
Chapter 2 

 

 Nongyroscopic Conservative Systems 

 

The majority of stability problems arising in structures are of the 

nongyroscopic conservative type. Therefore, we will restrict ourselves 

in this chapter to nongyroscopic conservative systems. 

 

2.1. General Aspect 

 

According to the definitions given in connection with Tables 1.2 and 

1.3 (Section 1.5), nongyroscopic conservative systems only contain 

nonworking reactions and noncirculatory loads. In the linear case, the 

energies (1.122) and (1.123) are 
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and the differential equations of motion (1.124) are 
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where the metrices ( )ikm  and ( )ikc  are constant and symmetric, and the 

first one, in addition, is positive definite. 

A well-known algebraic principle (see, e.g., [61]) asserts that it is 

always possible to find a real linear transformation of the coordinates 

kq , 
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such that two quadratic forms such as (2.1), one of which is positive 

definite, assume the so-called normal forms  
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(containing only purely quadratic terms). Here, the im  are positive. 

The i  are called the normal coordinates of system. Applying 

Lagrange's equations (1.100) along with (1.101) to the energies in the 

forms (2.4), we obtain the differential equations of motion in terms of 



the normal coordinates, 

                     0i i i im c     (i=1,2,...,n)           (2.5) 

 

Here, the differential equations for the various coordinates are 

independent. The transition from the original coordinates iq  to the 

normal coordinates i  facilitates the discussion of the stability. Setting  
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we immediately obtain 
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It is clear that the discussion can be based on the equal and opposite 

roots i  and i  obtained from (2.7). Incidentally, it can be shown 

that they coincide with the roots of the characteristic equation obtained 

from (1.124) by means of (1.119). They are positive and 

negative ,respectively,for 0ic   and conjugate imaginary for 0ic  . In 

the last case (which is harmless although critical in the sense of 

Section 1.7) the corresponding fundamental solutions (2.6) are 



harmonic oscillations and thus bounded; in the first case they are 

exponential functions with real arguments, one of them unbounded. If 
0ic  , the fundamental solutions of (2.5) are i iA   and i iB t  . The 

first one represents an infinity of nontrivial equilibrium configuration; 

the second one is unbounded. Since the general solution is obtained by 

superposition of the fundamental solutions for the various normal 

coordinates, the situation is as follows; so long as all the ic  are 

positive (see Figure 2.1, where the small squares indicate the 2

i  and 

the circles the 0i  ), the equilibrium configuration 0( 1,...., )i i n    is 

stable. When at least one ic  is negative, it is unstable. Whenever one 

of the ic  is zero, the system is kinetically and statically unstable.  

Since the inequalities 0( 1,...., )ic i n   are also the necessary and 

sufficient conditions for V to be positive definite, Lagrange's theorem 

can be inverted or, in other words, replaced by: 

THEOREM 1. The equilibrium of a nongyroscopic conservative linear 

system is stable exactly as long as the potential energy is positive 



definite. 

 

It was pointed out in Section 1.2 that the potential energy is the sum, 

                         
( ) ( )i eV V V                 (2.8) 

of the deformation energy 
( )iV  and the potential energy 

( )eV  of the 

external loading. With a few exceptions characterized by large 

displacements - one of them is the problem of buckling of helical 

springs solved by Haringx [20,21] and others [79] (see also [5]) - it is 

possible to write (2.8) in the form  

                        ( )iV V PU                   (2.9)  

where 
( )iV  is independent of the load and 0P   is a parameter 

indicating the intensity of the loading. Problems of this type will be 

referred to as simple stability problems and the corresponding systems 

as simple systems. 

In a stability problem where the unloaded state is stable, 
( ) ( )i

kV q  is 



positive definite and ( )kU q  is at least capable of assuming positive 

values. The normal coordinates are dependent on P, and, in general, 

the expression for ( ) ( )i

kV   and ( )kU   will not assume their normal 

forms. However, in a simple stability problem the potential energy, 

according to (2.9) and (2.1), may be written 
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where the matrix ( )ika  is positive definite and ( )ikb  either indefinite or 

positive definite (semidefinite). For 0P  , V is positive definite and 

hence the system is stable. For sufficiently large values of P, V is not 

positive definite and hence the system is unstable. The transition takes 

place at certain value 1P P . In Figure 2.1, at least one pair of roots ,i

i  lying originally on the imaginary axis, moves towards the origin 

while P increases. For 1P P , the two roots of the pair meet at the origin; 

1P P
 one of them proceeds along the positive real axis, the other 

along 

the negative one. The motion of the roots need not be monotonic in P 



[87]. However, for certain values 2 1 3 2, ...P P P P   of the load parameter, 

other pairs of roots may pass through the origin. Since the equilibrium 

is unstable for any 1P P , this is of no consequence. 
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In Figure 2.2 the load P is plotted on the vertical axis. The unstable 

domain for 1P P  is indicated by crosshatching. From Theorem 1 or 

from Figure 2.2 follow: 

 

THEOREM 2. In linear stability problems of the nongyroscopic 

conservative type all the critical loads are supplied not only by the 

kinetic approach but also by the energy method. Provided that the 

problem is simple, the system is stable for any load parameter 1P P  

and unstable for any 1P P , where 1P  is the smallest value of P for 

which the potential energy is not positive definite. The equilibrium and 



the imperfection approaches also supply 1P  along with other values 

2 1 3 2, ...P P P P  , which, however, are insignificant. 

 

It follows that in problems of this type all the approaches introduced in 

Section 1.2 can be applied to find 1P , even though it does not follow 

from the equilibrium or the imperfection approach that any load P>P1 

is critical. This and the fact that most classical problems are purely 

nongyroscopic explains why the static methods have been so 

successful in the past. 

The foregoing discussion is limited to linear systems. The results, 

however, are readily generalized for nonlinear systems, provided that 

they are accessible to linearization. 

So long as the quadratic approximation (2.10) of the potential energy is 

positive definite, all the roots i  of the characteristic equations are 

imaginary (Figure 2.1), since the 
2

i  are negative. Thus, the case is 

indeed critical in Lyapunov's sense (Section 1.8). However, according 



to Theorem A (Section 1.8) the exact expression for ( )iV q  is positive 

definite, and from Lagrange's theorem (Section 1.6) it follows that the 

equilibrium is stable. When the quadratic approximation admits 

negative values in an arbitrarily small vicinity of the equilibrium 

configuration, according to Theorem B (Section 1.8) so does the exact 

expression. Moreover, there exists at least one positive root of the 

characteristic equation, and it follows from Theorem D (Section 1.8) 

that the equilibrium is unstable. Finally, if the quadratic approximation 

is positive semidefinite, at least one root is zero and thus creates a 

static instability. In this case, the linear system is endangered. 

According to what has been said at the end of Section 1.6, however, 

this does not necessarily imply a danger for the nonlinear system. We 

thus have: 

 

THEOREM 3. The equilibrium configuration of a nongyroscopic 

conservative system is stable so long as the quadratic approximation 



(2.10) of its potential energy is positive definite. It is stable of unstable 

when the approximation is positive semidefinite, and it is unstable in 

any other case. Theorem 2, if applied to the linearized system, still 

supplies the correct stability regions, except that their boundaries may 

belong to the stable or unstable domains. 

 

In the next sections a few examples of nongyroscopic conservative 

systems will be considered. 

 

2.2 Influence of Shear on Buckling 

 

According to Table 1.4, Euler buckling is a nongyroscopic 

conservative problem. If shear is taken into account, the results given 

by (1.10) in connection with Table 1.1 need some (minor) corrections. 

Figure 2.3 shows a section of a prismatic homogeneous beam 

subjected to  
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a bending moment M and a shear force Q. The curvature 1  of the 

deflection curve caused by M is 
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M





             
(2.11) 

 

where   denotes the constant flexural rigidity. If, for sumplicity, the 

section is treated as an element, the shear force Q causes a shear angle. 
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where   denotes the constant shear rigidity. Any variation of   with 
x  (Figure 2.4) is equivalent to a second curvature 
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so that the differential equation of the deflection curve is 
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The last term is (2.14), which is usually neglected, gives rise to small 

corrections even in simple bending problems, e.g., in the case of a 

cantilever (Figure 2.5) loaded at the free end. Here, ( ) ( )M x P l x   and 
( ) ,Q x P

 
 

Figure 2.5 

hence 
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Since Q is constant, the curvature of the deflection curve is not 

modified by the shear. However, the second of the two boundary 

conditions 

(0) 0y  ,   
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'(0)
Q P

y
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(2.16) 

depends on Q. The solution of (2.15) and (2.16) is 
3 (3 )
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P P
y x l x x
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It is obvious that in the approximation considered here the influence of 

the shear consists of a rotation of the cantilever through the angle 
P

  

about the centroid of the section 0.x  . In fact, the deflection at the free 

end is 
3
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Pl Pl
f
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(2.18) 

If the load, instead of acting at the end, is uniformly distributed over 



the cantilever (as in Problem 1 at the end of this section), the shear 

decreases the curvature but increases the deflections. 

In order to pass from simple bending to stability problems, let us 

reconsider Euler's Case 5 in Table 1.1 of Section 1.2, taking shear into 

account. Since the problem is still nongyroscopic conservative, the 

equilibrium approach may be used. The bending moment and the shear 

force (Figure 2.6) are 
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( )M x Py  and ( )Q x Py , respectively. Thus, the deflection curve is 

subject to the differential equation 
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or  
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Apart from the modified significance of 2 , the differential equation is 

identical with (1.21). Also, the boundary conditions are still given by 

(1.16). According to (1.25), the smallest eigenvalue is / l  , written 

in terms of the load by means of the second relation (2.20), 
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Comparison with (1.20) shows that the smallest critical load (2.21), 

beyond which the column is unstable, is decreased by the shear. 

In Class 1 through 4 of Table 1.1 (Section 1.2) the differential equation 

of the deflection curve is also unaffected by the shear, apart from the 

modified significance of  . In Cases 2 and 3, the treatment is the 

same as in Case 5, since Q does not appear in the end conditions. In 

Case 1, some of the end conditions contain Q, which, however, is zero 

in the first buckling mode. It is obvious that in cases the buckling load 



is decreased by the influence of shear. In Case 4, a new calculation is 

required to obtain 1P . 

 

Problems 

1. Verify the curvature  
2" (1 )
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                     (2.22) 

and the maximal deflection  
3
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of a uniformly loaded cantilever, 

 

2.Verify the buckling load 
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for Euler's problem in Case 1, if shear is taken into account. 

 



3.Verify the characteristic equation 
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in Euler's Case 4, taking shear into account. Compare it with the 

characteristic equation in the absence of shear, and show that the 

influence of shear here too decreases the buckling load. 

 

2.3. Buckling by Tension 

 

It is easy to see that a rod is apt to buckle under tension, provided that 

the load is applied in a suitable manner. So long as the load is constant 

in magnitude and direction, the problem is still conservative and 

nongyroscopic. Let us consider an example, using the equilibrium 

approach. The influence of shear will again be neglected.  

Figure 2.7 shows a rod supported as in Euler's Case 5. The axial load P 

is applied at the end of a rigid handle of length a which is positioning 



downwards 
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and is in alignment with the tangent of the deflection curve at the 

upper end. Since here a horizontal reaction oQ  is to be expected, the 

differential equation of the deflection curve is 

0" ( ') ( )y P y ay Q l x                   (2.26) 

or  
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The general solution is 
0cosh sinh ( ) 'l

Q
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           (2.28) 

 

The constants A  and B  are determined by the boundary conditions 
(0) ( ) 0y y l  ,  '( ) 'ly l y              (2.29) 



along with the equilibrium condition 

0' 0lPay Q l                     (2.30) 

for the moments with respect to the lower hinge. In fact, (2.28) through 

(2.30) yield the linear homogeneous system 
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with the characteristic equation  
1 0

cosh sinh 0
0

sinh cosh 1 1

0 0

l a

l l a

l l

l a

 

   

 






                 

(2.32) 

Adding the last line to the first and developing with respect to the first 

line we obtain 
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that is, 
( )sinh cosh 0l a l a l l                   (2.34) 

or  
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1 /

l
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Figure 2.8 illustrates the graphical solution of the transcendental 

equation (2.35). It supplies a single eigenvalue 1 . The buckling load 

depends on 1l  and also on a . For a l  the coefficient of kl  on the 

right-hand side of 
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(2.35) is small. In this case, 1tanh l  is nearly unity, hence 



1
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(2.36) 

Problems of this type have been discussed by Grammel [18]. (See also 

[5].) In terms of the corresponding Euler problems, Grammel solved 

Case 5 with handles at both ends, while the solution outlined above 

corresponds to  
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Case 5 with a single handle. In Case 1 and 2 there is obviously no 

buckling; other cases are contained among the problems at the end of 

this section. 

In Figure 2.9 a combination of the problem of Figure 2.7 with the 

corresponding Euler problem is shown. The total loading amounts to a 

couple whose moment is proportional to the slope of the deflection 

curve at the loaded end. The differential equation of the deflection 



curve is 

0" ' ( )ly Pay Q l x                 (2.37) 

Its general solution, 
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subjected to the boundary conditions 
(0) ( ) 0y y l   , '( ) 'ly l y                (2.39) 

and to the equilibrium condition 

0' 0lPay Q l                       (2.40) 
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 (2.41) 

for ly  , 0 /Q 
 

and 1c . The characteristic equation is 
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It has a single solution, 
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(2.43) 

representing the buckling load. 

 

 

This problem, corresponding to Euler's Case 5, has again been solved 

by Grammel [18], along with numerous similar problems. Again, 

Cases 1 and 2 are trivial. Herrmann and * [24] have treated a 

somewhat similar problem, concerned with buckling of a bar by shear 

forces applied on the surface.  



Problems 

1. Establish the characteristic equation for buckling of the rod shown 

in Figure 2.10. Verify the approximation 
2

1 1 2
P

a


                   (2.44) 

valid for a l . 
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2. Use the result of Problem 1 to find 1P  for the rod of Figure 2.11. 
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3.Verify the buckling loads 

 

1 ,P
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in the cases shown in Figure 2.12 through 2.14. 
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2.4. Buckling of Plates 

 

In order to see how the methods developed above can be applied to 

more elaborate structures, let us consider a thin rectangular plate. 

In the case of a column, the potential energies of the internal and 

external forces are given by (1.32) and (1.34), respectively. They can 

be written  
2

1
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20

1
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i d y
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( ) 2

0

1
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e dy
V N dx
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            (2.46) 

where   is the flexural rigidity and N P   the normal force. It is easy 



to verify that these expressions are valid also in cases where   and N  

are functions of x . For constant values of   and N  the energy 

approach, applied to the sum of the energies (2.46) and to admissible 

configurations of the deflection curve, supplies the differential 

equation (1.40) along with the dynamic boundary conditions, which in 

Case 5 are given by (1.41). 

Figure 2.15 shows an element of a thin plate loaded along the edges, 

by forces lying in the center plane. The state of stress is plane, and the 

stress  
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resultant ,x yN N  and xyN  are obtained by integration of ,x y   and x y  

over the thickness h  of the plate. When the plate buckles under the 

influence of the edge loads, let ( , )w x y  denote the vertical displacement 

of the center plane. According to Timoshenko and Gere [67, pp. 337 



and 340], the deformation energy of the plate is given by the surface 

intergral 
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Here,   denotes Poisson's ratio, and the constant 
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 (2.48) 

containing Young's modulus E, represents the flexural rigidity of the 

plate per unit length. The potential energy of the external loads is 
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The analogy between (2.47), (2.49), and the two expressions (2.46) is 

obvious. With (2.47) and (2.49), the energy approach supplies the 

partial differential equation 
4 4 4 2 2 2

4 2 2 4 2 2
( 2 ) 2x xy y
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for the center surface of the plate of constant thickness along with the 

dynamic boundary conditions. For a built-in edge 0x   the boundary 

conditions are 

0w     0
w

x




    ( 0 )x              (2.51) 

If the edge is simply supported, we have instead 
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
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For a free edge one obtains 
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In the special case of a rectangular plate simply supported along its 

four edges and uniformly loaded along the edges b , the coordinate 

system can be chosen as shown in Figure 2.16. The differential 

equation (2.50) then reduces to  
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Figure 2.16 

 

and the boundary conditions become 
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
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A typical solution of the boundary conditions is 
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m x n y
w x y A
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 


       
(2.56) 

where m and n are entire numbers. According to the theory of Fourier 



series, the most general admissible configuration of the plate is 

supplied by summation of (2.56) over all positive integers m and n. 

Inserting (2.56) in (2.54), we obtain  
4 2 2 4 2

2

4 2 2 4 2
( 2 ) 0
m m n n m

D P
a a b b a

    
          

(2.57) 

If P is arbitrary, this equations will, in general, not be satisfied by 

positive integers m and n. it follows that nontrivial equilibrium 

configurations only exist for loads of the type 

                 
2 2 2

2 2

2 2 2
( )mn

a m n
P D

m a b
    (m,n positive integers) (2.58) 

These are the eigenvalues of the problem; the corresponding 

expressions (2.56) are the eigenfunctions. According to the equilibrium 

approach, the buckling load is represented by the smallest eigenvalue. 

For a given m, the value 1n   supplies the smallest eigenvalue 
2 2

2

1 2 2

1
(1 )m

D a
P

ma b


                  (2.59) 



According to (2.56), the sections x const  take the shapes of single 

semiwaves when buckling sets in. For b    the loads (2.59) tend to 

the buckling loads 2 2 2/m D a  of a strip which is free along the edges a, 

to be obtained from the corresponding Euler loads (1.26) by 

substituting D for  (and a for l). It follows that the term containing b 

represents the stiffening effect of the supports a. 

Let us write (2.59) in the form  
2

1 2m m

D
P k

b




              
 (2.60) 

where 
2( )m

m
k

m




     and  

a

b
        (2.61) 

In Figure 2.17 the functions ( )mk   are plotted. For a given ratio   

the lowest of these curves determines the buckling load. Every one of 

the functions ( )mk   has a minimum 4mk   for m  . The curves for 

m and m+1  



 

Refer to Figure 2.17 

 

intersect for ( 1)m m    . Up to 2  , that is, for broad, square 

and not too narrow plates, the buckling load is 11P . Here, buckling 

occurs with a semiwave also in the longitudinal direction. For 2  , 

that is, for narrow plates, the buckling load is successively given by 

21 31, ,....P P  and buckling takes place with an increasing number of 

semiwaves. For the square plate (b a
 and hence 

1   the buckling 

load is 
2 2 2

11 4 / 39.4784... /P D a D a  . 

 

Problems 

 

1.Verify expressions (2.46) for the case where   and N  are 



functions of x. 

2.Dicuss buckling of a square plate simply supported along its four 

edges and uniformly compressed by P in the direction P and by Q in 

the direction y.    

 

2.5. Rayleigh's Principle 

 

The examples treated in the preceding sections have been chosen for 

their simplicity. Actually, there are many problems whose solution is 

considerably more difficult. In such cases one will look for 

approximate solutions. The most efficient methods to obtain such 

approximations are based on the energy approach. In order to explain 

them and to compare their results with exact solutions, let us once 

more consider the simply supported rectangular plate treated in Section 

2.4. 

The potential energy of the loaded plate has the form of (2.9), 



  
( )iV V PU                 (2.62) 

where 
( )iV  is the deformation energy (2.47). 0P   is the total load, 

and U, according to (2.49), has the form 
1

( )
2

F

w
U dxdy

x





            

(2.63) 

The problem is simple in the sense of Section 2.1. The energy 

approach is based on a comparison of the potential energies 
( )iV V PU 

[( ( , )]V w x y  for all admissible configurations, i.e., for all continuous 

functions ( ( , )w x y  having continuous first partial derivatives with 

respect to x  and y  and satisfying the kinematic boundary 

conditions 
0w     ( 0 , , 0 , )x x a y y b             (2.64) 

Since 
( )iV  and U are positive definite, V has the same property for 

sufficiently small values of P but ceases to be positive definite when P 



is sufficiently large. The buckling load makes the transition : for 

1P P  there is a nontrivial configuration 1( , )w x y  for which 0V  , 

but still no configuration ( , )w x y  for which 0V  . It follows that 

V is stationary for 1( , )w x y  , that is, that 1P  is the smallest values of 

P for which the variational problem 

 
( )( ) 0iV PU                  (2.65) 

restricted to fixed values of P and to admissible functions ( , )w x y , 

has nontrivial solution 1( , )w x y .  

Moreover,  

 
( )

1 1 1[ ] [ ] 0iV w PU w                   (2.66) 

Equations (2.65) and (2.66) may be reinterpreted. Provided that we ask 

for the minimum of ( )iV  subject to the side condition 1U  , we again 



obtain (2.65) with P as a Lagrangean multiplier. The solution is the 

function 1( , )w x y , and because of (2.66) and the side condition, the 

corresponding value 1P  of the multiplier is the minimum of V. A 

function ( , )w x y  remains admissible if it is multiplied by a constant 
 . At the same time the expressions ( )[ ]iV w  and [ ]U w  are increased in 

the ratio 
2 . It is therefore irrelevant whether one asks for the 

minimum of ( )iV  subject to the side condition 1U  , or simply for the 

minimum of ( ) /iV U .      

This ratio, 
( )[ ]

[ ]
[ ]

iV w
R w

U w


          
(2.67) 

is referred to as Rayleigh's quotient [55]. It follows from (2.66) that  

1 1[ ]P R w              (2.68)     

that is, that the buckling load can be obtained as the minimum of 

Rayleigh's quotient for admissible functions. This result will be 



referred to as Rayleigh's principle.  

It was mentioned in Section 2.4 that solving the variational problem in 

the usual way one obtains the differential equation of the center 

surface along with dynamic boundary conditions. This confirms that in 

problems of the type considered here the equilibrium approach is 

legitimate. It is true that, by proceeding from here in a purely formal 

manner, one gets all the eigenvalues and and the corresponding 

eigenfunctions. However, if the basic question concerning the 

minimum of ( )iV  or R is kept in mind, the equilibrium and the energy 

approaches are completely equivalent. 

It is clear that the argumentation presented above is not restricted to 

rectangular plates, although this case has been chosen as an example. 

Actually, Rayleigh's principle is valid for any nongyroscopic 

conservative system(and, in a proper formulation, even for more 

general systems accessible to the energy approach). The quotient 

(2.67), calculated for an arbitrary admissible function w, represents an 



upper bound  

1[ ]R w P              (2.69) 

 

for the buckling load. It can be shown that, in general, this upper 

bound is also a good approximation for 1P , provided that one has 

succeeded in choosing w so that it does not differ too much from the 

eigenfunction w1 . 

For the square plate a b   considered in Section 2.4, with simply 

supported edges and a uniform load parallel to one pair of edges, the 

function  
( , ) ( ) ( )w x y cx a x y a y                   (2.70) 

where c is a constant, is admissible and may be considered an 

approximation of the first eigenfunction. The corresponding functions 
( )iV  and U  are  

                  
2 2 2 22

( )

2 2

{4[ ( ) 2 ( )( ) ( ) ]

2 2(1 )[4 ( )( ) ( 2 ) ( 2 ) ]}

i

F

y a y xy a x a y x a xDc
V

v xy a x a y a x a y dxdy

      
 

       


   
(2.71) 



and  
2

2 2 2( 2 ) ( )
2

F

c
U a x y a y dxdy  

         
(2.72) 

Integration yields 
( ) 2 611

45

iV Dc a ,  
2 81

180
U c a        (2.73) 

Thus,  
( )

2
44

iV D
R

U a
 

          
 (2.74) 

is an upper bound for 11P  . Compared with the exact value 
2 2 2

11 4 / 39.4784... /P D a D a  , the error is approximately 11.5 percent. 

 

Problem 

1. Check (2.71) through (2.73) by carrying out the calculations. 

 

2.6. The Methods of Ritz and Galerkin 

 



If Rayleigh's principle is used as in the preceding section, the quality 

of the approximation obtained for the first eigenvalue is a matter of 

skill, since it depends entirely on the choice of a function which is at 

the same time simple and sufficeintly close to the first eigenfunction. 

An improved technique has been proposed by Ritz [56]. It is based on 

the following idea: instead of forming Rayleigh's quotient with a single 

function conveniently chosen, one may apply a linear combination 

 

k kw c w                  (2.75) 

 

of any number of admissible functions kw . Any such combination is 

itself and admissible function and yields an upper bound for the first 

eigenvalue. By a suitable choice of the coefficients, however, 

Rayleigh's quotient, i.e., the upper bound, can be minimized. 

In order to demonstrate this process, let us consider Euler's column in 



Case 3 (Table 1.1, Section 1.2) instead of the plate, since here the ideas 

are not obscured by the calculations. The potential energy ( )iV V PU   is 

given by (1.35). The kinematic boundary conditions are 
(0) '(0) 0y y                     (2.76) 

and the variation of [ ( )]V y x  has the form already given by (1.36). Partial 

integration yields  

0
( '''' '') '' ( ''' ') 0

ll l
y Py dx y y Py                      (2.77) 

where ( ) ( )x y x  , and use has been made of (2.76). Since ( )x  is an 

arbitrary admissible function, (2.77) supplies the differential equation 
'''' '' 0y Py                   (2.78) 

along with the dynamic end conditions 
''( ) '''( ) '( ) 0y l y l Py l                 (2.79) 

indicating that at the free end the bending moment vanishes and the 

shear force is given by the projection of P into the end section. The 

buckling load is the smallest solution of the eigenvalue problem 

defined by (2.78) in conjunction with (2.76) and (2.79). Its exact value 



is 
2

1 2 2
2.4674

2
P

l l

  
                 (2.80) 

Let us now forget the exact solution and try to obtain approximations 

for 1P . In a first step, we calculate Rayleigh's quotient 
( )[ ]

( )
[ ]

iV y
R y

U y
                  (2.81) 

for a simple admissible function, e.g., for 
2( )y x cx                   (2.82) 

The integrals ( )iV  and U  become 
( ) 22iV c l   2 32

3
U c l

            
(2.83) 

and (2.81) supplies the upper bound  

2
3R

l




              
(2.84) 

for (2.80), which exceeds the true value by 21.6 per cent, 

A more accurate result is obtained if the method of Ritz is applied to 

the linear combination 



(1) (2)

1 2( ) ( ) ( )y x c y x c y x                  (2.85) 

of the two admissible functions 
(1) 2( )y x x    

( 2 ) 3( )y x x              (2.86) 

To minimize (1) (2)

1 2[ ]R C y C y , one might set 0
i

R

C





. One may as well return 

to the original problem (2.65),requiring that  
( )

1

( ) 0iV PU
c


 


, ( )

2

( ) 0iV PU
c


 


         (2.87) 

where ( )iV  and U are calculated from (2.85). The meaning of (2.87) is 

obvious; the variational problem (2.65), open to all admissible 

functions, is restricted to trial functions of the type (2.85) and thus 

becomes an ordinary extremum problem. As the class of functions 

taken into consideration is restricted, the minimum we are looking for 

can only be raised. This confirms that the smallest value of P to be 

obtained from (2.87) is an upper bound for the buckling load 1P . 

Inserting 
( )iV V PU   from (1.35) and the trial function y  from (2.85) 

in (2.87) we obtain 



(1) (1)

0

(2) (2)

0

( '' '' ' ') 0

( '' '' ' ') 0

l

l

y y Py y dx

y y Py y dx





 


 




           
(2.88) 

where y is still given by (2.85). The integrals are readily calculated for 

(2.86); they yield  
2 2 2

2

2 2 2

2

4 3
(4 ) (6 ) 0

3 2

3 9
(6 ) (12 ) 0

2 5

Pl c Pl lc

Pl c Pl lc

 

 


    


   
           

(2.89) 

This is a homogenenous linear system for 1C  and 2C . Since we ar not 

interested in the trivial solution, we require that the determinant 
2 2 2 24 9 3

(4 )(12 ) (6 ) 0
3 5 2

Pl Pl Pl                  (2.90) 

be zero. Thus we obtain the quadratic equation 
2 4 2

2

104
80 0

3

P l Pl


  

              
(2.91) 

with the roots 

(1)

2
2.486P

l


 ,

(2)

2
32.181P

l


              (2.92) 



The first of these roots is the approximation we are looking for. It is, in 

fact, an upper bound, exceeding the true value by only 0.77 per cent. It 

can be shown that ( )aP  (another upper bound for 1P ) is an 

approximation of the second eigenvalue 2P . Moreover, these results 

can be improved by extending (2.85), including more admissible 

functions. 

By means of a partial integration of (2.88), analogous to the one 

leading from (1.36) to (2.77), we obtain 
(1) (1) (1)

0
( '''' '') '' ' ( '' ') 0

l l l

y Py y dx y y y Py y                 (2.93) 

along with a similar relation, containing (2)y  in place of (1)y . If we 

assume that the functions (1)y  and (2)y  satisfy not only the kinematic 

boundary conditions (2.76) but also the dynamic end conditions (2.79), 

the last two terms vanish and we have  
(1)

0
( '''' '') 0

l

y Py y dx   , (2)

0
( '''' '') 0

l

y Py y dx               (2.94) 

 



with y  still given by (2.85). 

The last relations suggest a modification of the method of Ritz. In 

order to explain this modified approach, proposed by Galerkin [17], let 

us continue our concern with the present example and again 

approximate the first eigenfunction by a linear combination of type 

(2.85), composed of functions (1) ,....,y  , which, in contrast to the 

approach of Ritz, now are required to satisfy all the boundary 

conditions of (2.76) and (2.79). In general, such a combination will not 

satisfy the differential equation (2.78) of the problem. However, 

multiplying the left-hand side of the differential equation, formulated 

for the function (2.85), in turn by (1)y  and integrating the products over 

the interval 0,....l  , we obtain expressions which can be made zero by 

an appropriate choice of the coefficients 1c  . The significance of this 

process is clear: the left-hand sides of (2.94) may be interpreted as 

weighted means of the differential expression '''' ''y Py   ,formed with 

the weights 
(1)y  and the process implies that, in place of this 



expression, at least the weighted means are made zero so as to satisfy 

the differential equation in the average. 

It has been shown by Leipholz [41] that, from a more general point of 

view, the approach of Ritz may be considered a special case of the 

Galerkin method. For the special case considered here this is shown 

above; a general proof has been given by Grammel [5]. With skillfully 

chosen trial functions, the method of Ritz generally supplies excellent 

approximations of the critical load. The reason is obvious from 

Rayleigh's principle: since Rayleigh's quotient is stationary for the first 

eigenfunction, this function may be considerably modified without an 

appreciable change in quotient. 

The formalism involved in Galerkin's approach is simpler than that of 

the Ritz method. On the other hand, the method of Galerkin requires 

more elaborate trial functions. 

 

Problems 



 

1. Apply the method of Ritz to Euler's problem in Case 5, using the 

trial function (2.85) with 
(1) ( )y x l x  and 

(2) 2 2( )y x l x  . Compare the 

approximation obtained with the exact value of the buckling load and 

show that the error is 0.51 per cent. 

2. Use the Ritz approach to confirm the upper bound 7.889 /W  for 

the square of the critical length of a (prismatic and homogenenous) 

vertical column builit in at the lower end and loaded by its own weight 

W. A more accurate value [67, p.103] is 7.837 /W . 

 

2.7. The Mass Distribution 

The techniques discussed in the last sections are based on the energy 

approach. There are other methods by which approximate solutions 

can be obtained. One of them exploits the possibility of approximating 

the given system by one with a smaller degree of freedom. An elastic 



column, e.g., may be replaced by a chain of rigid elements (Figure 

2.18) connected by hinges with elastic restoring moments. Such a 

simplified model may be treated by any one of the methods introduced 

in Section 1.2, provided that the problem is conservative and 

nongyroscopic. 

 

Refer to Figure 2.18 

 

There is a fundamental difference between the kinetic approach and 

the static method: the motion of the system depends on the mass 

distribution, whereas the mass does not appear in static considerations. 

However, because of Theorems 2 and 3 (Section 2.1) the static 

approaches are legitimate in nongyroscopic conservative systems; they 

must therefore supply the correct results. In order words, we have: 

 

THEOREM 4. In a nongyroscopic conservative system, whether linear 



or merely accessible to linearization, the critical loads are independent 

of the mass distribution. Despite this theorem, the mass distribution 

deserves particular care in cases where the real system is replaced by a 

simplified model, at least if the kinetic approach is to be used. It has 

happened that the model, although predicting the smallest critical load 

with sufficient accuracy, supplied an incorrect over-all picture of the 

instability for loads 1P P . Theorem 4 rests on the assumption that the 

kinetic energy is positive definite. This condition, always satisfied in 

real systems, may be inadvertently violated if the simplified model is 

not properly chosen.  

The model of Figure 2.18 represents a column in Euler's Case 3. Let l 

be the common length of the rigid elements, and let the concentrated 

masses 1 2,m m  and their locations 1 2,a a  on the single members be 

arbitrary. If the influence of gravity and all terms of order higher than 

two are neglected, the energies of the system are 



2 2 2

1 1 1 2 1 2 2

1
[ ( ) ]

2
T m a m l a    

               (2.95) 

and  
2 2 2 2

1 2 1 1 2[ ( ) ] ( )
2 2

c Pl
V         

             (2.96) 

Using Lagrange's approach in the form (1.100), we obtain the 

differential equations of motion 
2 2

1 1 1 1 2 2 2 1 2

2

2 2 1 2 2 2 1 2

( ) (2 ) 0

( ) 0

m a m l m la c Pl c

m la m a c c Pl

   

   

      


              
(2.97) 

Setting  

1

tAe  ,  2

tBe                (2.98) 

we obtain 
2 2 2 2

1 1 1 2 2

2 2 2

2 2 2 2

[( ) 2 ] ( ) 0

( ) ( ) 0

m a m l c Pl A m la c B

m la c A m a c Pl B

 

 

      


     
        (2.99) 

The characteristic equation, 
4 2

0 2 4 0p p p                 (2.100) 

is quadratic in 2 . Its coefficients are 



2 2

0 1 2 1 2

2 2 2 2 2 2

2 1 1 2 2 2 2 1 1 2 2

2 2 2

4

[ ( ) ] [ ( )

3

p m m a a

p m a m a m l a c m a m l a

p c cPl P l




       


   

        (2.101) 

The choice of the same spring constant c for both hinges implies that 

we are thinking of a column of constant flexural rigidity. In order to 

approximate the case of a uniform mass distribution, we can either set 

2 2/ 2, / 2m a a l   or 1 2 2 2/ 2, / 4,m m m m a a l     . In the first case 

the total mass m appears concentrated in the centers of the rigid 

memeber; in the second case it is concentrated at their ends. As is to be 

expected, the smallest critical load 1P  turns out to be the same in the 

two cases. It is an approximation of Euler's buckling load. 

 

Another choice is 1 2 2 2, ,m m m m a a l     where 0  . It corre-

sponds to a total mass (1 )m . However, since the mass distribution 

is irrelevant, the same value for 1P  is to be expected as in the two 

cases discussed above. Moreover, 1P  must be independent of  , even 



when, with 0   , the total mass appears more and more concentrated 

at the free end.  

The coefficient (2.101) are 
2 4

0

2

2

2 2 2

4

[(5 ) (2 ) ]

3

p m l

p ml c Pl

p c cPl P l



 




    


   

            (2.102) 

Let us consider the case in which   is small. Linearizing the 

discriminant 2

44o op p p    of (2.100) with respect to  , we obtain 

  
2

44o op p p        (2.103) 

 

The coefficient 0p  is always positive, as are 4,op p  and   for 

sufficiently small values of P.  The roots 2

1  and 2

2  then are 

negative and the system is stable. In our approximation the zeros of the 

discriminant are 
10

( )
4 2

Pl i c
 

    ( 0 )            (2.104) 



Since the right-hand side is complex, there is no real P satisfying 

(2.104). It follows that 2

1  and 2

2  are always distinct and real. In 

Figure 2.19, 2p  and 4p  are plotted against /Pl c . The zero of 2p  is 
5

2
Pl c








    2( 0 )p           (2.105) 

Figure 2.19 

 

the zeros of 4p  are 
1

(3 5)
2

Pl c 
  4( 0 )p 

         (2.106) 

 

The zero of 2p  lies between the zeros of 4p . Hence, for  

1 (3 5)
2

c
P P

l
  

             
(2.107) 

2p  and 4p  are positive: 2 2

1 20, 0   , and the trivial equilibrium 

configuration is thus stable. If, on the other hand, 1P P  we either have 

4 0p   and thus 2 2

1 20, 0   , or 4 20, 0p p  , and hence 2 2

1 2, 0   . In 



either case the trivial equilibrium configuration is unstable, and it turns 

out, therefore, that, in accordance with Theorem 2 (Section 2.1) there 

is a single stable domain 1P P  and a single unstable domain 1P P  

for arbitrarily small positive values of  . 

Instead of letting   tend toward zero, we might have assumed 0   

from the beginning, concentrating, in this way, the entire mass at the 

upper end of the system. In this case (2.102) reduces to 
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              (2.108) 

 

Now the characteristic equation (2.100) is merely of the first degree in 
2 . This implies that two of the four fundamental solutions are lost and 

that 
2 4

2

p

p
  

              
(2.109) 



where the right-hand side is always real. According to Figure 2.19, the 

root 2  is negative for 1P P  and again between the zero of 2p  and 

the second zero of 4p . From (2.105) and (2.106) it follows that now 

there are two stable domains, 

1 (3 5)
2

c
P P

l
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(2.110) 

and hence also two unstable ones, 

1

5

2

c
P P

l
  , (3 5)

2

c
P

l
                (2.111) 

The system considered here is simple. The last results - or, more 

precisely, the existence of the second stable domain (2.11)- are 

inconsistent with Theorem 2. The inconsistency is explained by the 

fact that, by setting 0  , two fundamental solutions, one of which is 

unstable in the second interval (2.110), are lost. The reduction in 

degree of the characteristic equation has another aspect [87] which is 

readily confirmed either by means of (2.99) or by considering the 

possible motions of the system illustrated in Figure 2.18: with 0   



the matrix ( )ikm  loses its positive definite character and becomes 

positive semidefinite. However, the theorems of Section 2.1 have been 

established under the assumption that ( )ikm  be positive definite. 

It follows from this example that, whenever a system is replaced by a 

simpler model, care must be taken that the mass concentration of the 

model preserves the definiteness of the matrix ( )ikm . 

 

Problem  

 

1. Verify the smallest critical load 

(3 5)
2

c
P

l
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(2.112) 

of the system illustrated in Figure 2.18 for the mass distributions  
1 2 1 2

1 2 1 2

( ) / 2, / 2

( ) / 2, / 4,

a m m m a a l

b m m m m a a l

    


            
(2.113) 

Compare the results with Euler's buckling load in Case 3, associating 

the spring constant c of the model with the flexural rigidity * of the 



column in such a manner that the maximal deflection caused by a 

couple acting at the free end is the same for the column and the model. 

 


