the equilibrium configurations of the loaded system. 

If the ih  remain zero in the process of loading, the system 

may be referred to as perfect; if at least one ih  becomes 

nonzero, the system is imperfect. 

According to (1.115), the perfect system always has the 

trivial equilibrium configuration 0( 1,...., )ia i n  , whereas any 

equilibrium configuration of the loaded imperfect system is 

nontrivial . So long as the determinant of the matrix ( )ikc  is 

different from zero, the perfect system has only the trivial 

equilibrium position; also the equilibrium configuration of 

the imperfect system is unique and finite; actually, the 

displacements from the trivial equilibrium configuration are 



small provided the imperfections are small.  

When the determinant of the ikc  becomes zero, the perfect 

system admits nontrivial equilibrium configurations. At the 

same time the ia  of the imperfect system (or, at least, some 

of them) can become infinite. Thus, a static instability arises 

and is indicated by the appearance of nontrivial equilibrium 

configurations of the perfect system, i.e., by the equilibrium 

method. 

The motion of the system in the vicinity of the equilibrium 

configuration is described by the homogenous linear system 

(1.113). According to the definition given in Section 1.4, the 

equilibrium is stable so long as the ( )iq t  and ( )iq t  remain 

arbitrarily small, provided the 0iq  and 0iq  are chosen 



sufficiently small. Now, any solution of (1.113) remains a 

resolution when all the ( )iq t  are multiplied by an arbitrary 

constant. Thus, the equilibrium is stable if and only if the 
( )iq t  and ( )iq t  remain bounded, provided the 0iq  and 0iq  

are finite. 

In order to solve (1.113), we set  
t

k kq A e         (i=1,2,...,n)    (1.117) 

Inserting this in (1.113), we obtain the homogenous linear 

system 
2

1

( ) 0
n

ik ik ik k

k

m g c A 


      (i=1,2,...,n)  (1.118) 

for the kA . The trivial solution 0( 1,..., )kA k n   corresponds to 

the equilibrium state. Nontrivial solutions exist if and only if 

the determinant vanishes, i.e., if the so-called characteristic 



equation 
2det( ) 0ik ik ikm g c              (1.119) 

is satisfied. Provided the 2n  roots j  of (1.119) are distinct 

and real, they supply 2n  real fundamental solutions of the 

form (1.117). By superposition, the general solution, 

containing 2n  constants, is obtained; it can be adapted to 

arbitrary initial conditions by a suitable choice of the 

constants. If the roots are distinct but (at least, in part) 

complex, they occur in conjugate complex pairs i     . 

The corresponding kA , obtained from (1.118), are also 

conjugate complex, i.e., of the form k kA iA  , and the 

corresponding pairs of fundamental solutions (1.117) appear 

in the form  



[( )cos ( )sin ]t

k k k k kq e A iA t A iA t  
          (1.120) 

Since their real as well as their imaginary parts must satisfy 

(1.113), they may be replaced by the real and independent 

fundamental solutions 

 coskB t     and  sint

kC e t 
       (1.121) 

A kinetic instability arises if there is at least one set of initial 

conditions resulting in an unbounded motion, i.e., if at least 

one of the fundamental solutions is unbounded. The kinetic 

approach thus finally consists of an investigation of the roots 

of the characteristic equation. According to (1.117) and 

(1.121), a positive real part in any root implies an instability. 

If the characteristic equation has multiple roots, Equation 

(1.117) does not always supply a complete set of 



fundamental solutions. A discussion of this case has been 

given by Routh [57]. The additional fundamental solutions 

then contain powers of t multiplied by the exponential 

functions themselves, except when   is purely imaginary 

or zero. Thus, any root with a zero real part may imply an 

instability. 

It is worth noting that the kinetic approach in the form just 

described also supplies the static instabilities and thus 

renders an additional investigation by means of the 

imperfection approach unnecessary. It has been pointed out 

above that a static instability is always indicated by the 

appearance of a nontrivial equilibrium configuration in the 

perfect system, i.e., by a constant solution of (1.113). Such a 

solution is of the form of (1.117) with 0  . Thus, static 



instabilites correspond to vanishing roots of the 

characteristic equation. 

It follows from the foregoing discussion that the linear 

system is stable so long as all the roots of the characteristic 

equation (1.119) have negative real parts. If at least one of 

the roots has a positive real part, the system is unstable. A 

vanishing root indicates a static and possibly also a kinetic 

instability. If there no roots with positive real parts but at 

least one pair of purely imaginary roots, we are confronted 

with a critical case: the system may be stable or unstable. 

The roots of the characteristic equation (1.119) are 

determined by the matrices ( ),( )ik ikm q , and ( )ikc  of the 

coefficients occuring in (1.113). It has been noted that these 

matrices reflect the properties of the system with which we 



are concerned. It is therefore to be expected that the various 

types of systems discussed in Section 1.5 distinguish 

themselves by their stability properties. 

In order to establish the connections between the various 

systems and the matrices in (1.113), let us suppose that these 

differential equations have been obtained by formulating 

Lagrange's equations (1.97). The acceleration terms ik km q  

stem from the kinetic energy, which, in the linear case, is a 

positive definite quadratic form of the generalized velocities, 

, 1

1

2

n

ik i k

i k

T m q q


 
         

(1.122) 

The matrix ( )ikm  is constant. It can always be symmetrized 

and actually must be assumed to be symmetric ; otherwise 

the acceleration terms would not have the simple form 



indicated above. Finally, the matrix ( )ikm  is positive definite, 

i.e., it has certain properties which ensure the definiteness of 

T but need not be discussed here in detail.  

Let us now assume that the system is conserative and 

nongyroscopic. Then the generalized forces are represented 

by a potential energy, which, in the linear case, is a quadratic 

form of the coordinates, 

, 1

1

2

n

ik i k

i k

V c q q


 
       

 (1.123) 

The matrix ( )ikc  is constant and symmetric by the same 

reasons as ( )ikm , but is not necessarily positive definite. The 

differential equations (1.113) reduce to  

1

( ) 0
n

ik k ik k

k

m q c q


 
 
 (i=1,2,...,n) (1.124) 

If the condition that ( )ikc  be symmetric is dropped, (1.124) 



also describes the motion of a purely circulatory system. In 

fact, linear generalized forces dependent only on the 

configuration have the form  

, 1

n

i ik k

i k

Q c q


     (i=1,2,...,n) (1.125) 

where the matrix ( )ikc  is constant. If ( )ikc  is asymmetric, it 

can be split up, by 
( ) ( ) ( )ik ik ikc c c           (1.126) 

into its symmetric and antimetric parts, with components 
1

( )
2

ik ik kic c c     1
( )

2
ik ik kic c c      (1.127) 

The work of the iQ  is 

1 , 1

n n

i i ik k i

k i k

dW Q dq c q dq
 

               (1.128) 

This is an exact differential if and only if 
2 0k i

ik ki ik

i k

Q Q
c c c

q q

 
    

    (i=1,2,...,n) (1.129) 



It follows that the matrix ( )ikc  represents the circulatory 

forces, whereas the noncirculatory forces are given by ( )ikc . 

Linear generalized forces dependent on the state of motion 

have the form 

, 1

n

i ik k

i k

Q g q


     (i=1,2,...,n)  (1.130) 

Thus, the differential equations of a gyroscopic or a 

dissipative autonomous system are (1.113) where the matrix 
( )ikg  is constant, and ( )ikm  and ( )ikc  have the properties 

discussed above, ( )ikc  being symmetric if circulatory forces 

are absent. 

By means of relations analogous to (1.126) and (1.127), the 

matrix ( )ikg  can be decomposed into its symmetric and 

antimetric parts, respectively. The rate of work of (1.130) is  



1 , 1 , 1

n n n

i i ik i k ik i k

i i k i k

L Q q g q q g q q
  

      
     

 (1.131) 

since the contributions of ( )ikg  cancel. It follows 

immediately that the matrix ( )ikg  is positive definite and 

represents the dissipatie forces, while the gyroscopic forces, 

which do no work in real motions, are represented by ( )ikg . 

Thus, ( )ikg  characterizes a gyroscopic or a dissipative 

system according to whether or not it is antimetric.  

 

1.8. Nonlinear Systems 

 

It was mentioned at the end of Section 1.6 that the essential 

results to be established for the kinetic stability of linear 

systems can be generalized for nonlinear systems if the 



differential equations are accessible to linearization. To 

facilitate this generalization, let us state a few theorems. 

In a system that can be linearized, the quadratic form (1.123) 

may be considered as a first approximation of the potential 

energy, obtained by dropping terms of third and higher 

degrees. It is not difficult to see that the following theorem 

holds for V (and, incidentally, for any function of this type): 

 

THEOREM A. If the approximation (1.123) is definite 

(indefinite),so is the exact function ( )kV q .   

 

For a proof, see Malkin [45, p. 17]. There is no similar 

theorem for the semidefinite case; hence, Theorem A cannot 

be inverted. It is possible that the approximation (1.123) is 



semidefinite, whereas the higher order terms render the 

exact expression ( )kV q  definite or indefinite. However, if the 

approximation (1.123) is semidefinite with a certain sign, it 

is not possible that ( )kV q is semidefinite with the opposite 

sign. In fact, the proof given by Malkin for Theorem A also 

proves the following extension: 

 

THEOREM B. If the approximation (1.123) assumes 

positive (negative) values within an arbitrarily small vicinity 

of the origin, so does the exact function ( )kV q . 

 

Starting from consideration of this type, Lyapunov [44] has 

proved a series of stability and instability theorems. The 

body of these theorems represents a powerful means for 



dealing with nonlinear problems. The few results we will 

need in the following chapters are: 

 

THEOREM C. If, in the linearized system, all the roots of 

the characteristic equation (1.119) have negative real parts, 

the equilibrium of the actual (nonlinear) system is stable. 

 

THEOREM D. If, in the linearized system, at least one root 

of the characteristic equation has a positive real part, the 

equilibrium of the actual system is unstable. 

 

For proofs of these theorems see, e.g., [45, p.53]. Again, a 

similar theorem does not exist for the so-called critical case, 

where there are roots with vanishing real parts but no roots 



with positive real parts. Here, the higher order terms may 

render the equilibrium stable or unstable. 

  


