Emulation: Interpretation

Contents

* Emulation, Basic Interpretation
* Threaded Interpretation

= Emulation of a Complex Instruction Set

Microprocessor Architecture & System Software Lab

Emulation

* “Implementing the interface/functionality of one system on
a system with different interface/functionality”

= |n VM, it means instruction set emulation

* Implementing one ISA (the target) reproduces the behavior of
software compiled to another ISA (the source)

Guest
Source ISA

l emulated by

Host
Target ISA

e —————————— 3
Microprocessor Architecture & System Software Lab

Emulation Methods

Two methods of emulation: interpretation & binary translation
Interpretation

* Repeats a cycle of fetch a source instruction, analyze, perform
Binary translation

» Translates a block of source instr. to a block of target instr.

« Save the translated code for repeated use

» Bigger initial translation cost with smaller execution cost

* More advantageous if translated code is executed frequently
Some in-between techniques

o Threaded interpretation
 Predecoding

Microprocessor Architecture & System Software Lab

Basic Interpreter

 Emulates the whole
source machine state

e Guest memory and
context block is kept in
Interpreter’'s memory (heap)

» code and data

e general-purpose registers,
PC, CC, control registers

Source Memory State

Code

Data

\

Stack

Source Context
Block

Program Counter

Condition Codes

Reg O

Reg 1

Interpreter Cod

Interpreter Overview

Microprocessor Architecture & System Software Lab

Decode-and-dispatch interpreter

Interpretation repeats

= Decodes an instruction

= Dispatches it to an interpretation routine based on the type of
Instruction

» Code for interpreting PPC ISA
While (Thalt && interrupt){
inst=code[PC];
opcode=extract(inst,31,6);
switch(opcode){
case LoadWordAndZero: LoadWordAndZero(inst);
case ALU: ALU(inst);
case Branch: Branch(inst);

] 6
Microprocessor Architecture & System Software Lab

Instruction Functions

 Emulation of the LW/Z instruction

void LoadWordAndZero(inst) {
RT = extract(inst, 25, 5);
RA = extract(inst, 20, 5);
displacement = extract(inst, 15, 16);

if (RA == 0) source = 0;
else source = regs[RA];

address = source + displacement;
regs[RT] = (data[address] << 32) >> 32;
PC =PC +4;

] 7
Microprocessor Architecture & System Software Lab

Instruction Functions

« Emulation of the ALU instruction(s)

void ALU(inst) {

RT = extract(inst, 25, 5);

RA = extract(inst, 20, 5);

RB = extract(inst, 15, 5);

source1 = regs[RA];

source?2 = regs[RB];

extended_opcode = extract(inst, 10, 10);

switch(extended_opcode) {
case Add: Add(inst);
case AddCarrying: AddCarrying(inst);
case AddExtended: AddExtended(inst);

}
PC=PC +4;

] 8
Microprocessor Architecture & System Software Lab

Decode-and-dispatch interpreter

= Advantage
 Low memory requirements
e Zero star-up time
= Disadvantage:
» Steady-state performance is slow
- A source instruction must be parsed each time it is emulated
- Lots of branches would degrade performance

* How many branches are there in our interpreter code?

] 9
Microprocessor Architecture & System Software Lab

Branches in Decode-&-Dispatch

While (Thalt&&interrupt){
switch(opcode){
case ALU:ALU(inst); Switch(opcode)

.Switch/state ent—%case Indirect

-
| -

direct

case
3.Return\from the rfutine Indirect

direct

P
—
o
o
©
o
jab)
I
D
Q
«Q
D

return

We can remove all of these branches with threading

10

Microprocessor Architecture & System Software Lab

Threaded Interpretation: ldea

m Put the dispatch code to the end of each interpretation routine.

Instruction function list
Add:

RT=extract(inst,25,5);
RA=extract(inst,20,5);
RB=extract(inst,15,5);
sourcel=regs[RA];
source2=regs[RB];
sum=sourcel+sourcez;
regs[RT]=sum;
PC=PC+4;
If (halt || interrupt) goto exit;
inst=code[PC];
opcode=extract(inst,31,6);
extended_opcode=extract(inst,10,10);
routine=dispatch[opcode,extended_opcode];
goto *routine;

——————————————— 1.]
Microprocessor Architecture & System Software Lab

Threaded Interpretation (2)

« Solution:

— Append part of the dispatch code to the end of each instruction
interpretation routine

void LoadWordAndZero(inst) { void ALU(inst) {
RT = extract(inst, 25, 5); RT = extract(inst, 25, 3);
RA = extract(inst, 20, 5); RA = extract(inst, 20, 5);

RB = extract(inst, 15, 5);
source1 = regs[RA];
if (RA ==0) source = 0; SO:J rc§2d= regs[? = xtract(inst, 10, 10)
- _ extended_opcode = extract(inst, 10, 10);
else source = regs[RA]; switch(extended_opcode) {
case Add: Add(inst);

displacement = extract(inst, 15, 16);

address = source + displacement; case AddCarrying: AddCarrying(in:
regs[RT] = (data[address] << 32) >> 32; case AddExtended: AddExtended(
PC=PC +4; }

!f (halt || interrupt) goto exit; PC = PC + 4-

inst = code[PC]; if (halt || interrupt) goto exit;

opcode = extract(inst, 31, 6); inst = code[PC];

extended_opcode = extract(inst, 10, 10); opcode = extract(inst, 31, 6);

o . extended_opcode = extract(inst, 10, 10);
routine = dispatch[opcode, extended_opcode] routine = dispatch[opcode, extended opcode];

goto *routine; . goto *routine;

E—] 2
Microprocessor Architecture & System Software Lab

Threaded Interpretation (3)

« Control flow in various modes of execution:
— a) native, b) DnD interpreter, c) threaded interpretation

Interpreter Interpreter
routines routines

machine code machine code machine code |
of source mach. of source mach. of source mach. . I

"
o

o
e

Dispatch
loop

E|

IR
N

ot
.

'

o

Microprocessor Architecture & System Software Lab

Threaded Interpretation

One key point is that dispatch occurs indirectly thru a
dispatch table

routine = dispatch[opcode,extended opcode];
goto *routine;

Also called indirect threaded interpretation
Then, what would be directed threaded interpretation?
Can we remove the overhead of accessing the table?
Solution: predecoding and direct threading

]
Microprocessor Architecture & System Software Lab

14

Predecoding

= Extracting various fields of an instruction is complicated
* Fields are not aligned, requiring complex bit extraction
« Some related fields needed for decoding is not adjacent

= [fitisin aloop, this extraction job should be repeated

= How can we reduce this overhead? Predecoding
e Pre-parsing instructions in a form that is easier to interpreter
* Done before interpretation starts
* Predecoding allows direct threaded interpretation

—————————————— 1. O
Microprocessor Architecture & System Software Lab

Predecoding for PPC

In PPC, opcode & extended opcode field are separated and register
specifiers are not byte-aligned

Define instruction format and define an predecode instruction array
based on the format

Struct instruction {
unsigned long op; // 32 bit
unsigned char dest; // 8 bit
unsigned char srcl; // 8 bit
unsigned 1nt src2; // 16 bit
} code [CODE_SIZE];

Pre-decode each instruction based on this format

————————————— 1. O
Microprocessor Architecture & System Software Lab

Predecoding Example

« Example: Code to accumulate a value, e.g. as a loop body

lwz r1, 8(r2) ;load word and zero
add r3,r3,r1 ;r3=r3+r1
stw r3, 0(r4) ; store word
07
] 2 08 (load word and zero)
08
(add)
3 1 03
37
(store word)
3 4 00

Microprocessor Architecture & System Software Lab

17

Previous Interpreter Code

* |tis more efficient to perform the repeated decoding
operations only once per source machine address

void LoadWordAndZero(inst) {
RT = extract(inst, 25, 5);
RA = extract(inst, 20, 5);
displacement = extract(inst, 15, 16);

if (RA ==0) source = 0;
else source = regs[RA];

address = source + displacement;
regs[RT] = (data[address] << 32) >> 32;
PC =PC +4;

18

Microprocessor Architecture & System Software Lab

New Interpreter Code

* These predecoded instructions (contained in an array) can
now be executed by the following code:

struct instruction {

unsigned long op; LoadWordAndZero:
unsigned char dest; RT = code[TPC].dest;
unsigned char src1; RA = code[TPC].src1;
unsigned int src2; displacement = code[TPC].src2;
} code[CODE_SIZE]; If (RA == 0) source = 0 else source = regs[RA

address = source + displacement;
regs[RT] = (data[address] << 32) >> 32;
SPC = SPC + 4;

TPC =TPC + 1;

if (halt || interrupt) goto exif;

opcode = code[TPC].op;

routine = dispatch[opcode];

goto *routine;

19

Microprocessor Architecture & System Software Lab

Directed Threaded Interpretation

Even with predecoding, indirect threading includes a centralized
dispatch table, which requires

« Memory access and indirect jump
To remove this overhead, replace the instruction opcode in predecoded
format by address of interpreter routine

07 001048d0
1| 2| o8 g 11 2 | o8
If (halt || interrupt) goto exit; If (halt || interrupt) goto exit;
opcode= code[TPC].op; — routine= code[TPC].op;
routine=dispatch [opcode]; goto *routine;

goto *routine;
20

Microprocessor Architecture & System Software Lab

source code

Comparison

Dispatch-&-Decode

source code interpreter routines

Indirect Threaded

source code interpreter routines

L E———
Microprocessor Architecture & System Software Lab

21

Comparison

Predecoded Indirect Threaded Direct Threaded

III>

Predecoder }=-

(d)

L E———
Microprocessor Architecture & System Software Lab

22

Comparison

Decode-and- Indirect Threaded Direct Threaded
Dispatch Interpreter Interpreter
Memory Low Low High
requirements
Start-up Fast Fast Slow
performance
Steady-state Slow Slow Medium
performance (better than the first one)
Code portability Good Good Medium

————————————— L O
Microprocessor Architecture & System Software Lab

DSVM

= Dynamic Samsung Virtual Machine

= Splitted interpreter
* Inner, Outer loop
* Instruction cache

* |Indirect threaded interpretation

24

Microprocessor Architecture & System Software Lab

Interpreting CISC ISA

= RISC ISA (Power PC) 32 bit register. 32bit length.

Register-register

Register-immediate

Jump/call

31 25 20 15 10 0
Op |Rd |Rsl [Rs2 |Opx
31 25 20 15 0
Op |Rd |Rsl Const
2
Op |Const opX

Microprocessor Architecture & System Software Lab

25

Interpreting a Complex Instruction Set

CISC instruction set has a wide variety of formats, variable instruction
lengths, and variable field lengths (x86 instruction lengths: 1 ~ 16 bytes)

I1A-32 Instruction Format

Prefixes Opcode ModR/M SIB Displacement Immediate
Uptofour 1 o or3-byte 1hyte 1hyte Address Immediate
Prefixes of opcode (if péquired) (if requiced) Displacement data
1 byte each Of 1,2,0r 4 Of 1,2,0r 4
(optional) Bytes ornone Bytes or none

I 6 5 3 2 0 7 6 5 3 2 0)
Mod Reg/ R/M Scale Index Base
Opcode

——————————————— 2O
Microprocessor Architecture & System Software Lab

Interpreting a Complex Instruction Set
= Decode and dispatch

 Decode fields and fill in a

y

general template General
e Jump to routines Decode
= Slow due to generality (fill-in instruction
_ Structure)
= Solution
« Make common case faster |
Dispatch }
Inst.1 Inst.1 In_st._l
Specialized Specialized| = = o= |Specialized
routine routine routine

\ 4 A 4 A 4

Microprocessor Architecture & System Software Lab

Simple
Inst.1
Specialized
routine

Some optimizations

A 4

Dispatch
On
first byte
Simple Complex
Inst.m Inst.m+1
Specialized| |Specialized| ™™ ™
routine routine

N

Complex
Inst.m+1
Specialized
routine

Shared
routines

Prefix
Set flags

I
Microprocessor Architecture & System Software Lab

Threaded Interpretation

A

Simple
Instruction
Specialized
routine
Simple
Decode/

Dispatch
|sp.a C

RN

v

Simple
Instruction
Specialized
routine
Simple
Decode/

Dispatch
|sp.a C

Complex
Decode/
Dispatch
ey
Simple Simple
Instruction R Instruction
Specialized Specialized
routine routine
Simple Simple
Decode/ Decode/
Dispatch &widm/

Microprocessor Architecture & System Software Lab

	Emulation: Interpretation
	Contents
	Emulation
	Emulation Methods
	Basic Interpreter
	Decode-and-dispatch interpreter
	Instruction Functions
	Instruction Functions
	Decode-and-dispatch interpreter
	Branches in Decode-&-Dispatch
	Threaded Interpretation: Idea
	�Threaded Interpretation (2)�
	�Threaded Interpretation (3)�
	Threaded Interpretation
	Predecoding
	Predecoding for PPC
	Predecoding Example
	Previous Interpreter Code
	New Interpreter Code
	Directed Threaded Interpretation
	Comparison
	Comparison
	Comparison
	DSVM
	Interpreting CISC ISA
	Interpreting a Complex Instruction Set
	Interpreting a Complex Instruction Set
	Some optimizations
	Threaded Interpretation

