
Chapter 3 
  Gyroscopic Conservative Systems 

 

According to the definitions given in Section 1.5, in particular in 

connection with Tables 1.2 and 1.3, systems of the gyroscopic 

conservative type contain nonworking reactions and noncirculatory as 

well as gyroscopic loads. 

 

3.1. General Aspect 

In the linear case, the kinetic energy (1.122) and the potential energy 

(1.123) of the noncirculatory loads are  
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respectively. The generalized gyroscopic forces have the form (1.130) 
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and the differential equations of motion (1.113) are 
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where the matrices ( )ikm  and ( )ikc  are constant and symmetric, ( )ikm  is 

positive definite, and ( )ikg  is constant and antimetric. 

Setting 
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k kq A e           (k=1,2,...,n)   (3.4) 

we obtain from (3.3) the system (1.118) 
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Excluding the trivial solution 1 2 .... 0,nA A A    , which corresponds 

to the equilibrium state, we finally arrive at the characteristic equation 

(1.119) 
2det( ) 0ik ik ikm g c              (3.6) 

The value of a determinant is not altered when its lines and columns 

are interchanged. Because of the symmetry of  ( ),( )ik ikm c  and the 

antimetry of ikg , such an interchange in (3.6) is equivalent to a change 

in the sign of  . Thus the roots still appear in pairs, ,i i  , one of the 



two having a positive real part unless they are purely imaginary or zero. 

Table 3.1 

According to Lagrange's theorem (Section 1.6) the equilibrium of a 

conservative system is stable whenever the potential energy of the 

noncirculatory loads is positive definite. The theorem holds for linear 

and nonlinear systems with or without gyroscopic forces; it is merely 

subject to the condition that the total energy be continuous. In Section 

2.1 we saw that, in the absence of gyroscopic forces, the system, 

provided that it is linear, is unstable whenever the potential energy is 

not positive definite. These statements are illustrated by Table 3.1; they 

yield: 

 

THEOREM 5. A conservative linear system cannot be made unstable 

by gyroscopic forces. 

On the other hand, there is no reason why the system, originally 

unstable, should remain so when gyroscopic forces are added. As a 



matter of fact, we are already in possession of a counterexample. In 

Section 1.3 we treated a simplified model of a shaft having two distinct 

flexural rigidities. It consisted of a particle (Figure 1.11) attracted by 

the axes of a rotating coordinate system. It became evident (Figure 

1.12) that the equilibrium may be stable although V is not positivie 

definite. Hence, stabilization by gyroscopic forces is possible. This 

effect was first studied in detail by Thomson and Tait [65]. 

If the system is simple in the sense defined in Section 2.1, the potential 

energy (3.1) has the form (2.10) 
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where ( )ika  is positive definite and ( )ikb  is either definite (semidefinite) 

or indefinite. In problems of this type it often happens that the load 

parameter P represents a centrifugal force and hence can be interpreted 

as the square 2  of an angular velocity. For small values of P, the 

expression (3.7) is positive definite and therefore the system is stable. 



For sufficiently large values of P, V is not positive definite. The 

transition takes place at a certain value P=P1. This value is 

characterized by the appearance of at least one nontrivial configuration 
( 1..... )kq k n  for which V is stationary. Since the gyroscopic forces are 

zero when the system is at rest, this is a nontrivial equilibrium 

configuration, corresponding to a vanishing root  . 

In the  -plane the situation is at first similar to the one described by 

Figure 2.1. For small values of P, all the roots ,i i   are situated on 

the imaginary axis. With increasing P, at least one pair moves towards 

the origin and arrives there for P=P1. In contrast to the nongyroscopic 

case, however, the roots are not tied to the axes and it is necessary that 

the pair leave the imaginary axis while proceeding away from the 

origin. 

For instance, in the special case 1 2c c c   of the problem illustrated by 

Figure 1.11 (1.60) takes the form 
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It follows that 2 0   and that 2  also moves along the negative real 

axis, arriving at the origin for /c m   and moving away from it for 

larger values of  . Thus the four roots of the characteristic equation 

(3.8) remain on the imaginary axis after passing the origin. 

The last result corresponds to the fact that, in general, the system need 

not be unstable for 1P P . However, for 1P  and possibly for other values 

1 2, , ,.....P P  of the load parameter (in short, whenever a pair of roots pass as 

through the origin) a static instability occurs, and it is clear that it is 

unaffected by the presence of gyroscopic forces. 

In Figure 3.1 the load P is plotted on the vertical axis. The static 

instabilities at 2 1 3 2, ,.....P P P P   are indicated by crosshatching and the 

uncertain regions between them by diagonal lines. 

 

Refer to Figure 3.1 



 

From the foregoing discussion we obtain : 

 

THEOREM 6. In linear stability problems of the gyroscopic 

conservative type, the kinetic method alone supplies all the critical 

loads. Provided that the system is simple, it is stable for any load 

parameter 1P P , where 1P  may be obtained by the energy approach as 

the smallest value of P for which the potential energy is not positive 

definite. The equilibrium and the imperfection methods supply 1.P  

along with other possible static instabilities at 2 1 3 2, ,.....P P P P   Any other 

load 1.P P  may or may not be critical. 

 

In problems of this type, it follows that the static approaches may be 

used to find 1 2, ,.....P P  They do not give any indication, however, 

concerning stability for other load parameters 1P P . Because of the 

stabilizing effect of the gyroscopic forces, the static instabilities may 



be the only ones present. This is true, e.g., for the problem of Figure 

1.11, provided that 1 2c c . 

In the nonlinear case, Lagrange's theorem still holds. It follows that a 

gyroscopic conservative system is stable so long as its potential energy 

is positive definite. For values of P under which the potential energy is 

not positive definite, the behavior of the system is uncertain, even 

more so than in the linear case, since the static instabilities occurring 

there may prove harmless in the linear case, since the static 

instabilities occurring there may prove harmless in the nonlinear case. 

 

3.2. Critical Angular Velocities 

 

It has been mentioned that the particle of Figure 1.11 (Section 1.3) 

may be considered a model of a disk mounted on a shaft rotating with 

angular velocity  , which will be assumed to be positive. The case 

1 2c c  corresponds to a shaft with a single flexural rigidity and is 



characterized by a single critical angular velocity 1 , while the case 

1 2c c  represents a shaft with distinct flexural rigidities and is 

characterized by a critical interval 1 2    . 

In this and the following sections the problem will be generalized in 

different directions. In principle, it can be treated in a coordinate 

system at rest or in a system rotating with the shaft. In the first case it 

takes the aspect of a resonance problem of the theory of oscillation; in 

the second case it is a stability problem of the gyroscopic type. 

As a first generalization, let us consider a shaft with a single flexural 

rigidity, carrying n disks which may be represented by the particles 

1 2, ,.... nm m m , at the sections 1 2, ,.... nx x x , while the mass of the shaft will be 

neglected. Figure 3.2 shows the particle im . The deflections of the 

shaft at  
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ix  are iy  and iz . The restoring forces transmitted by the shaft to the 

particle are denoted by iY  and iZ . If the coordinate system rotates 

with the angular velocity   of the shaft, the centrifugal force 
2 ( , )i i im y z  and the Coriolis force 22 ( , )i i im z y   must be added. 

For the calculation of the restoring forces, let us consider the shaft at 

rest (Figure 3.3) under the influence of the forces kY . By means of the 

influence numbers jka  for the sections j  and k , the deflection iy  

can be written  
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Here and in the remainder of this section all sums are to be extended 

over the sections 1 2, ,.... nx x x . Because of Castigliano's theorem, we also 

have 
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where ( )iV  is the energy of deformation, written in terms of the jY . 

Thus, we obtain 
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Figure 3.3 

or, because of (3.9), Maxwell's symmetry relations 

jk kja a                (3.12) 

From (3.9) and (3.10) it follows that 
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Since it must be possible to solve (3.9) for the jY , the determinant   

of the is nonzero. The solution of (3.9) then is  
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where kjA  is the cofactor of kja  and hence also  
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From (3.13), (3.14), and the identity 
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we further obtain 



( )

, , ,

, , , ,

1

2

1 1

2 2

i

jk jp kq p q

j k p q

pj

jk kq p q pq p q

j k p q p q

V a c c y y

A
a c y y c y y


 



 
 



 
       

(3.17) 

Since the trivial equilibrium configuration of the nonrotating shaft is 

stable, the matrix ( )pqc  is positive definite. So is the matrix ( )jka , as can 

be readily seen in normal coordinates. 

Similar results are obtained for the displacements jz  and the forces 

kZ . The corresponding matrices are again ( )jka  and ( )jkc , since the shaft 

has a single flexural rigidity. The differential equations of motion of 

the particle jm  therefore are 
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In order to find the static instabilities in the rotating coordinate system, 

it is sufficient to consider one of the two sets of equilibrium conditions 

obtained from (3.18), for example, 



                     2 0i k k i i

k

c z m y        (i=1,2,...,n)   (3.19) 

Nontrivial equilibrium configurations occur whenever  
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Because of the symmetry of ( )jkc , the roots 
2 2

1 ,..... n   of (3.20) are 

real. Since ( )jkc  is positive definite, they are positive. Hence, there are 

as many static instabilities as there are disks. Apart from inversions in 

the sense of rotation, they correspond to so many critical angular 

velocities 1,..... n  . Of course, some of them may coincide. 

Let 1  be the smallest critical angular velocity. It then follows from 

Theorem 6(Section 3.1) that the shaft is stable for 10     and 

certainly unstable for 1,..... n  . In order to explore the intervals 

between these critical values, the motion of the system must be 

investigated. If this is done, for simplicity, in a coordinate system at 



rest, the differential equations (3.18) reduce to 
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They represent free oscillations of the system which now is not only 

conservative but also nongyroscopic. Since such oscillations are 

harmless, we are tempted to conclude immediately that the intervals 

between the angular velocities 1,..... n   are stable. However, the 

differential equations (3.21) do not contain   and hence do not 

explain wht the values 1,..... n  are critical. The apparent paradox is 

readily solved [82] by the observation that, because of imperfections, 

additional forces with the circular frequency   are acting on the 

particle im . They give rise to perturbation terms on the right-hand 

sides of (3.21). Hence, the observer at rest is confronted with a 

resonance problem. The resonance frequencies correspond to the 

circular frequencies of the free motion, i.e., to the values 1,.... n  , 

which thus are confirmed as the only critical angular velocities. 

By means of (3.14) and (3.9) the equilibrium conditions (3.19) can be 



written in terms of the forces. We obtain 
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If all the kY  are zero, so are the iy , according to (3.9). The existence 

of a nontrivial equilibrium configuration therefore requires that  
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Along with (3.20), this is a second characteristic equation from which 

the critical angular velocities may be obtained.  

The shaft treated here is an example of the case where the regions 

between the 2

1 iP   in Figure 3.1 are stable. If the shaft has two distinct 

flexural rigidities, each of the principal directions y  and z , 

respectively, has its own set of matrices ( )jkc , ( )jka . This does not 

necessarily mean that the number of critical angular velocities is 



simply doubled. In the case of a single disk, e.g., the two matrices ( )jkc  

each reduce to a single element, 1 2,c c  respectively. The differential 

equations of motion (3.18) become 
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Apart from a slight change in the notation, this is system (1.56). 

According to Section 1.3, the interval 2 2 2

1 1 2 2/ /c m c m       is critical, 

provided 1 2c c . So this is an example of the case where one of the 

regions indicated by diagonal lines in Figure 3.1 is unstable. 

 

Problems  

 

1. Verify the critical angular velocities 
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of the shaft of Figure 3.4, having a single flexural rigidity   and short 



bearings at the ends. 
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2. Solve the analogous problem for long rigid bearings. 

 

3. Drop one of the two disks in Figure 3.4 and confirm the critical 

interval  
2
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(3.26) 

under the assumption that the shaft has two distinct flexural rigidities 

  and 2 . 

 

3.3 Influence of Gyroscopic Moments 

 

In the preceding section the disks were treated as particles. This means 

that their rotatory inertia was neglected. Actually, the disks do not 



merely move in translations but they also rotate, and this additional 

motion is apt to affect the critical angular velocities. In order to show 

this, let us consider a shaft with a single flexural rigidity, carrying a 

single disk, and let us treat the problem in a coordinate system at rest. 

In Figure 3.5 the centroid of the disk, which is assumed to be exactly 

centered at the section 1x , is denoted by S. The disk has the properties 

of a symmetric gyro with its figure axis tangential to the deflection 

curve. In the deformed state this is a space curve with the deflections 

,y z  and the corresponding slopes ,y z . For small slopes, the tangential 

unit vector in an arbitrary section x  is given by (1, , )y z   . If 1  denotes 

this vector in the section, a principal system of the disk can be defined 

by the axes, , ,    where   has the direction of 1 , and ,   are normal 

to  , the axis   being parallel to the plane ,x y  and   (in our 

approximation)parallel to ,x z . 

The configuration of the disk is described by the coordinates ' '

1 1 1 1, , ,y z y z  

and the angle   of rotation in its own plane, measured from the axis  . 



The state of motion consists of a translation with the velocities 1 1,y z  

superposed by a gyroscopic motion with a spin of angular velocity 

s     and a precession described by the angular velocity ' '

1 1(0, , )P z y   . In 

the absence of a spin the reactions of the disk on the shaft would be the 

forces 

                          1Y m y  ,
1Z mz                   (3.27) 

and the moments 

                             1' 'yM Az ,
1' 'zM Ay              (3.28) 

 

where m denotes the mass of the disk and A its equatorial moment of 

inertia (taken for an arbitrary diameter in the plane of the disk). 

According to the theory of gyroscopic the spin gives rise to an 

additional moment, the so-called gyroscopic moment g s pM C   , where 

C is the axial moment f inertia (referred to the figure axis  ). In our 

approximation its components are 

                         1' ' 'yM C y  , 1'' 'zM C z               (3.29) 



The total reaction on the shaft is thus given by the forces (3.27) and the 

moments 

                 1 1' 'yM Az C y  ,
1 1' 'zM Ay C z                      (3.30) 

The influence numbers we need here are the deflection a and the 

inclination b at 1x  caused by a unit force acting at 1x , and the 

deflection 'b  and the inclination c at 1x  caused by a unit moment 

acting at 1x . It can be shown [4] that the matrix of these influence 

numbers is symmetric, i.e., that 'b b  . Moreover, the matrix is positive 

definite; its determinant   therefore is positive. We now have  
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and the inversions 
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The differential equations of motion follow from (3.27), (3.30) and 

(3.32). 



They read 
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            (3.33) 

An inspection of the coefficients confirms that the system is 

conservative and that, because of the gyroscopic moments, it is 

gyroscopic even in the coordinate system at rest. In fact, (3.33) may be 

interpreted as the system of Lagrange's equations obtained from the 

kinetic energy 
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the potential energy 
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and the generalized gyroscopic forces 

                             1C z ,
1C y               (3.36) 

Since m and A are positive, T is a positive definite quadratic form. So 



is V, because the matrix of the coefficients , ,a b c  is positive definite. 

Thus the total energy is continuous and positive definite, irrespective 

of the value of  . 

It follows from Lagrange's theorem (Section 1.6) that no instabilities of 

the equilibrium are to be expected. In order to explain the occurrence 

of critical angular velocities (which are static instabilities for the 

rotating observer), imperfections in the form of inaccuracies in the 

centering of the disk must be taken into account. In the coordinate 

system at rest, they give rise to instationary forces causing resonance. 

The imperfections just mentioned can be represented by an additional 

mass m   which is rigidly connected with the disk and has the 

coordinates 

                      1e  , 2 cose  , 2 sine                (3.37) 

in the system of principal axes. The quantities 1e  and 2e  are 

eccentricities, causing static and kinetic unbalance. In the system at 

rest,   has the coordinates  



                  1 1x e ,
1 2 cosy e  ,

1 2 sinz e                    (3.38) 

If we neglect the influence of the eccentricities on the angular velocity 

 , the additional mass   gives rise to the inertia forces 
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Taking these forces into consideration in the differential equations of 

motion and neglecting their moments, which are small of higher order, 

we obtain, in place of the first two equations (3.33), 
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while the last two equations remain unchanged. The mass   can be 

included in m. Moreover, we may introduce complex variables 

                         1 1r y iz  ,  1 1' 'v y iz               (3.41) 

In terms of these, the differential equations of motion can be written in 

the complex form  
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It is easy to verify that the general solution of the homogeneous system 

obtained from (3.42) by setting 2 0e   is bounded. In order to find a 

particular solution of (3.42), we set 

                         ' e x p ( )r A i t , 'exp( )v B i t            (3.43) 

where 'A  and 'B  are complex constants. Inserting (3.43) in (3.42), we 

obtain the system 
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with the determinant 
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So long as 2( ) 0f   , the particular solution (3.43) is bounded. For 2( ) 0f    

the amplitudes 'A  and 'B  are apt to increase beyond limit. The roots of 
2( ) 0f    therefore represent critical angular velocities. The characteristic 

equation, multiplied by 4/ , reads 



 

                   2
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Neglecting the gyroscopic effect by taking 0A C  , we obtain 
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(3.47) 

or  

                           
2 1
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1 c
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                (3.48) 

as was to be expected in view of Section 3.2. The same result is 

obtained for C A , that is, for a rotor which is a spherical gyro. In any 

event, the critical angular velocities occur in pairs ,  . Limiting 

ourselves to positive values, we have 
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(3.49) 

In practice, most rotors are oblate gyros ( )C A . In the case of a flat disk, 

for example, 2C A . The negative sign in (3.49) then yields a complex 

value for 2 . It follows that there is a single critical angular velocity 1 , 

which, incidentally, is greater than 0 , since the gyro effect tends to 



stiffen the shaft. 

The radicand in (3.49) can be written 

                       
2 21
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4

am c C A b m C A                  (3.50) 

For an elongated rotor ( )C A  it is positive but smaller than the square 

of the first term on the right-hand side of (3.49); thus, there are two 

critical angular velocities 1  and 2 . It can be shown that 1 0 2    . 

In some of the literature on critical speeds [62,5] a second set of 

critical states is discussed and is referred to as the critical angular 

velocities of counter-rotation. They are explained by equilibrium 

considerations in a coordinate system rotating with the angular 

velocity of the shaft, but in the inverse sense. However, such 

considerations seem to have little to do with the stability of the shaft. 

Since the effects obtained are not supplied by the kinematic approach, 

one may safely conclude that they either do not exist or are caused by 

influences hithero neglected, such as oscillations of the foundations 

[82]. In any case, there is little experimental evidence for these effects. 



 

Problems 

1. Verify the formula 
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for the critical angular velocities the shaft of Figure 3.6. Plot 
1,2 0/   as 

functions of 2( ) /C A ml . 

 

Refer to Figure 3.6 

 

2. Verify the value 1 0/ 1.32    for the shaft of Problem 1, carrying a thin 

circular disk of radius r l . 

 

3.4. Influence of Compression 

 

Critical speeds were first observed in steam turbines. Here, as in other 



instances, the shaft transmits a torque and an axial force, and these 

loads affect the critical values of the angular velocity. The influence of 

the axial force, which alone will be discussed in this section, was first 

studied by Melan [47]. 

As an example corresponding to Euler's buckling Case 3, let us 

consider the shaft of Figure 3.7, equipped with a single disk and a 

single flexural 

 

Refer to Figure 3.7 

 

rigidity, and let us neglect gyroscopic effects. The problem was treated 

in Section 1.3 without an axial force. There is a single critical angular 

velocity, given by (3.48),  
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1
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m m a
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(3.52) 

where 1c  and a are the single elements to which the matrices ( )jkc  and 

( )jka , respectively, reduce in this case. More specifically, a is the 



displacement of the centroid S of the disk caused by a unit force 

orthogonal to the undeformed axis, acting at S. The only modification 

of the problem consists of the addition of the nongyroscopic 

conservative force P. Since, by this addition, the character of the 

system is not altered, the result will still be given by (3.52). However, 

in computing the influence number a, the force P must now be taken 

into account. 

Figure 3.8 shows the shaft loaded by the forces P and Q. The 

differential equation of the deflection curve is 

                     ' ' ( 1 ) ( )ly Q x P y y                      (3.53) 

Figure 3.8 

or 
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The general solution is 
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and the boundary conditions, 
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yield  
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and  

                    ( t a n )l
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It follows from (3.58) that, for 0Q  , the displacement ly  is zero unless 

tan l  , that is, / 2,3 / 2,l    This confirms Euler's buckling load (1.10) 

with 1/ 4k  . 

Let us assume now that the load P is small compared to the static 

buckling load 1P . This implies that / 2l  , that is, that 1l  . Expanding 

(3.58) for small values l , we obtain 
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For 0P  , this yields the well-known deflection 
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For 1Q  , we obtain the influence number  
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required in (3.52). Thus, in a first approximation, 
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Comparing this with the value 
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valid in the absence of P, we finally have  
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It should be kept in mind that (3.64) is an approximation, valid for 

1P P . The result shows that the critical angular velocity is decreased by 

compression and increased by tension ( 0)P  . Other cases can be treated 

in an analogous manner. Some results are given in Table 5.3 of Section 

5.5. 



The influence of a torque represented by a constant moment vector 

(Figure 3.9) has been calculated in a similar way. However, we have 

shown in Section 1.5 that, in general, a constant moment vector is 

circulatory. Therefore, this problem is not conservative. It will be 

treated in Section 5.5, and it will be shown there that, in general, it is 

incorrect to approach it by static means. 

 

Problems 

 

1. Find a first approximation for the critical angular velocity of the 

shaft illustrated in Figure 3.10, acted upon by compressive forces 

applied at the ends. Check the result against (5.83) and Table 5.3 

 

Refer to Figure 3.10 


