
Emulation: InterpretationEmulation: Interpretation



2
Microprocessor Architecture & System Software Lab

ContentsContents
Emulation, Basic Interpretation

Threaded Interpretation

Emulation of a Complex Instruction Set



3
Microprocessor Architecture & System Software Lab

EmulationEmulation
“Implementing the interface/functionality of one system on 
a system with different interface/functionality“
In VM, it means instruction set emulation
• Implementing one ISA (the target) reproduces the behavior of 

software compiled to another ISA (the source)



4
Microprocessor Architecture & System Software Lab

Emulation MethodsEmulation Methods
Two methods of emulation: interpretation & binary translation

Interpretation
• Repeats a cycle of fetch a source instruction, analyze, perform

Binary translation
• Translates a block of source instr. to a block of target instr.
• Save the translated code for repeated use
• Bigger initial translation cost with smaller execution cost
• More advantageous if translated code is executed frequently

Some in-between techniques
• Threaded interpretation
• Predecoding



5
Microprocessor Architecture & System Software Lab

Basic IBasic Interpreternterpreter

Code

Data

Stack

Program Counter

Condition Codes

Reg 0

Reg 1

……

Reg n-1

Interpreter Code

Source Memory State
Source Context 

Block

Interpreter Overview

• Emulates the whole 
source machine state
• Guest memory and 
context block is kept in 
interpreter’s memory (heap)

• code and data

• general-purpose registers, 
PC, CC, control registers



6
Microprocessor Architecture & System Software Lab

DecodeDecode--andand--dispatch interpreterdispatch interpreter

Interpretation repeats
Decodes an instruction 
Dispatches it to an interpretation routine based on the type of 
instruction
Code for interpreting PPC ISA
While (!halt && interrupt){

inst=code[PC];

opcode=extract(inst,31,6);

switch(opcode){

case LoadWordAndZero: LoadWordAndZero(inst);

case ALU: ALU(inst);

case Branch: Branch(inst);

· · · · ·

}



7
Microprocessor Architecture & System Software Lab

Instruction FunctionsInstruction Functions



8
Microprocessor Architecture & System Software Lab

Instruction FunctionsInstruction Functions



9
Microprocessor Architecture & System Software Lab

DecodeDecode--andand--dispatch interpreterdispatch interpreter

Advantage
• Low memory requirements
• Zero star-up time

Disadvantage: 
• Steady-state performance is slow
- A source instruction must be parsed each time it is emulated
- Lots of branches would degrade performance

How many branches are there in our interpreter code?



10
Microprocessor Architecture & System Software Lab

Branches in DecodeBranches in Decode--&&--DispatchDispatch

Switch(opcode)

case

return

1.Switch statement->case    Indirect

2.ALU(inst)                           direct

3.Return from the routine    Indirect

4.Loop back-edge                  direct

While (!halt&&interrupt){
switch(opcode){
case ALU:ALU(inst);

· · · · ·
}

We can remove all of these branches with threading



11
Microprocessor Architecture & System Software Lab

Threaded Interpretation: IdeaThreaded Interpretation: Idea
Instruction function list

Add:
RT=extract(inst,25,5);
RA=extract(inst,20,5);
RB=extract(inst,15,5);
source1=regs[RA];
source2=regs[RB];
sum=source1+source2;
regs[RT]=sum;
PC=PC+4;
If (halt || interrupt) goto exit;
inst=code[PC];
opcode=extract(inst,31,6);
extended_opcode=extract(inst,10,10);
routine=dispatch[opcode,extended_opcode];
goto *routine;

}

Put the dispatch code to the end of each interpretation routine.



12
Microprocessor Architecture & System Software Lab

Threaded Interpretation (2)Threaded Interpretation (2)



13
Microprocessor Architecture & System Software Lab

Threaded Interpretation (3)Threaded Interpretation (3)



14
Microprocessor Architecture & System Software Lab

Threaded InterpretationThreaded Interpretation

One key point is that dispatch occurs indirectly thru a 
dispatch table

routine = dispatch[opcode,extended_opcode];

goto *routine;

Also called indirect threaded interpretation
Then, what would be directed threaded interpretation?
Can we remove the overhead of accessing the table?
Solution: predecoding and direct threading



15
Microprocessor Architecture & System Software Lab

PredecodingPredecoding

Extracting various fields of an instruction is complicated
• Fields are not aligned, requiring complex bit extraction
• Some related fields needed for decoding is not adjacent

If it is in a loop, this extraction job should be repeated

How can we reduce this overhead? Predecoding
• Pre-parsing instructions in a form that is easier to interpreter
• Done before interpretation starts
• Predecoding allows direct threaded interpretation



16
Microprocessor Architecture & System Software Lab

PredecodingPredecoding for PPCfor PPC

In PPC, opcode & extended opcode field are separated and register 
specifiers are not byte-aligned
Define instruction format and define an predecode instruction array 
based on the format

Struct instruction {

unsigned  long op;   // 32 bit

unsigned  char dest; // 8  bit

unsigned  char src1; // 8  bit

unsigned  int src2; // 16 bit

} code [CODE_SIZE];

Pre-decode each instruction based on this format



17
Microprocessor Architecture & System Software Lab

PredecodingPredecoding ExampleExample



18
Microprocessor Architecture & System Software Lab

Previous Interpreter CodePrevious Interpreter Code



19
Microprocessor Architecture & System Software Lab

New Interpreter CodeNew Interpreter Code



20
Microprocessor Architecture & System Software Lab

Directed Threaded InterpretationDirected Threaded Interpretation

Even with predecoding, indirect threading includes a centralized 
dispatch table, which requires
• Memory access and indirect jump 

To remove this overhead, replace the instruction opcode in predecoded
format by address of interpreter routine

001048d0

1 2 08

07

1 2 08

If (halt || interrupt) goto exit;
opcode= code[TPC].op;
routine=dispatch [opcode];
goto *routine;

If (halt || interrupt) goto exit;
routine= code[TPC].op;
goto *routine;



21
Microprocessor Architecture & System Software Lab

ComparisonComparison
Dispatch-&-Decode        Indirect Threaded

source code source code interpreter routines source code interpreter routines

dispatch loop

(a) (b )                                                      ( c)

Indirection Table



22
Microprocessor Architecture & System Software Lab

ComparisonComparison
Predecoded Indirect Threaded                      Direct Threaded

(d)                             (e)

Predecoder
Indirection Table



23
Microprocessor Architecture & System Software Lab

ComparisonComparison
Decode-and- 
Dispatch

Indirect Threaded 
Interpreter

Direct Threaded 
Interpreter

Memory 
requirements

Low Low High

Start-up 
performance

Fast Fast Slow

Steady-state
performance

Slow Slow
(better than the first one)

Medium

Code portability Good Good Medium



24
Microprocessor Architecture & System Software Lab

DSVMDSVM
Dynamic Samsung Virtual Machine 
Splitted interpreter
• Inner, Outer loop
• Instruction cache

Indirect threaded interpretation



25
Microprocessor Architecture & System Software Lab

Interpreting CISC ISAInterpreting CISC ISA
RISC ISA (Power PC)  32 bit register. 32bit length.

Op Rd Rs1 Rs2 OpxRegister-register

Op Rd Rs1 Const

31 25 20 15 10 0

31 25 20 15 0

Register-immediate

Op Const opx

2

Jump/call



26
Microprocessor Architecture & System Software Lab

Interpreting a Complex Instruction SetInterpreting a Complex Instruction Set

Prefixes Opcode ModR/M SIB Displacement Immediate

CISC instruction set has a wide variety of formats, variable instruction 
lengths, and variable field lengths (x86 instruction lengths: 1 ~ 16 bytes)

Up to four
Prefixes of 
1 byte each
(optional)

1-,2-,or 3-byte
opcode

1byte
(if required)

1byte
(if required)

Address
Displacement

Of 1,2,or 4
Bytes or none

Immediate 
data

Of 1,2,or 4
Bytes or none

Mod Reg/
Opcode

R/M Scale Index Base

7 6 5 3 2 0 7 6 5 3 2 0

IA-32 Instruction Format



27
Microprocessor Architecture & System Software Lab

Interpreting a Complex Instruction SetInterpreting a Complex Instruction Set
Decode and dispatch
• Decode fields and fill in a 

general template
• Jump to routines

Slow due to generality
Solution
• Make common case faster 

General 
Decode

(fill-in instruction 
Structure)

Dispatch

Inst.1
Specialized 

routine

Inst.1
Specialized 

routine

Inst.1
Specialized 

routine



28
Microprocessor Architecture & System Software Lab

Some optimizationsSome optimizations

Simple
Inst.1

Specialized
routine

Simple
Inst.m

Specialized
routine

Complex
Inst.m+1

Specialized
routine

Complex
Inst.m+1

Specialized
routine

Prefix
Set flags

Dispatch 
On

first byte

Shared
routines



29
Microprocessor Architecture & System Software Lab

Threaded InterpretationThreaded Interpretation

Simple
Instruction
Specialized

routine
Simple
Decode/
Dispatch

Simple
Instruction
Specialized

routine
Simple
Decode/
Dispatch

Simple
Instruction
Specialized

routine
Simple
Decode/
Dispatch

Simple
Decode/
Dispatch

Simple
Instruction
Specialized

routine

Complex
Decode/
Dispatch


	Emulation: Interpretation
	Contents
	Emulation
	Emulation Methods
	Basic Interpreter
	Decode-and-dispatch interpreter
	Instruction Functions
	Instruction Functions
	Decode-and-dispatch interpreter
	Branches in Decode-&-Dispatch
	Threaded Interpretation: Idea
	�Threaded Interpretation (2)�
	�Threaded Interpretation (3)�
	Threaded Interpretation
	Predecoding
	Predecoding for PPC
	Predecoding Example
	Previous Interpreter Code
	New Interpreter Code
	Directed Threaded Interpretation
	Comparison
	Comparison
	Comparison
	DSVM 
	Interpreting CISC ISA
	Interpreting a Complex Instruction Set
	Interpreting a Complex Instruction Set
	Some optimizations
	Threaded Interpretation

