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1. Objective 

The course covers three important issues encountered in practical engineering fields: uncertainty 
characterization, probabilistic engineering (or reliability) analysis, design under uncertainty, and 
system management under uncertainty (or health monitoring). Probabilistic engineering analysis 
includes advanced topics in statistics, uncertainty characterization, and test-/simulation-based 
probabilistic engineering (or reliability) analysis. Design under uncertainty includes probability 
sensitivity anlaysis, surrogate modeling, and advanced methodologies for design under uncertainty. 
Some health diagnostics and prognostics techniques are briefly introduced for the purpose of 
system management under uncertainty. 

2. Textbook 
and References 

l Youn, B.D. and Hu, C., Engineering Analysis and Design under Uncertainty, SNU Print, 
2012. 

l Haldar, A., and Mahadevan, S., Probability, Reliability, and Statistical Methods in 
Engineering Design, John Wiley & Sons Inc., 2000. 

l Arora, J.S. Introduction to Optimum Design, Second Edition, Elsevier, 2004. 
l Myers and Montgomery, Response Surface Methodology, Wiley, 1995. 
l G. Vachtsevanos G, et al., Intelligent Fault Diagnosis and Prognosis for Engineering 

Systems, 1st edition. Hoboken, New Jersey, USA: John Wiley & Sons, 2006. 

3. Evaluation 
method 

Homework Exam I 
(10.19) 

Exam II 
(11.25) Project I Project II  Total 

20% 20% 20% 20% 30%  110% 

4. Lecture Plan 

Wk Contents 
1 Course introduction; Concepts of uncertainty, reliability and risk; Basic probability theory 
2 Graphical methods for exploratory data analysis 
3 Uncertainty characterization 
4 Definition of reliability; Reliability analysis (time-independent);  
5 Numerical methods for probabilistic engineering analysis (MCS, FORM methods) 
6 Case studies of reliability analysis (cellular phone, LCD, and others) 
7 Reliability modeling (time-dependent); 
8 Exam I & Project I review  
9 Accelerated life testing; Accelerated life testing; 
10 Bayesian analysis; 
11 Design optimization review;  
12 Design optimization review; 
13 Design under uncertainty (methodology) 
14 Design under uncertainty (formulation; numerical methods); Exam II 
15 Prognostics and Health Management (PHM): reasoning function; Course review 

5. 
Consideration 

- Prerequisites : Engineering Statistics, Design Optimization 
- 2 open-book exams and one individual project 

6. Rules 

All students are presumed upon enrollment to have an understanding of the Honor System. 
Academic dishonesty by a student will be treated in accordance with the SNU procedures. A score 
of “0” can be assigned for the corresponding test/assignment and/or a course grade of ‘F’ can be 
assigned. 

 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

Mechanical and Aerospace Engineering, Seoul National University 3 
 

TABLE OF CONTENTS 
 
 
 
 
 

Chapter 1. Introduction 
 
Chapter 2. Basic Probability Theory 
 
Chapter 3. Uncertainty Characterization 
 
Chapter 4. Probabilistic Engineering Analysis 
 
Chapter 5. Design Optimization 
 
Chapter 6. Surrogate Modeling (or Response Surface Methodology) 
 
Chapter 7. Design under Uncertainty 
 
Chapter 8. System Management under Uncertainty - Health Diagnostics and 
Prognostics 
 
Appendix. Homeworks



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

Mechanical and Aerospace Engineering, Seoul National University 4 
 

CHAPTER 1. INTRODUCTION 
 
1.1 Instances of Catastrophic Failures 

 

 
 
 
Research Questions: 

Q1. Is it possible to predict engineering performances on a reliable basis, i.e., 
failure rates and reliability? 
Q2. Is it possible to design engineered systems reliable and robust under various 
uncertainties? 
Q3. What technologies make it possible to a reliable and robust design under 
uncertainty? 
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1.2 Uncertainty (inferable) or variability (measurable) 
 
1.2.1 Sources of uncertainty or variability 

Ÿ Physical uncertainty or variability: Actual variability (or uncertainty) of physical 
quantities, such as loads, material properties, and dimensions.  This variability 
can be described in terms of probability distributions or stochastic processes. 

 
Figure 1.1: Histogram of Tensile Strength, MPa 

 
Ÿ Statistical uncertainty or variability: This uncertainty arises solely as a result of 

the lack of information.  Data must be collected to build a probabilistic model of 
the physical variability of physical quantities.  The probabilistic model is 
composed of a probability distribution and its parameters.  When the amount of 
data is small, the distribution and parameters are considered to be uncertain. 

Ÿ Model uncertainty or variability: This source of uncertainty occurs as a result of 
simplifying assumptions, unknown boundary conditions, and their interactions 
which are not included in the model.  To minimize this uncertainty, Verification 
and Validation (V&V) is quite important. 
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Uncertainty is ubiquitous! 
 
 

 
Figure 1.2: Model Uncertainty in Fatigue Analysis 

 
 

Homework 1: Sources of uncertainty in a vibration problem 
Let us consider an undamped system with a lumped mass and spring.  The 
motion behavior of the system can be ideally modeled using a second-order 
ordinary differential equation as 

 ( ) ( ) 0; (0) 1.5, (0) 0my t ky t y y¢¢ ¢+ = = - =  

where m and k are the mass and spring coefficient of the system, respectively.  
According to the manufacturer of the system, the mass and spring coefficient are 
believed to be 10 kg and 1000 N/m, respectively.  At time t = 1 second, ten 
experimental tests show a set of y data as (1.1202, 1.2474, 1.3472, 1.1767, 1.3113, 
1.2890, 1.3171, 1.1244, 1.1421, 1.2539).  Answer the following questions: 
 
(1) Please explain why experimentally measured y values are scattered. 
(2) Identify all possible sources of uncertainties involved in this problem. 
(3) Also, provide possible reasons for what causes the difference between 
experimental and analytical y values. 
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1.2.2 Types of uncertainty 
Ÿ Aleatory uncertainty:  

It is an uncertainty with the sufficient size of data, referred to as objective 
uncertainty or irreducible uncertainty. It means the degree of uncertainty is 
irreducible with more relevant data. 

 
Table 1.1: Aleatory Uncertainty (or Objective Uncertainty) 

>> thickness_a = normrnd(1,0.05,100000,5); mean(thickness_a), std(thickness_a) 
 
ans = 
 
    1.0003    1.0001    1.0000    1.0001    1.0001 
 
ans = 
 
    0.0501    0.0499    0.0501    0.0501    0.0500 
 
Ÿ Epistemic uncertainty:  

It is mainly an uncertainty due to the lack of data, referred to as subjective 
uncertainty or reducible uncertainty.  It means the degree of uncertainty is 
reducible with more relevant data. 

 
 

Table 1.2: Epistemic Uncertainty (or Subjective Uncertainty) 
>> thickness_e = normrnd(1,0.05,10,5); mean(thickness_e), std(thickness_e) 
 
ans = 
 
    0.9995    1.0150    1.0217    1.0024    0.9763 
 
ans = 
 
    0.0514    0.0410    0.0375    0.0394    0.0546 
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1.2.3 Probability Theory 
Ÿ Frequentist probability theory – a conventional probability theory 
Ÿ Bayesian probability theory 

 
 
1.3  Reliability, Risk, Availability, Maintainability, Durability, etc. 
 
Ÿ Reliability:  

The ability of a system or component to perform its required functions under stated 
conditions for a specified period of time.  Commonly used techniques include: 
Accelerated (life) testing, Weibull analysis, Simulation-based analysis under 
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uncertainty, Product qualification tests, Failure mode and effects analysis (FMEA), 
Fault tree analysis, Root cause analysis, etc. 
 

Ÿ Risk:  
A measure of the loss due to potential failures of social, built, and natural 
systems (or components).  Related research topics include: qualitative risk analysis, 
quantitative risk analysis, risk management, etc. 
 

Ÿ Availability: 
The degree to which a system, subsystem, or equipment is in a specified operable 
and committable state at the start of a mission, often described as a ratio of expected 
value of the uptime of a system to the aggregate of the expected values of up and 
down time. 
 

Ÿ Maintainability: 
The degree of the ease with which a product can be maintained in order to: (i) 
correct defects, (ii) meet new requirements, (iii) make future maintenance easier, or 
(iv) cope with a changed environment. 
 

Ÿ Durability: 
The ability to perform over a specified period of time while withstanding potential 
hazards (wear, corrosion, fatigue, etc.). 
 
 

1.4 Introduction to Risk Assessment 
 
1.4.1 Definition 
 
A measure of the loss due to potential failures of social, built, and natural systems 
(or components). 

The loss is the consequence of potential failure (or the adverse consequence) given in 
the form of human fatality, property loss, monetary loss, etc. For a given failure 
event, the loss is believed to be known or predictable in most situations. 
 
The potential failure of social, built, and natural systems (or components) is 
expressed as the probability or frequency of the failure (or hazard) per unit time or 
space. 

 
· Risk by natural systems: Hurricanes, floods, wild fires, etc. 
· Risk by social systems: company bankruptcy, subprime mortgage, etc. 
· Risk by built systems: bridges, space shuttle, nuclear plant, etc. 
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( a ) City Floods due to 
Hurricane Katarina  

( b ) Subprime mortgage ( c ) Interstate 35W 

Figure 1.3: Potential failures and their risk 
 
 

  Risk is everywhere! 
 

 
From an engineering point of view, risk is the sum of the products of the consequences 
and their probabilities of engineered system (or component) failures as 

 
1

n

i i
i

R f c
=

= å  (1) 

 
Example: For instance, according to the U.S. Transportation, 12 million vehicle 
accidents are reported in 2007; 1 in 320 accidents resulted in death.  Assuming average 
loss of US $500,000 per death and US $25,000 of property loss per accident involving 
fatality, calculate both fatality and economic risk values. 
 
 
1.4.2 Approaches for risk prediction 
 

Ÿ Qualitative risk assessment 
It is easier to perform a qualitative risk analysis because it does not require 
gathering data.  This approach uses linguistic scales, such as low, medium, and 
high. A risk assessment matrix is formed which characterizes risk in form of the 
frequency (or likelihood) of the loss versus potential magnitudes (amount) of the 
loss in qualitative scales.  Because this type of analysis does not need to rely on 
actual data and probabilistic treatment of such data, the analysis is far simpler 
and easier to use and understand, but is extremely subjective.  The matrix is then 
used to make policy and risk management decisions in a conceptual design stage. 
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Table 1.3: Qualitative Risk Assessment Matrix 

  Catastrophic Critical Marginal Negligible 
Very frequent > 0.5 H H H I 
Frequent 0.5 - 10-1 H H I L 
Probable 10-1 - 10-2 H H L L 
Occasional 10-2 - 10-4 H H L L 
Improbable 10-4 - 10-6 H I L T 
Rarely < 10-6 I I T T 

H (high risk); I (intermediate risk); L (low risk); T (trivial risk) 
 
 

Ÿ Quantitative risk assessment (0r Probabilistic Risk Analysis) 
The quantitative risk assessment attempts to estimate the risk in form of the 
frequency (or likelihood) of the loss versus potential magnitudes (amount) of the 
loss in quantitative scales.  Risk-relevant data must be involved in estimating the 
frequency of the loss and potential amount of the loss.  Risk-relevant data include 
field data, test data, and other evidences.  So, this approach is clearly the 
preferred approach when risk-relevant data exist to estimate the probability of 
failure and its consequence. 

 
Risk Value  = Probability of powertrain system failure ´ Consequence (1) 

+ Probability of steering system failure ´ Consequence (2)  
+ Probability of central controller failure ´ Consequence (3) 
+ Probability of air-conditioning failure ´ Consequence (4) 
+ Probability of airbag sensor failure ´ Consequence (5) 
…. 
+ Probability of tire failure ´ Consequence (n) 

 
 
1.5 Introduction to Engineering Design 
 
Four important factors for success of a product: 

Ÿ Performance, price, and quality from the customer’s perspective 
Ÿ Time needed to bring product to the market (Time-to-market) 
Ÿ Cost of product development 
Ÿ Cost to manufacture the product 

 
1.5.1 Product Development Process (PDP) 
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Figure 1.4 Product Development Process (PDP) 
 
 

Duration of each program phase depends on product complexity, technology maturity, 
and specific requirements.  
 
1.5.2 Product Design 
 

Ÿ Concept generation 
- Define subsystems 
- Find existing concepts (patent survey; Triz) 
- Generate new concepts (Pugh chart) 
- Eliminate poor ideas (Pugh chart) 
- Prepare design proposals 

 
Ÿ System Design 
- Need for subsystems – modular concept (product family design) 
- Define the characteristics of subsystems 
- Allocate system design 
- Provide interfacing 

 
Ÿ Detail Design 
- Define the characteristics of components 
- Providing interfacing 
- Design for manufacturing 
- Design for assembly 
- Design for maintenance 
- Design optimization 
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Homework 2: Reliability engineering problem 
Read the following article carefully. 
http://webcache.googleusercontent.com/search?q=cache:http://www.squaretra
de.com/htm/pdf/cell_phone_comparison_study_nov_10.pdf 

Generally, smartphone manufacturers conduct product qualification tests with 
five samples before shipping the phones to customers. The phone manufacturer 
begins to ship the phones when the five phones pass the test.  The qualification 
test involves structural, functional, environmental, and accelerated life tests. 
Discuss why the qualification tests cannot guarantee defect-free products and 
how this difficulty can be taken care of. Assume that the phone manufacturer 
cannot increase sample size because of its limited resources. 

Homework 3: Product Development Process 

Review the videos for your understanding of product development process. 
 

1. Customer needs for product specification 
http://www.youtube.com/watch?feature=player_detailpage&v=FA9Yzunsrlc 

 
2. Concept generations 
- https://www.youtube.com/watch?v=7KVbRWFlvtY 

 
3. Detail design (w/ suspension arm) 

http://www.youtube.com/watch?v=OHVXvv5GAcI 
http://www.youtube.com/watch?NR=1&feature=endscreen&v=qrhbOeJaaxg 
 

4. Discussion 
Study “embodiment design” and “modular design” and report each with 250 
words at minimum in English. 
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1.6 Probabilistic Description of Engineering Performances 
 
1.6.1 Description of engineering performance: 
 

Probabilistic  performance  
 = Y(X);   X is a vector of uncertainty that affects system performance 

 
Probability (Y(X) £ YU) = Reliability 
 = Probability of safety (=success) 

 = 1 – Probability of failure 
 

Probability (YL £ Y(X) £ YU) = Robustness 
 
1.6.2 Challenges in probabilistic engineering analysis and design: 
 
One of the primary challenges is “how to collect system performance data under 
uncertainty?” 
 
Engineering analysts and designers want to precisely predict the probability of system 
performance while designing engineered systems (or components), prior to 
manufacturing them.  However, it is extremely difficult to predict system performance 
before producing and testing the systems (or components). To predict the probability1 of 
a system (or component) performance, numerous testing (or warranty) data must be 
collected after releasing the system to the market.  
 
 

Table 1.4: Challenge in predicting the probability of system performance 

“The designer must predict system performance prior to making design 
decisions, and data cannot be obtained from physical tests of the system prior to 
construction of the system.” by George A.  Hazelrigg, an NSF program manager. 

“It appears the new emission technology may have affected engine performance 
and quality, as customer satisfaction with both factors dropped significantly in 
2005  …  This is a common pattern whenever new technologies are introduced in 
an industry, and the assumption is that the scores for these engines will improve 
over time,” by Etchelle, senior manager of commercial vehicle research at J.D. 
Power and Associates. 

Homework 4: Essay to describe the challenges in system design 
Above is the discussion about the challenges in system design. In this work, 
assume you are an engine designer in the company to make sure the engine 
performance, lifetime, and reliability before shipping the engines to your 

                                                           
1 Probability is the likelihood or chance that something is the case or will happen. 
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customers. Given a four-month period for the engine design and performance 
(including life/reliability) testing, what challenges are expected for engine 
design? Write your essay using at least 250 words in English. 
 

 
Other challenges include: 
 

Ÿ Uncertain factors in manufacturing and operational processes. 
Ÿ Fidelity in techniques to predict system performance and reliability (or 

probability of safety). 
Ÿ Effective design and management of engineered systems under uncertainty. 
Ÿ Precise estimation of the consequence of potential failures. 

 

Data = Money, Time, Know-how 
 
 
1.6.3 System performance data under uncertainty (Example: Automotive Industries): 

Ÿ Reliability & Owner Satisfaction Data from ConsumerReports.org  

http://www.consumerreports.org/cro/cars/used-cars/reliability/best-worst-in-
car-reliability-1005/overview/index.htm  

- Overall, Asian models still dominate in reliability, accounting for 34 of the 
39 models in the Most reliable new car list. Thirty-one are Japanese and 
three are South Korean. 

- Despite Toyota's problems, the automaker still ranks third overall in 
reliability, behind only Honda and Subaru, with 17 models in the best list. 
Honda has seven with a smaller model lineup. 

- Only four domestic models made the Most reliable list: the Ford Fusion, 
Mercury Milan, Pontiac Vibe, and the two-wheel-drive Ford F-150 with 
the V6 engine. U.S. makes, however, account for almost half the models--
20 of 44--on the Least reliable list. There are 13 from GM, 6 from Chrysler, 
and 1 from Ford. 

- European makes account for 17 models on the Least reliable list. This 
includes six each from Mercedes-Benz and Volkswagen/Audi. 

 
Ÿ Initial Quality Study (IQS) (with 90 days of ownership) from J.D. Power and 

Associates 
http://www.jdpower.com/press-releases/pressrelease.aspx?id=2007088 

 
Ÿ National Highway Traffic Safety Administration (NHTSA):  

http://www.nhtsa.gov/ 
 

Ÿ Top Safety Picks from Insurance Institute for Highway Safety (IIHS):  
http://www.iihs.org/ratings/default.aspx 

 
Ÿ Warranty data 
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Ÿ Testing and measurement data 

Use material test, reliability test, life test, measured tolerance data, etc.  They can 
be found in Standard references disclosed by DOD, NIST, and other professional 
societies (ASME, IEEE, etc.) and companies. 

 

    

 
 

Ÿ Customer data from survey, clinic testing, and user-generated contents 
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 Figure 1.5: IQS from J.D. Power and Associates 
 

 
1.6.4 Key elements for probabilistic description of engineering performances 
(Probability of Failure or inversely Reliability) 

Ÿ Variability in manufacturing tolerances, use conditions, etc. 
Ÿ Uncertainty (or variability) and bias in modeling and test results 
Ÿ Complexity in engineering mechanics (test-based, model-based, sensor-based, 

or hybrid-based) 
Ÿ Uncertainty propagation (or probabilistic engineering analysis) 
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CHAPTER 2 BASIC PROBABILITY THEORY 
 
2.1 Sample Space 

For any physical quantity, a set of data can be obtained through physical tests or 
surveys under a homogeneous condition.  The set of all possible outcomes of such 
tests is called the sample space (or random space) W and each individual outcome is 
a sample point. For the example of fatigue tests, the sample data can be obtained 
about the physical quantities, as shown in Figure 2.1.  The sample space can be 
described by a probability distribution (or mass) function or histogram. 

 

   
 

 Strain-life equation: ( ) ( )2 2
2

b cf
f f fN N

E
se e

¢D ¢= + : Low-cycle fatigue 

Figure 2.1: Fatigue Tests and Sample Data Set (Coutesy of Prof. Darrell F. Socie, UIUC, 
Probabilistic Fatigue, 2005) 

 
 
2.2 Axioms and Theories of Probability 

Axiom 1.  For any event E 

 0 ( ) 1P E£ £  (2) 

where P(E) is the probability of the event E. 
 
Axiom 2. Let the sample space be W.  Then, 

 ( ) 1P W =  (3) 

 
Axiom 3. If E1, E2, …, En are mutually exclusive events then 

 
1 1

( )
nn

i ii i
P E P E

=
=

æ öÈ =ç ÷
è ø

å  (4) 

 

Some Useful Theorems 
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( ) 1 ( )

(

P E P E

P O

= -

1 2 1 2 1 2

1 2
1 2

2

1 2 1 2 1 2

) 0
( ) ( ) ( ) ( )
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( ) ( ) ( )   if  and  are independent.
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Ç
=

Ç =

 (5) 

 
2.3 Random Variables 

 
A random variable is a function which maps events in the sample space W into the 
real value R where the outcomes of the event can be real or integer, continuous or 
discrete, success or fail, etc. The random variable is often denoted as X: E ® R. 

 

 
 

The outcome of an event need not be a number, for example, the outcome of coin 
toss can be either “head” or “tail”.  However, we often want to represent outcomes as 
numbers. 
 
· Discrete random variable (Fig. 2.2a): 

The outcome of an experiment is discrete.  For example, specimen tensile tests 
with 10 kN are conducted one hundred times.  Each tensile test employs 20 
specimens.  Let say, the random variable X is the number of failed specimens in 
each tensile test.  Then, X is a discrete random variable. 

 
· Continuous random variable (Fig. 2.2b): 

The outcome of an experiment is continuous.  For example, an LED light bulb is 
tested until it burns out.  The random variable X is its lifetime in hours.  X can 
take any positive real value, so X is a continuous random variable.  Similar 
examples include the tensile strength of specimen tensile tests. 
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( a ) Discrete Random Variable  ( b ) Continuous Random Variable 

Figure 2.2: Random Variable 
 
 
2.4 Univariate Distributions 
 

· To understand probability distributions relevant to engineering applications 
· To investigate statistical properties of probability distributions 
· To make use of Matlab statistical toolbox 

 
Let X be a random variable in an engineering application.  The probability density function 
(PDF) and cumulative distribution function (CDF) of X are denoted by  and X Xf F , 

respectively. Their relationship is ( ) = ( )X XXf x F x¶
¶ . 

 
Normal Distribution (or Gaussian Distribution) 

 
2

2
( )

21( ; , ) ( )
2

m
sm s

s p

-
-

= =
x

Xy x f x e  

 
>> x=[-10:0.1:10]; 
>> y=normpdf(x,0,1); 
>> plot(x,y) 

 

 
ü Symmetric distribution, skewness=0, kurtosis=3 
ü Central limit theorem states that any distribution with 

finite mean and standard deviation tends to follow normal 
distribution 

ü Special case of chi-squared distribution and gamma 
distribution 

ü Dimension of fabricated part 
ü Uncontrolled random quantities (i.e., White Gaussian 

noise) 
 
 
Lognormal Distribution 
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2

2
(ln )

21( ; , ) ( )
2

m
sm s

s p

-
-

= =
x

Xy x f x e
x

 

 
>> x=[-10:0.1:10]; 
>> y=lognpdf(x,0,1); 
>> plot(x,y) 

 

 

ü Limited to a finite value at the lower limit 
ü Positively skewed 
ü Strengths of materials, fracture toughness 

 
 
Weibull Distribution 

1

( ; , , ) ( ) , 2 parameter Weibull if 0
-æ ö- -ç ÷-è ø- -æ ö= = =ç ÷- -è ø

kx ak
v a

X
k a x ay x v k a f x e a
v a v a

 

>> x=[0:0.1:10]; 
>> y=wblpdf(x,1,2); 
>> plot(x,y) 

 

 

ü k is a shape parameter; n is a scale parameter; a is a 
location parameter 

ü Originally proposed for fatigue life 
ü Used in analysis of systems with weakest link 
ü Wear, fatigue, and fracture 

 
 
Exponential Distribution 

1( ; ) ( )
x a

Xy x f x e mm
m

-
-

= =  

>> x=[0:0.1:10]; 
>> y=exppdf(x,1); 
>> plot(x,y) 

 

ü a is a location parameter; m is a scale parameter 
ü Used to model data for time between failures with a 

constant failure rate 
ü Called as “memoryless random distribution” 
ü Continuous version of Poisson distribution to describe the 

number of occurrences per unit time 
 
 
Poisson Distribution (Discrete) 
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( ; ) ( )
!

lll -= =
x

Xy x f x e
x

 

>> x=[0:0.1:10]; 
>> y=poisspdf(x,1); 
>> plot(x,y) 

 

ü An event occurrence in a given interval 
ü The occurrences are independent; called as “memoryless 

random distribution” 
ü Used to model data for the number of failed specimens (or 

product defects) in a given batch with a constant failure 
rate 

 
 
Uniform Distribution 

1( ; , ) ( )= =
-Xy x a b f x

b a
 

>> x=[0:0.1:10]; 
>> y=unifpdf(x,3,7); 
>> plot(x,y) 

 

 

ü Symmetric, skewness=0 
ü Equal occurrence 
ü Random number generator 

 
 
Beta Distribution 

1 11( ; , ) ( ) (1 ) , ( , ) :  Beta function
( , )

- -= = -a b
Xy x a b f x x x B a b

B a b
 

>> x=[-10:0.1:10]; 
>> y=betapdf(x,3,6); 
>> plot(x,y) 

 

 

ü Bounded distributions 
ü Related to Gamma distribution 
ü Manufacturing tolerance 
ü Reliability data in a Bayesian model 
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Other Distributions in Engineering 
 
Rayleigh distribution, Gamma distribution, Extreme Type I, II distributions, etc.  
Refer to http://mathworld.wolfram.com/topics/ProbabilityandStatistics.html and 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm.  

 

Homework 5.1: Statistical uncertainty 

Device a way to quantify the amount of statistical uncertainty.  Use n=10, 100, 
1000 for X~N(0,12).  

 

Homework 5.2: Statistical modeling of material strengths 
Download the excel file named ‘tensile_test.xlsx’ at the ETL.  You can find the 
yield strength and tensile strength data from uniaxial tensile tests.  Among the 
probability distribution functions listed above, you are asked to determine two 
best candidates to model the yield strength and tensile strength. DO NOT use any 
advanced techniques but rely on the basic analysis of the distribution types 
described above. Write your essay with at least 150 words. 

 
2.5 Random Vectors (Material properties, etc.) – Statistical correlation 
(related to random vectors) 
 
Suppose X1 and X2 are jointly distributed and joint event is defined as 1 1  and£X x  

2 2£X x .  The corresponding bi-variate distribution of a random vector is defined as 
 

 
1 2

2

1 2 1 21 2

1 2 1 1 2 2

1 2 1 2

Joint CDF: ( , ) ( , )

Joint PDF: ( , ) ( , )¶
¶ ¶

= £ £

=

X X

X X X Xx x

F x x P X x X x

f x x F x x
 (6) 

 

E1 

r = 0.828 
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Assume that two random variables are normally distributed.  To define the joint PDF of 
a multivariate distribution, five parameters are required, namely, the mean values of X1 
and X2, 

1 2
 and m mX X , their standard deviations 

1 2
 and s sX X , and the correlation 

coefficient 
1 2

rX X .  The PDF of the bivariate normal distribution can be expressed as 

 

1

1 2

11 21 2 1 2

1 2 2

1 2

1 2 2

2
1

1 2 22

2
1 2 2

1 1( , ) exp
2(1 )2 1

( )( )
2

m
srps s r

m m m
r

s s s

ì éæ ö-ï ê= - ç ÷í ç ÷ê-- ï è øëî
üùæ ö- - - ïú- + ç ÷ ýç ÷ úïè ø ûþ

X
X X

XX XX X X X

X X X
X X

X X X

x
f x x

x x x
 (7) 

If X1 and X2 are correlated, namely,
1 2

0r ¹X X , 
1 2 1 2( , )X Xf x x  is not symmetry. 

 

  
>> [x1,x2]=meshgrid(-5:0.1:5); 
>> f=1/(2*pi)*exp(-
(x1.^2+(x2).^2)./2); 
>> mesh(x1,x2,f) 

>> [x1,x2]=meshgrid(-5:0.1:5); 
>> f=1/(2*pi*sqrt(1-0.8^2))*exp(-(x1.^2-
1.6*x1.*x2+x2.^2) /(2*(1-0.8^2)^2)); 
>> mesh(x1,x2,f) 

 
Bivariate distribution of random vector can be generalized for n-dimensional random 
vector, : W ®X nR .  Joint CDF and PDF for n-dimensional random vector are written as 

 
{ }

1

1
Joint CDF: ( )

Joint PDF: ( ) ( )

=

¶
¶ ¶

æ ö= Ç £ç ÷
è ø

=
L

n

n

n

i ii

x x

F P X x

f F

X

X X

x

x x

 (8) 

A multi-variate normal random vector is distributed as 

 ( ) ( ) ( )
1
22 11( ) 2 exp

2
p -- -é ù= - - -ê úë û

X X X X Xx Σ x μ Σ x μ
n Tf  (9) 

where Xμ  and XΣ  are mean and covariance matrix of X. 
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2.6 Conditional Probability – Statistical dependence (related to joint events) 
The probability of the event E1 occurrence conditional upon the event E2 occurrence 
is defined as: 

 1 2
1 2

2

( )( | )
( )

P E EP E E
P E

Ç
=  (10) 

 
Let us recall the example of fatigue tests.  The sample data can be obtained about 
the physical quantities in the damage model below. 

  

Exercise: Let us consider a 20 data set for the fatigue strength coefficient (sf¢) and 
exponent (b) used in the strain-life formula shown above.  Two events are defined as 

E1 = {(X1, X2)| X1>8´102 and X2 > 0.09} 
E2 = {(X1, X2)| X1<1.02´103 and X2 < 0.11} 

 
P(E1) = 8/20 = 2/5, P(E2) = 16/20 = 4/5, P(E1ÇE2) = 4/20 = 1/5 
 

1 2
1 2

2

1 2
2 1

1

( ) 1 5 1( | )
( ) 4 5 4

( ) 1 5 1( | )
( ) 2 5 2

P E EP E E
P E

P E EP E E
P E

Ç
= = =

Ç
= = =

 

 
 
 
Bayesian statistics (or inference) is based on the conditional probability.  It will be 
recalled in the Bayesian probability theory. 
 

( ) ( )2 2
2

b cf
f f fN N

E
se e

¢D ¢= +

E1 

E2 
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2.7 Statistical Moments – Quantification of randomness 
 

· To understand the statistical moments of a random variable. 
· To apply statistical moments to an uncertain response. 
· To prepare uncertainty propagation analysis through a system in Sections 4 & 5. 

 
Let { }1, ,= L

T
nX XX  be an n-dimensional random vector and ( )g X  be a function of 

X.  In general, the Nth statistical moment of  is defined as 

 [ ]( ) ( ) ( )
W

º ò
N NE g g f dXX x x x  (11) 

where ( )fX x  is the joint PDF of X and W  is a sample (or random) space. 
 
2.7.1 Statistical Moments of a Random Vector 
First, one special case is considered to find out statistical moments of an input 
random variable, that is, ( ) , 1, ,= = Lig X i nX . 

 
Mean of a Random Vector 
Let 1( ) =g XX  and set N=1.  The first moment of random variable X1 is defined as 

 [ ]
1

1

1
1 1 1 1( )

m

¥

-¥
º

=
ò X

X

E X x f x dx  (12) 

Similarly, 

 

[ ]

[ ]

2 2

1
2 2 2 2

1

( )

( )
n n

X X

n n X n n X

E X x f x dx

E X x f x dx

m

m

¥

-¥

¥

-¥

º =

º =

ò

ò

M  

 { }1 n

T
X Xm m=Xμ L  

 
 
2.7.2 Covariance of a Random Vector 

 
Let ( ) ( )( )m m= - -i i j jg X XX .  The statistical moment is defined as 

 
( )( ) ( )( ) ( , )

i ji i j j i i j j X X i j i j

ij

E X X x x f x x dx dxm m m m
¥

-¥
é ù- - º - -ë û

é ù= S =ë û

ò
XΣ

 (13) 

where ( , )
i jX X i jf x x  and Sij  are the joint PDF and the covariance matrix of  and i jX X , 

respectively. 

( )g X
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When =i j , the diagonal terms in the covariance matrix are obtained as 

 

[ ]

[ ]

1

1

2 2
1 1 1 1 1 1

2
11

2 2

2

( ) ( )

( ) ( )

m m

s

m m

s

¥

-¥

¥

-¥

- º -

= = S

- º -

= = S

ò

ò

M

n

n

X

X

n n n n X n n

X nn

E X x f x dx

E X x f x dx

 (14) 

If ¹i j , the off-diagonal terms in the covariance matrix are obtained as 

 

[ ]

[ ]

1 2

1

1 1 2 2 1 1 2 2 1 2 1 2

12

1 1 1 1 1 1

1

( )( ) ( )( ) ( , )

( )( ) ( )( ) ( , )

m m m m

m m m m
-

¥

-¥

¥

- - - - - --¥

-

- - º - -

= S

- - º - -

= S

ò

ò

M

n n

X X

n n n n n n n n X X n n n n

nn

E X X x x f x x dx dx

E X X x x f x x dx dx

 (15) 

The covariance matrix is written as 

 
11 1

1

S Sé ù
ê ú= ê ú
ê úS Së û

L

M O M

L

n

n nn

XΣ  

 
2.7.2 Higher moments 

 
Skewness and Kurtosis (3rd and 4th order moments) 

 skewness = E         or   
( )3

1
3skewness

( 1)

N
ii

x X
N s
=

-
=

-
å

 (16) 

 kurtosis = E         or    
( )4

1
4kurtosis

( 1)

N
ii

x X
N s
=

-
=

-
å

 (17) 

 
2.7.3 Properties of Covariance Matrix, XΣ  

 
· XΣ  is symmetric, i.e., = T

X XΣ Σ  

· Variance of Xi is the ith diagonal element of , i.e., 2s = S
iX ii  

·  is a positive semi-definite matrix, i.e., 0,³ " ÎT nRXA Σ A A  

XΣ

XΣ
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2.7.4 Correlation Coefficient, rij  

The correlation coefficient rij  is defined as 

 r
s s

S S
º =

S S
ij ij

ij
i jii jj

 (18) 

The correlation coefficient  is a degree of correlation between two random 

variables.  Note that r s sS =ij ij i j  represents the off-diagonal elements of covariance 

matrix, . 

· If  and i jX X  are independent (i.e., 
1 2 1 21 2 1 2( , ) ( ) ( )=X X X Xf x x f x f x ), then  and i jX X  

are uncorreleated (i.e. 0r =ij ), but vice versa is not true. 

· 1 1r- £ £ +ij  

· If  =j iX aX b+ , 1 sgn( )r = ± =ij a . 

 
2.7.5 Coefficient of Variation, COV(X) = X Xs m  

 
 

 

Homework 6: Statistical moments and joint PDF 
Use the same excel file named ‘tensile_test.xlsx’ at the ETL.  Calculate the 
sampled means and standard deviations of yield strength and tensile strength. 
With the calculated means, standard deviations, and correlation coefficient, you 
can plot a joint pdf of yield strength and tensile strength. ASSUME the yield 
strength and tensile strength follow normal distribution. 

 
 

Homework 7: Read Chapter 2 of the Textbook 
Read Chapter 2 to reinforce your knowledge about the fundamentals of the 
engineering statistics. 

 
 

rij

XΣ
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CHAPTER 3. UNCERTAINTY CHARACTERIZATION 
 
This chapter discusses statistical analysis based on available sample data that 
characterizes uncertain data in a statistical form. Specifically, it introduces statistical 
procedures to determine an appropriate probability distribution for a random variable 
based on a limited set of sample data. There are two approaches in the statistical data 
analysis techniques: (a) conventional statistical methods (graphical methods and 
statistical hypothesis tests) and (b) Bayesian methods. 
 
3.1 Conventional (or Frequentist) Statistical Methods 

The conventional statistical methods impose models (both deterministic and 
probabilistic) on the data.  Deterministic models include, for example, regression 
models and analysis of variance (ANOVA) models.  The most common probabilistic 
models include the graphical methods and quantitative methods. 
 
3.1.1 Graphical Methods 

 
· Histogram (Fig. 3.1) 

The purpose of a histogram is to graphically summarize the distribution of a 
univariate data set.  This histogram graphically shows the following: 
 
1. center (i.e., the location) of the data; 
2. spread (i.e., the variation) of the data; 
3. skewness of the data;  
4. presence of outliers; and  
5. presence of multiple modes in the data.  
 
These features provide strong indications of the proper distributional model for 
the data. The probability plot or a goodness-of-fit test can be used to verify the 
distributional model. 
 

 
Figure 3.1: Histogram 
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· Normal probability plot 

 
The normal probability plot is a graphical technique for assessing whether or not 
a data set can be approximated as a normal distribution.  The data are plotted 
against a theoretical normal distribution in such a way that the points should 
form an approximate straight line.  Departures from this straight line indicate 
departures from normality.  The normal probability plot is a special case of the 
probability plot.  
 

 

>> x = normrnd(10,1,25,1); 

>> normplot(x); 

 
 
 

· Probability plot 
 
The uniform distribution has a linear relationship between ordered physical data 
and probability.  So any probability distribution can be used for approximating a 
given data set if a probability distribution is related to the uniform distribution.  
The relationship can be defined as 
  

U(i) = G(P(x(i))) 
 

where P(i) is the probability of the event E = {X | x(i) Î W} and U(i) follows a 
uniform distribution.  
 

>> x1 = wblrnd(3,2,100,1); 
>> x2 = raylrnd(3,100,1); 
>> probplot('weibull',[x1 x2]) 
>> legend('Weibull Sample','Rayleigh Sample','Location','NW') 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

Mechanical and Aerospace Engineering, Seoul National University 31 
 

 
 

Rayleigh distribution is a special case of weibull distribution when a shape 
parameter is 2.  Therefore both distributions follow the straight lines very closely. 

 
 

Homework 8: Graphical methods  
Use the data set for elastic modulus and yield strength in the excel file named 
‘tensile_test.xlex’.  Build histograms and plot each data set on the normal 
probability plot to determine if they follow a normal distribution.  Discuss your 
observation. 

 
3.1.2 Quantitative Methods 
 
· Statistical Moments: 

First-order moment (e.g., mean, location) 
 

 1mean( )
N

ii
x

X
N

== å  (19) 

 
a. Confidence limits (or interval) for the mean (T-test) 

 ( 2, 1)NX t s Na -±  (20) 

where X and s are the sampled mean and standard deviation, N is the sample 
size, a is the desired significance level (or 1-a = confidence level), and t(a/2,N-1) 
is the critical value of the t-distribution with N-1. 
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From the formula, it is clear that the width of the interval is controlled by two 
factors:  

ü As N increases, the interval gets narrower from the N term and t(a/2,N-1).  
That is, one way to obtain more precise estimates for the mean is to 
increase the sample size.  

ü The larger the sample standard deviation, the larger the confidence 
interval. This simply means that noisy data, i.e., data with a large standard 
deviation, are going to generate wider intervals than data with a smaller 
standard deviation.   

 

To test whether the population mean has a specific value, m0, against the 
two-sided alternative that it does not have a value m0, the confidence 
interval is converted to hypothesis-test form. The test is a one-sample t-
test, and it is defined as: 

H0:     = m0 

H1:     ¹ m0 

Tested statistics:  T = ( - m0)/(s/ ) 
Significance level:  a (=0.05 is most commonly used.) 
Critical region:  Reject the null hypothesis that the mean is a 

specified value, m0, if 
 ( 2, 1) ( 2, 1)orN NT t T ta a- -< - >  

 
Let’s say the null hypothesis is rejected. The p-value indicates the probability 
that the rejection of the null hypothesis is wrong. 
 

 
>> x1 = normrnd(0.1,1,1,100); 
>> [h,p,ci] = ttest(x1,0) 
h = 
     0 
p = 
    0.8323 
ci = 
   -0.1650    0.2045 
 

 
The test fails to reject the 
null hypothesis at the 
default a.  The 95% 
confidence interval on the 
mean contains 0. 

X
X

X N
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>> x2 = normrnd(0.1,1,1,1000); 
>> [h,p,ci] = ttest(x2,0) 
h = 
     1 
p = 
    0.0160 
ci = 
    0.0142    0.1379 
 

 
The test rejects the null 
hypothesis at the default a.  
The p-value has fallen 
below a = 0.05 and 95% 
confidence interval on the 
mean does not contain 0. 

 
 
b. 1-factor ANOVA (Analysis of Variance) 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda354.htm  

 
 
Second-order moment (e.g., variation) 

 

 
( )2

2 1variation( )
( 1)

N
ii

x X
s

N
=

-
=

-
å

 (21) 

 
a. Bartlett’s test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm  
b. Chi-Square test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm  
c. F-test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm 
d. Levene test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm  

 
 

The formula for computing the covariance of the variables X and Y is 
 

 
( )( )1COV

1

N
i ii

x X y Y
N

=
- -

=
-

å  (22) 

 
 

· Maximum Likelihood Estimation (MLE): 
The principle behind the MLE method is that for a random variable X, if x1, x2, … , 
xn are the N observations or sample values, then the estimated value of the 
parameter is the value most likely to produce these observed values.  Consider the 
density function of X to be fX(x,q), where q is the unknown parameter(s).  In 
random sampling, the xi’s are assumed to be independent.  If the likelihood of 
observing xi’s is proportional to their corresponding density functions, the 
likelihood function can be defined as 
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 1 2 1

1 2

( , , , | ) ( | )
( | ) ( | ) ( | )

N
n i X i

X X X n

L x x x f x
f x f x f x

== Õ

=

L

L

q q
q q q

 (23) 

 
The MLE can be formulated as 
 To determine , maximize   L(, , … ) 
 

Homework 9: Quantitative methods 
Use the data set for elastic modulus and yield strength in the excel file named 
‘tensile_test.xlex’. Test whether or not the population mean has a specific value, 
m0=200 GPa, for a quality control. Let’s assume the elastic modulus follow a 
normal distribution.  Determine the optimal mean and standard deviation using 
the maximum likelihood method. 
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· Distributional Measures: 
Chi-squared Goodness-of-Fit (GOF) Tests: 
The chi-square test is used to test if sampled data come from a population with a 
specific distribution.  An attractive feature of the chi-square GOF test is that it 
can be applied to both continuous and discrete distributions.  The chi-square 
GOF test is applied to binned data (i.e., data put into classes).  So the values of 
the chi-square test statistic are dependent on how the data is binned.  Another 
disadvantage of the chi-square test is that it requires a sufficient sample size in 
order for the chi-square approximation to be valid.  
 

H0:    The data follow a specified distribution. 

H1:    The data do not follow the specified distribution. 
Significance level:  a (=0.05 is most commonly used.) 
Test statistics:  For the chi-square goodness-of-fit computation, 

the data are divided into k bins and the test 
statistics is defined as 

 ( )22

1

k

i i i
i

O E Ec
=

= -å  (24) 

where Oi is the observed frequency for bin i and Ei is 
the expected frequency for bin i.  The expected 
frequency is calculated by 

 ( )( ) ( )i u l ii
E N F X F X N f= × - = ×  (25) 

where F is the cumulative distribution function (CDF) 
for the distribution being tested, Xu is the upper limit 
for bin i, Xl is the lower limit for a bin i, and N is the 
sample size. 
 

Critical region:  The hypothesis that the data are from a population 
with the specified distribution is rejected if 

 
2 2

( , )k cac c ->  

where 2
( , )k cac -  is the chi-square percent point 

function with k-c degrees of freedom and a 
significant level of a.  k is the number of non-
empty cells and c = the number of estimated 
parameters (including location and scale 
parameters and shape parameters) for the 
distribution. 
 

Anderson-Darling (A-D) Goodness-of-Fit Test:  
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm  
 
Kolmogorov-Smirnov (K-S) Goodness-of-Fit Test: 
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http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm 
 
 
>> load gas 
 
>> prices = [price1 price2]; 
 
>> normplot(prices) 
 

 
 

>> sample_means = mean(prices) 
 
sample_means = 
 
115.1500  118.5000 
 

>> [h,pvalue,ci] = ttest(price2/100,1.1515) 
 
h = 
 
     1 
 
pvalue = 
 
4.9517e-004 
 

ci = 
 
    1.1675    1.2025 
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>> price2=normrnd(118,3.8,100,1); 
>> [h,p] = chi2gof(price2,'cdf',{@normcdf,mean(price2),std(price2)}) 
>> [h,p] = chi2gof(price2,'cdf',{@normcdf,119,3.5}) 
 
 
>> x = randn(100,1); 
>> [h,p,st] = chi2gof(x,'cdf',@normcdf) 
 
h = 
 
     0 
 
p = 
 
    0.370 
 
st =  
 
    chi2stat: 7.5909 
          df: 7 
       edges: [-2.1707 -1.2999 -0.8645 -0.4291 0.0063 0.4416 0.8770 1.3124 2.1832] 
           O: [8 9 10 19 18 21 10 5] 
           E: [9.6817 9.6835 14.0262 16.8581 16.8130 13.9138 9.5546 9.4690] 
 
>> normplot(x) 
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Homework 10: Probability Distribution & Statistical Moments 
Let us recall the example of fatigue tests.  The sample data can be obtained about 
the physical quantities in the damage model below. 

  

Let us consider a 30 data set (Table 3.1) for the fatigue ductility coefficient (ef¢) 
and exponent (c) used in the strain-life formula shown above.  Answer the 
following questions and provide a matlab code: 

(1) Construct the covariance matrix and find out the coefficient of correlation 
using the data set given in Table 3.1. 

(2) Use normal, weibull, and lognormal distributions. Determine the most 
suitable parameters of three distributions for the fatigue ductility coefficient 
(ef¢) and exponent (c) using the MLE method. 

(3) Find out the most suitable distributions for the data set (ef¢, c) using a GOF 
test. 

(4) Verify the results with the graphical methods (histogram and probability 
plots). 

 

 
Figure 3.2: Statistical Correlation 

 
Table 3.1: Data for the fatigue ductility coefficient and exponent 

(ef¢, c) (ef¢, c) (ef¢, c) (ef¢, c) (ef¢, c) 
0.022 0.289 0.253 0.466 0.539 0.630 0.989 0.694 1.611 0.702 
0.071 0.370 0.342 0.531 0.590 0.621 1.201 0.690 1.845 0.760 
0.146 0.450 0.353 0.553 0.622 0.653 1.304 0.715 1.995 0.759 
0.185 0.448 0.354 0.580 0.727 0.635 1.388 0.717 2.342 0.748 
0.196 0.452 0.431 0.587 0.729 0.645 1.392 0.716 3.288 0.821 
0.215 0.460 0.519 0.655 0.906 0.703 1.426 0.703 6.241 0.894 

 

 

( ) ( )2 2
2
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E
se e
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3.2 Bayesian 
We have discussed methods of statistical inference which view the probability as relative 
frequency and exclusively rely on the sample data to estimate the underlying probability 
distribution of the population. In addition to these frequentist statistical methods, the 
Bayesian approach utilizes some prior information in conjunction with the sample 
information. The Bayesian inference is capable of continuously updating the prior 
information with evolving sample data to obtain the posterior information.  
 

3.2.1 Bayes’ Theorem 
Bayes' theorem (also known as Bayes' rule or Bayes' law) is developed based on 
conditional probabilities.  If A and B denote two events, P(A|B) denotes the 
conditional probability of A occurring, given that B occurs.  An important application 
of Bayes' theorem is that it gives a rule how to update or revise a prior belief to a 
posterior belief.  Bayes' theorem relates the conditional and marginal probabilities of 
stochastic events A and B: 

 
( | ) ( )( | )

( )
P B A P AP A B

P B
×

=  (26) 

Each term in Bayes' theorem has a conventional name: 
· P(A) is the prior probability or marginal probability of A. The prior probability 

can be treated as the subjective probability which expresses our belief prior to the 
occurrence of A. It is “prior” in the sense that it does not take into account any 
information about B. 

· P(B) is the prior or marginal probability of B, and acts as a normalizing constant. 
· P(A|B) is the conditional probability of A, given B. It is also called the posterior 

probability of A, given B because it depends upon the specified value of B. 
· P(B|A) is the conditional probability of B given prior information of A. 
 
An important application of Bayes’ theorem is that it gives a rule how to update or 
revise a prior belief to a posterior belief. Let us take a look at an interesting example 
to get a better understanding.   

 
 
 

Example 3.1  
There are three doors and behind two of the doors are goats and behind the third door 
is a new car with each door equally likely to provide the car. Thus the probability of 
selecting the car for each door at the beginning of the game is simply 1/3. After you 
have picked a door, say A, before showing you what is behind that door, Monty opens 
another door, say B, revealing a goat. At this point, Monty gives you the opportunity to 
switch doors from A to C if you want to. What should you do?  (Given that Monty is 
trying to let you get a goat.) 
 

Solution  
The question is whether the probability is 0.5 to get the car since only two doors left, 
or mathematically, P(A|BMonty) = P(C|BMonty) = 0.5. Basically we need to determine the 
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probabilities of two event E1 = {A|BMonty}, E2 = {C|BMonty}. We elaborate the 
computation in the following steps: 

 1. The prior probabilities read P(A) = P(B) = P(C) = 1/3.  

 2. We also have some useful conditional probabilities P(BMonty|A) = ½, 
 P(BMonty|B) = 0, and P(BMonty|C) = 1.  

 3. We can compute the probabilities of joint events as P(BMonty, A) = ½´1/3 = 1/6, 
 P(BMonty, B) = 0, and P(BMonty, C) = 1´1/3 = 1/3.  

 4. Finally, with the denominator computed as P(BMonty) = 1/6 + 0 + 1/3 = ½, we 
 then get P(A|BMonty) = 1/3, P(C|BMonty) = 2/3. Thus, it is better to switch to C.  

 
 
 

3.2.2 Bayesian Inference 
Let X and Q be random variables with a joint probability density function f(x, q), 
q Î W.  When the amount of data for X is small or X is rapidly evolving, its statistical 
parameter q (e.g., m, s) is considered to be random.  From the Bayesian point of view, 
q  is interpreted as a realization of a random variable Q with a probability density 
fQ(q).  Based on the Bayes’ theorem, the posterior distribution of Q given a new 
observation X can be expressed as 

 

 |,
|

( | ) ( )( , )
( | )

( ) ( )
XX

X
X X

f x ff x
f x

f x f x
q qq

q Q QQ
Q

×
= =  (27) 

 
It can be seen that the Bayesian inference employs both the prior distribution of θ, 
f(θ), and the conditional probability distribution of the sample (evidence or 
likelihood), fX|Θ(x|θ), to find a posterior distribution of θ, f Θ|X(θ|x). Let us consider a 
normal inference model as one example to illustrate the Bayesian inference process. 

 
Example 3.2: Suppose that we have a set of random samples x = {x1, x2,…, xM} from a 
normal PDF fX(x; μ, σ) of a random variable X, where μ is unknown and σ is known. 
Assume that the prior distribution of μ, fM(μ), is a normal distribution with its mean, u, 
and variance, t2.  Determine the posterior distribution of μ, fM|X(μ|x). 

 

Solution  
Firstly, we compute the conditional probability of obtaining x given μ as  
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Next, we compute the joint probability of x and μ as  
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We then set up a square with μ in the exponent as 
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Since the denominator fX(x1, x2,…, xM) does not depend on μ, we then derive the 
posterior distribution of μ as 

 ( ) ( )
22 2

3 1 2 2 2| 2

1 1,..., , , , exp
2

|X MM
M M x uK x x u

M
f

é ùæ ö+æ ö= - + -ê úç ÷ç ÷ +è øê úè øë û
x t ss t m

s
m

t t s
 

Clearly, this is a normal distribution with the mean and variance as  

 
12 2 2 2

2 2 2 2 2 2

1ˆ ˆ,   M x u Mu
M M
t s s tt
t s s t t s

-+ æ ö= = + =ç ÷+ +è ø
 (29)

 Therefore, the Bayes estimate of μ is essentially a weighted-sum of the sample mean 
and the prior mean. In contrast, the maximum likelihood estimator is only the sample 
mean. As the number of samples M approaches the infinity, the Bayes estimate 
becomes equal to the maximum likelihood estimator since the sample data tend to have 
a predominant influence over the prior information. However, for the case of a small 
sample size, the prior information often plays an important role, especially when the 
prior variance t2 is small (or we have very specific prior information).  

 
 
 

3.2.3 Conjugate Bayes Models 
As can be seen in the Example 3.2, the Bayes inference and the maximum likelihood 
estimation essentially provide the same estimator if we have a very large sample size. 
In engineering practice, however, we often have very limited sample data possibly 
due to the high expense to obtain the data. In such cases, the maximum likelihood 
estimation may not give an accurate or even reasonable estimator. In contrast, the 
Bayesian inference would give much better estimator if we assume a reasonable prior 
assumption. By “reasonable”, we mean that the prior assumption is at least consistent 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

Mechanical and Aerospace Engineering, Seoul National University 43 
 

with the underlying distribution of the population. If there is no such consistency, the 
Bayesian inference may give an erroneous estimator due to the misleading prior 
information.  
Another important observation we can make from Example 3.2 is that the posterior 
distribution shares a similar form (i.e., normal distribution) with the prior. In this 
case, we say that the prior is conjugate to the likelihood. If we have a conjugate prior, 
the posterior distribution can be obtained in an explicit form. Looking back to 
Example 3.2, we note that the normal or Gaussian family is conjugate to itself (or self-
conjugate): if the likelihood function is normal, choosing a normal prior will ensure 
that the posterior distribution is also normal. Other conjugate Bayes inference models 
include the binomial inference, exponential inference, and Poisson inference. Among 
these inferences, the binomial inference is the most widely used. Consider a Bernoulli 
sequence of n experimental trials with x occurrences of an outcome whose probability 
of occurrence p0 is unknown. We assume a beta prior B(a,b) for the unknown 
binomial probability p0, expressed as 

( ) ( )
( ) ( ) ( )

0

11
0 0 0

,
1 ba

P

a b
f p p p

a b
--G

= -
G G

  

The likelihood function can be expressed according to a binomial distribution as 

( ) ( ) ( ) ( )0 0 0 0 0; , , 1 1n x n xx xL x n p C n x p p p p- -= - µ -   

We can easily obtain the posterior distribution of p0 as a beta distribution, expressed 
as 
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,
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f p x p p

x a n b x
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The posterior distribution has the same form (beta distribution) as the prior 
distribution, leading to the conjugacy condition. Let us take a look at the use of this 
inference with a simple reliability analysis problem. 

 

Example 3.3 
Suppose that we intend to quantify the reliability of a product by conducting a 
sequence of 10 repeated tests. The product passes 8 of these tests and fails at the other 
two. We assume a beta prior B(4, 4) for the probability of success (or reliability) p0 in 
each test. Compute the posterior distribution of p0 with the reliability test data. 
 

Solution  
Clearly, the parameters in this example take the following values: a = 4, b = 4, x = 8, n 
= 10. Then the posterior distribution can be obtained as B(x+a, n+b‒x), or B(12, 6). 
The prior and posterior distributions of p0 are plotted in Figure 3.3, where we can see 
the posterior distribution combines the prior information and the testing information 
(evidence) and achieves a compromise between the prior distribution and the 
maximum likelihood estimator.  
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Figure 3.3 Prior and posterior distributions 
 

Homework 11. Matlab coding for Bayesian statistics 
Build your own Matlab coding for accomplishing the Example 3.3 (results and 
figure) above.  

 

 
In many engineering problems, the conjugacy condition does not hold and explicit 
solutions cannot be readily obtained with simple mathematical manipulations. In 
such cases, we can build the posterior distributions by random sampling. A 
commonly used simulation method for drawing samples from the posterior 
distribution is referred to as Markov chain Monte Carlo (MCMC) in which the two 
most common techniques, the Metropolis–Hastings algorithm and Gibbs sampling, 
are used. Others include particle filtering, (extended) Karman filtering, etc. An in-
depth theoretical discussion of these techniques is beyond the scope of this book. 
Readers are recommended to refer to some Bayesian statistics books for detailed 
information. 
 

Posterior Density 
fQ|X(q |x)

Prior Density 
fQ(q)

Observed data, X

Likelihood function
fX|Q(x|q)

Bayesian 
Updating 

Mechanism

Updating 
Iteration, i=i+1

 
Figure 3.4: Process of Bayesian Updating 
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The Bayesian approach is used for updating information about the parameter q.  First, 
a prior distribution of Q must be assigned before any future observation of X is taken. 
Then, the prior distribution of Q is updated to the posterior distribution as the new 
data for X is employed. The posterior distribution is set to a new prior distribution 
and this process can be repeated with an evolution of data sets. This updating process 
can be briefly illustrated in Fig. 3.4. 
 
Markov model is widely used in various fields such as word recognition, voice 
recognition and gesture recognition in which sequence of the data is very meaningful. 
Markov chain which consists of Markov model defines probability of posterior event 
given the prior events. For example, 1st Markov chain considers just last event and 2nd 
Markov chain take last two events into consideration to calculate probability of the 
current event, expressed as 
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A state diagram for a simple example of the 1st Markov chain is shown in the Figure 
3.5. 
 

 
Figure 3.5: State diagram of a simple Markov chain 

 
‘a’ represents the observations which can be obtained from the model, and ‘tij’ is 
probability that aj occurs when ai is given. For example, probability that the posterior 
event Xt becomes a2 can be defined based on prior events as follows 
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For more convenient interpretation of the model, transition matrix can be defined as 
 
 

0 0.5 0.5
0.3 0.1 0.6
0.2 0.4 0.4

T
é ù
ê ú= ê ú
ê úë û

 

 
It can be noticed that sum of the probability of all posterior events given one prior 
event is 1. 
 

Example 3.4 (Gambler’s ruin) 
Suppose that a gambler having $20 is going to gamble at roulette in a Casino. The 
gambler bets $10 on odd number, and makes $10 when it occurs. If even number occurs, 
he loses the money betting the roulette.  
He has to leave the Casino if he loses his entire money or make $20 to have $40 in his 
pocket. What is likelihood that the gambler lose his entire money from ten times of the 
roulette game given that probability of winning at each game is 50%? 

 

Solution  
First, we have to develop Markov chain to solve the example. 1st Markov chain is used in 
this example. Graphical model can be illustrated as 
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Figure 3.6 Markov chain for the Example 3.4 

And the corresponding transition matrix is 
 

1 0 0 0 0
0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 0 1

T

é ù
ê ú
ê ú
ê ú=
ê ú
ê ú
ê úë û

 

 
After ten times of roulette games, multiplication of the transition matrix gives  
 

1 0 0 0 0
0.734 0.016 0 0.016 0.234

10 0.484 0 0.031 0 0.484
0.234 0.016 0 0.016 0.734

0 0 0 0 1

T

é ù
ê ú
ê ú
ê ú»
ê ú
ê ú
ê úë û

 

  
What this result is saying is that probability of losing all initial pocket money ($20) as a 
result of 10 times of roulette games is about 48.4% under the given condition. 

 
The idea of Markov Chain Monte Carlo (MCMC) is basically the same as the Markov 
model in that it defines posterior position of the sampling point based on the prior 
information of the sampled points. Two most important techniques can be employed 
in MCMC, the Metropolis-Hastings algorithm and Gibbs sampling. 
 
Metropolis algorithm, which is the most simplified MCMC method can be performed 
by the following steps 
 

$0 $10 $20 $30 $40 

0.5 0.5 

0.5 0.5 0.5 

0.5 

1 

1 
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Step 1. Set a sample index i to 0 and initial sampling point  

Step 2. Pick a random value ~(0,1), where  follows the uniform distribution  
Step 3. Define a candidate of the next sampling point ∗~(∗|), where  is 

‘proposal distribution’   à generate ‘random walk’ using a proposal density 
Step 4. If  < min 1, (∗)() 
 

    = ∗ à accept a proposal 
 

 else 
 

    =  à reject a proposal 
 end 
In step 4, decision criterion is defined based on the ratio of probability of the 
candidate position and probability of the prior sampling point. Thus, the next 
position of the sampling point is defined in most likely direction. 
For example, it is possible to design the sampling position for the Gaussian 
distribution with mean of zero and standard deviation of one using the Metropolis 
algorithm, where ‘proposal function’  follows Gaussian distribution (norm(, 0.05)). 
 
>> n=1000000; 
>> x=zeros(n,1); 
>> x0=0.5;        % Step 1 
>> x(1)=x0; 
>> for i=1:n-1 
>>  x_star=normrnd(x(i),0.05);       % Step 2 
>>    u=rand;                    % Step 3 
>>    if u<min(1,normpdf(x_star)/normpdf(x(i)))   % Step 4 
>>        x(i+1)=x_star; 
>>    else 
>>        x(i+1)=x(i); 
>>    end 
>> end 
>>  
>> figure; 
>> hist(x,100); 
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Others include particle filtering, (extended) Karman filtering, etc. An in-depth 
theoretical discussion of these techniques is beyond the scope of this book. Readers 
are recommended to refer to some Bayesian statistics books for detailed information. 

 
 

3.2.4 How to Model Prior Distribution? 
 

· Informative Prior Distribution 
Generally we have two ways to handle known information (x):  
1. Histogram 
2. Select a prior density function with unknown parameters firstly, and then   

estimate the unknown parameters for the data. 
 
· Non-informative Prior Distribution 

Non-informative prior distribution means determining the prior distribution 
when no other information about the parameter q is available except its feasible 
field Q . 

 
 
References for Bayesian statistics: 

1. http://en.wikipedia.org/wiki/Bayesian 
2. Singpurwalla, N.D., 2006, Reliability and Risk: A Bayesian Perspective, Wiley. 
2. Andrew Gelman, John B. Carlin, Hal S. Stern and Donald B. Rubin, 2004, 
Bayesian Data Analysis, Second Edition, Chapman & Hall/CRC. 
3. Bernardo, J.M., and Smith A.F.M., 1994, Bayesian Theory, John Wiley & Son Ltd.. 
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CHAPTER 4. PROBABILISTIC ENGINEERING ANALYSIS – TIME-
INDEPENDENT PERFORMANCE 
 
4.1 Motivation 

 
Many system failures can be traced back to various difficulties in evaluating and 
designing complex systems under highly uncertain manufacturing and operational 
conditions and our limited understanding of physics-of-failures (PoFs).  One of the 
greatest challenges in engineered systems design is how to evaluate the probability of 
an engineering event accurately before prototyping or actual testing. One way to 
evaluate the probability of an engineering event is known as Monte Carlo simulation, 
based on random sampling. Due to inefficiency of Monte Carlo when data is not 
given sufficiently, many “efficient” methods have been devised to alleviate the need 
for Monte Carlo simulation. These methods included the first and second-order 
reliability method (FORM and SORM), the response surface method (RSM), and the 
Bayesian inference.  

 
4.2 Probabilistic Description of System Performance 

 
Uncertainty affects the entire lifecycle of engineered systems from the impurity of 
the resources to the assembly of the finished goods. No matter manufacturer design 
the product perfectly, there is always errors or imperfection in manufacturing and 
operation. It is extremely difficult to predict engineering performances precisely due 
to substantial uncertainty in engineering design, manufacturing and operation. For 
example, engineers cannot predict how much engine mount bushing transmits 
engine noise and vibration to drivers and passengers; how much 
head/neck/chest/femur injury occurs during a car crash; what is a critical height for 
a drop test that breaks the display of a smartphone. Thus, we should define 
engineering performances as a function of uncertainty as shown below. 
 

Probabilistic  performance  
 = Y(X);   X is a vector of uncertainty that affects system performance 

 
Engineering systems have specifications in terms of systems’ performances. The 
specification can set a threshold in a quantitative scale. Therefore we can set a 
probability of safety which is under the pre-determined threshold, say YU. 
 

Probability (Y(X) £ YU) = Probability of safety (=success) 
 = Reliability 

 = 1 – Probability of failure 
 

On the other hand, our system is now reliable—it meets our design goals or 
specifications—but it may not be robust.  Operation of the system is affected by 
variabilities of the inputs.  To be robust, a system performance must be insensitive 
to input variabilities. In other words, the performance thus possesses a narrow 
distribution subject to input variabilities as shown below 
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Probability (YL £ Y(X) £ YU) = Robustness 
 

 
Figure 4.1: Fundamentals of Probabilistic Performance Analysis 

 
 
4.3 Probabilistic Description of System Performance – Reliability 

 
A system performance is defined in many different ways as practiced in different 
applications; say the electronics, civil structures, nuclear/chemical plants, and aero-
space industries. In some instances, system performances can be treated time-
independently due to their characteristics. Other instances situate the performances 
time-dependently. 
 
4.3.1 Time-Independent Performance: 

The probability that the actual performance of a particular system will meet the 
required or specified design performance without considering the degradation of 
system performances over time.  It is often found in mechanical and civil 
structural systems. 
 
 ( ) ( ( ) ) 1 ( ( ) ) for larger-the-better performancesc cR P Y Y P Y Y= > = - £X X X  
 
where the safety of the system is defined as Y > Yc and Yc is the critical value for Y.  
Yc can be either deterministic or random. Examples include natural frequency, 
engine power, energy efficiency, etc. 
 

( ) ( ( ) ) 1 ( ( ) ) for smaller-the-better performancesc cR P Y Y P Y Y= < = - ³X X X  
 
where the safety of the system is defined as Y < Yc. Examples include stress, 
strain, crack size, etc. 
 

4.3.2 Time-Dependent Performance: 
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The probability that the actual life of a particular system will exceed the required 
or specified design life. 

 [ ] [ ]( ) ( ) 1 ( ) 1 ( )T TR t P T t P T t F t= > = - £ = -X X  

where the time-to-failure (TTF) of a system is defined as a time that a system 
health condition, G(X), is worse than its critical value, Gc, and X is the random 
vector representing engineering uncertain factors. 

 
4.3.3 Challenges: 
1. Modeling random variables (X) for future loading, material property, and 

manufacturing tolerances (section 3). 
2. Analyzing how input uncertainties propagate to those of system performances 

(section 4.4-4.7)  
3. Extending the ideas of probabilistic analysis to the case with a lack of data 

(section 4.8) 
4. Identification of the probability distribution for a reliability function (sections 

5). 
5. Predicting the failure time or performance failure when designing a system or 

component (section 5). 
6. A long-time failure or lack of failure in test-based reliability assessment 

(section 5). 
7. Consideration of performance degradation in time-dependent reliability 

(sections 5). 
 
 
4.4 Probabilistic Description of Time-Independent Performance  

 
· Structural reliability is defined in many different ways as practiced in different 

applications; say the electronics, civil structures, nuclear/chemical plants, and 
aero-space industries. 

· Most electrical, electronic and mechanical components and systems deteriorate 
during use as a result of elevated operating temperatures, chemical changes, 
mechanical wear, fatigue, overloading, and for a number of other reasons.  
Failure of a particular component may eventually occur for one of these reasons, 
or it may be caused indirectly as a result of the deterioration of some other parts 
of the system.  However, it is very difficult to estimate TTF distribution precisely. 

· In contrast to electronic/mechanical systems, structural systems tend not to 
deteriorate, except by the mechanical corrosion and fatigue, and in some cases 
may even get stronger, for example, the increase in the strength of concrete with 
time, and the increase in the strength of soils as a result of consolidation. 

· In other cases, engineers are interested in initial performances. 
 

For a simple structural member, the strength R and load S of the structure can 
describe the probability of failure or reliability.  Suppose the strength R and load 
S to be random with the known distributions, FR(r) and FS(s).  The probability of 
failure is defined as 
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 ( 0) ( ) ( )f R SP P R S F s f s ds
¥

-¥
= - £ = ò  (30) 

Then, the reliability can be defined as 

 1 1 ( ) ( )f R SR P F s f s ds
¥

-¥
= - = - ò  (31) 

 

 
Figure 4.2: A Simple Case of Reliability (= 1-Pf): Strength-Load 

 
 

4.5 General Description of Time-Independent Performance  
 
The reliability is defined as the probability that the performance of a system 
exceeds the required or specified design limit over operating time t. 

 
( )
( )

( ( , ) ) 1 ( ( , ) ) for Larger-the-better type

( ( , ) ) 1 ( ( , ) ) for Smaller-the-better type
c c

c c

R t P Y t Y P Y t Y

R t P Y t Y P Y t Y

= ³ = - <

= £ = - >

X X

X X
 

where the failure of the system is defined as Y ³ Yc for L-Type (or Y £ Yc) and Yc is 
the required design limit for Y.  Yc can be either deterministic or random. 

 
4.6 Probabilistic Engineering Analysis Using Simulation Models 

 
For probabilistic engineering analysis, uncertainty in engineered system 
performances (or outputs) must be understood by taking into account various 
uncertainties in engineered system inputs. As shown Fig. 4.3, input uncertainties are 
propagated through the system to those in outputs (e.g., natural frequency, fuel 
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consumption, energy conversion efficiency, vibration, transmission error, 
temperature distribution, head injury). 
 

 
Figure 4.3: Uncertainty Propagation through Physical System 

 
Then, the probability of safety (L-Type) can be estimated by integrating the PDFs of 
the system performances over the safety region. 
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4.7 Methods for Probabilistic Performance Analysis (Frequentist) 
 

4.7.1 General Model of Design under Uncertainty 
The design under uncertainty can generally be defined as: 
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subject to ; ( ) 0 , 1, ,

                       , and
ii f

nd nr

P G P i nc

R R

> < =

£ £ Î Î

d
X d X

d d d d X

L  (33) 

where nc is the number of probabilistic constraints; nd is the number of design 
parameters; nr is the number of random variables; [ ] ( )T

id m= =d X  is the design 

vector; [ ]T
iX=X  is the random vector; and the probabilistic constraints are 

described by the performance function { }; ( )iG X d X , their probabilistic models, and 

the probability of failure.  The probability of failure is defined as ( )f tP bº F -  with a 

target reliability index tb  where the failure is defined as { }; ( ) ( ; ( ))i c iG Y Y= -X d X X d X  

0>  for L-type.  The design procedure under uncertainty is graphically illustrated in 
Fig. 4.9. 

Physical 
System 

Output  
Uncertainty 

Input Physical  
Uncertainty 

Input 
Statistical  
Uncertainty 

Model  
Uncertainty 

X Y(X) 

Finite element, 
Mathematical modeling, 
Etc. 

Y”(X)+C(X)Y’(X)+K(X)Y(X)=F(X) 
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Figure 4.4: Design under Uncertainty 
 
 

The probability of failure is defined as 

 

( ) 0

( ( ) 0) 1 ( ( ) 0)
    1 (0)

    ( ) ,
G

nv
G

P G P G
F

f d R
>

> = - £
= -

= Îò ò XX

X X

x x XL

 (34) 

The reliability (or the probability of safety) is inversely defined as 

 
( ) 0

( ( ) 0) (0)

    ( ) ,
G

nr
G

P G F

f d R
£

£ =

= Îò ò XX

X

x x XL
 (35) 

Figure 4.5 explains both the probability of failure and reliability. 
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Figure 4.5: Reliability or Probability of Safety 

 

The statistical description of the safety (or failure) of the constraint function ( )iG X  

requires a reliability analysis and is expressed by the CDF (0)
iGF  of the constraint as 

 

 

( ( ) 0) (0) ( ) or  

Time-dependent:     ( , ) 0 where  is a designed life.
Time-independent:  ( ) 0 where  is a critical buckling load.

i i ii G t t

i d i d

i i c c

P G F R

G T T T T
G P P P

b£ = ³ F

= - £

= - £

X

X
X

 (36) 

 
where the probability of the safety constraint £ 0 is described as 
 

 0

( ) 0
(0) ( ) ... ( ) , 1, ,  and 

i i
i

nr
G G i i G

F f g dg f d i nc R
-¥ £

= = = Îò ò ò XX
x x xL  (37) 

 
In Eq. (37), ( )fX x  is the joint PDF of all random parameters and the evaluation of Eq. 
(37) involves multiple integration.  Neither analytical multi-dimensional integration 
nor direct numerical integration is possible for large-scale engineering applications.  
Existing approximate methods for probability analysis can be categorized into four 
groups: 1) sampling method; 2) expansion method; 3) the most probable point 
(MPP)-based method; and 4) stochastic response surface method. 
 

4.7.2 Random sampling techniques (Monte Carlo simulation) 
 

Let us recall the reliability or the probability of safety as 

( )iG X
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 { } Number of safe trials
Number of total trials( ) 0

( ; ) 0 (0) ... ( )
i

i
i G G

P G F f d
£

£ = = »ò ò XX
X d x x  (38) 

Or, inversely, the probability of failure can be obtained as 
 { } Number of failure trials

Number of total trials( ) 0
( ; ) 0 1 (0) ... ( )

i
i

i G G
P G F f d

>
> = - = »ò ò XX

X d x x  (39) 

 
· Simple but extremely expensive 
· Seldom used due to its computational intensiveness, but used for a 

benchmark study 
· To estimate a failure rate, 

 

Number of failed samples 

                       :   Number of total samples

,   : f
f fN

N

N
p

N
=

 

 
 

 
 

% generate random samples 
>> m=[2 3]; 
>> s=[1 0;0 3]; 
>> n=1000; 
>> x=mvnrnd(m,s,n); 
>> plot(x(:,1),x(:,2),'+') 
 
% plot a failure surface 
>> [x1,x2] = meshgrid(-1:.1:6,-4:.2:10); 
>> gg=x1.^2-x2-8; 
>> v=[0 0]; 
>> [C,h]=contour(x1,x2,gg,v) 
 

% calculate reliability 
>> ns=0; 
>> for i = 1:1000 
           g(i) = x(i,1)^2-x(i,2)-8; 
           if g(i) <= 0 
               ns = ns + 1 
           end 
    end 
>> rel = ns/n 
>> cdfplot(g) 
 

 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

Mechanical and Aerospace Engineering, Seoul National University 58 
 

Homework 12: Monte Carlo Simulation 

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Figure below.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
Figure 4.6: Simply Supported Beam 

 
Random Vector: 

 1 1

2 2

7 5
1

4 3
2

~ ( 3 10 , 10 )
~ ( 10 , 10 )

X X

X X

EI X N
w X N

= = ´ =

= = =

m s
m s  

The maximum deflection of the beam is shown as 

 
4

2
1 2

1

5( , )
384

= = -
X LY g X X

X
 

Determine the PDF (or CDF) of the maximum deflection and estimate its reliability 
using the MC simulation when the failure is defined as Y < yc = -3´10-3m. 
 

 
 
4.7.3 Expansion methods 

 
First-order method 

 
Any nonlinear function (Y) can be linearized in terms of an input random vector 

, i.e., 

 

( )
1

1 1

( )( ) ( ) . . .

or

i
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i X
i i
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YY Y X h o t
X

a X a X b
Y b

m
=

¶
= + - +

¶
» + + +
» +

å X
X

μX μ

a X
L  (40) 

where { }1, ,= L
T

na aa  is a sensitivity vector of Y. 
 

· Mean of Y 

{ }1, ,= L
T

nX XX

w per unit length 

L 

EI 
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· Variance of Y 
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· Generalization 

Let Î mRY  be a random response vector of interest, which is related to input 
Î nRX .  The linear system is given in the following equation. 

 T» +Y A X B  

where Î ´n mR RA  and Î mRB  are coefficient matrix and vector, respectively.  
Let  and Î Î ´m m mR R RY Yμ Σ  be the mean vector and covariance matrix of 
output Y.  Then, 

 
T

T
» +
»

Y X

Y X

μ A μ B
Σ A Σ A

 (41) 

 
 

 
Exercise: Cantilever Beam 
 
 
 
 
 
 
 
 
Given that: 

2 2 2 2
1 2~ 1000 lb, 100  lb , ~ 500 lb, 50  lb , 10000 lb-ft, deterministicP N P N mé ù é ù =ë û ë û  

Assume P1 and P2 are uncorrelated.  Calculate mean, standard deviation, and 
coefficient of variation (COV) of maximum moment at the fixed end. Estimate 

10 ft 10 ft 

P1 P2 

m 
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the reliability when an allowable bending moment (Ma) is 33,000 lb-ft. 

Solution: At fixed end, the maximum moment is expressed as 
 

 max 1 210 20 10000= + + = +TM P P ba X  

 
{ }

2
1 2

2
2

where  10 20 , 10000 lb-ft,
1000 100 0

           = lb, lb, lb
500 0 50
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î þ ê úî þ ë û
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Variance of Mmax 
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2
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Coefficient of Variation (COV) of Mmax 

 standard deviation 1414.2COV 0.047 or 4.7%
mean 30000

º = =  

Reliability with an allowable moment Ma = 33,000 lb-ft 

( )

max max

max max

max

max

( )

33,000 30,000 2.12
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Homework 13: Expansion method 

Recall Homework 12.  Estimate its reliability using the expansion method when the 
failure is defined as Y < yc = -3´10-3m. 

 
 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

Mechanical and Aerospace Engineering, Seoul National University 61 
 

 
Second-order method 

Second-order approximation of any nonlinear function (Y) can be used for the 
second-order method as 

 ( ) ( )( )
2

1 1 1

( ) ( )( ) ( )
i i j

n n n

i X i X j X
i i ji i j

Y YY Y X X X
X X X
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· Mean of Y 
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· Variance of Y 
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4.7.4 Most Probable Point (MPP) based methods 

Most probable point (MPP) based methods include the first order reliability method 
(FORM) and second order reliability method (SORM). Instead of approximating a 
response Y at the mean of X, it approximates the function at the most probable point 
in either a linear or quadratic manner. This is illustrated in Figure 4.6. The MPP is a 
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pointwise representation of the failure surface and normally computed in a 
transformed space (or standard Gaussian space). In the MPP based methods, the 
reliability analysis requires a transformation T from the original random parameter 
X to the independent and standard normal parameter U.  The constraint function 

( )G X  in X-space can then be mapped onto G(T(X)) º G(U) in U-space. Rosenblatt 
transformation is most widely used for transforming any non-normally distributed 
random vector to standard normal random vector. 
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g(X)>0
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Design Point

Joint PDF
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b
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g(U)>0

0
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fU(u)
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fU(u) Contour

MPP u*
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( a ) Nonlinear Transformation of Non-normal Distributions 
 

 
 

( b ) First-Order Reliability Method 
 

Figure 4.6: Nonlinear Transformation of Non-normal Distributions 
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Table 4.1: Nonlinear Transformation, T: X à U 

 

 
 

 

( ( ) 0) (0) ( ) or  

Time-dependent:     ( , ) 0 where  is a designed life.
Time-independent:  ( ) 0 where  is a critical buckling load.

i i ii G t t

i d i d

i i c c

P G F R

G T T T T
G P P P

b£ = ³ F

= - £

= - £

X

X
X

 (43) 

 
The probabilistic constraint in Eq. (36) can be further expressed in two different 
ways through inverse transformations as (see Fig. 4.7): 

 RIA:   { }1 (0)
i i is G tFb b-= F ³  (44) 

 PMA:   { }1 ( ) 0
i i ip G tG F b-= F £  (45) 

where 
isb  and 

ipG  are respectively called the safety reliability index and the 
probabilistic performance measure for the ith probabilistic constraint.  Equation (44) 
is employed to prescribe the probabilistic constraint in Eq. (33) using the reliability 
measure, i.e. the so-called Reliability Index Approach (RIA).  Similarly, Eq. (45) can 
replace the same probabilistic constraint in Eq. (33) with the performance measure, 
which is referred to as the Performance Measure Approach (PMA). 
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( a ) MPP Search Space in RIA  ( b ) MPP Search Space in PMA 

Figure 4.7: Random Search Space in RIA and PMA 

 
Formulation for Reliability Index Approach (RIA) 

In RIA, the first-order safety reliability index ,FORMsb  is obtained using FORM 
by formulating as an optimization problem with one equality constraint in U-
space, which is defined as a limit state function: 

 
minimize
subject to ( ) 0G =

U
U

 (46) 

where the optimum point on the failure surface is called the Most Probable 
Failure Point (MPFP) *

( ) 0G =Uu , and thus *
,FORM ( ) 0s Gb == Uu . 

Either MPFP search algorithms specifically developed for the first-order 
reliability analysis, or general optimization algorithms can be used to solve Eq. 
(46).  The HL-RF method is employed to perform reliability analyses in RIA due 
to its simplicity and efficiency. 
 
HL-RF Method 

The HL-RF method is formulated as follows 
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( 1) ( ) ( ) ( )

( )

( )
( ) ( ) ( )
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U k
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+
æ ö
ç ÷= · -
ç ÷Ñè ø

Ñé ù= Ñ · -ë û
Ñ
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u u n n

u

u
u u u

u

 (47) 

where the normalized steepest ascent direction of ( )G U  at ( )ku  
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and the second term in Eq. (47) is introduced to account for the fact that ( )G U  
may be other than zero. 

 
 

function [beta,dbeta]=HL_RF(x,kc) 
    u=zeros(1,nd); iter=0;  Dif=1; 
    while Dif >= 1d-5 & iter < 20 
        iter=iter + 1; 
        [ceq,GCeq]=cons(u,x,kc); 
        u=(GCeq*u'-ceq)/norm(GCeq)^2*GCeq; 
        U(iter,:)=u/norm(u); 
        if iter>1 
            Dif=abs(U(iter-1,:)*U(iter,:)' - 1); 
        end 
    end 
    beta = norm(u); 
    dbeta = -u./(beta*stdx); 
end 

 
 

Formulation for Performance Measure Approach (PMA) 
Reliability analysis in PMA can be formulated as the inverse of reliability analysis 
in RIA.  The first-order probabilistic performance measure ,FORMpG  is obtained 
from a nonlinear optimization problem in U-space defined as 

 
maximize ( )
subject to t

G
b=

U
U

 (48) 

where the optimum point on a target reliability surface is identified as the Most 
Probable Point (MPP) *

tb b=u  with a prescribed reliability *
tt b bb == u , which will be 

referred to as MPP.  Unlike RIA, only the direction vector * *
t tb b b b= =u u  needs to 

be determined by exploring the explicit sphere constraint tb=U . 
General optimization algorithms can be employed to solve the optimization 
problem in Eq. (48).  However, the Advanced Mean Value (AMV) method is well 
suited for PMA due to its simplicity and efficiency. 

 
AMV method  

Thus, the AMV method can be formulated as 

 (1) * ( 1) ( )
AMV MV AMV AMV, ( )k k

tb+= =u u u n u  (49) 

where  
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 (50) 

 
 
function [G,DG]=AMV(x,kc) 
    u=zeros(1,nd); iter = 0; Dif=1; 
    while Dif>1d-5 & iter<20                       
        iter=iter+1;  
        if iter>1 
            u=DG*bt/norm(DG); 
        end         
        [G,DG]=cons(u,x,kc); 
        U(iter,:)=u/bt;         
        if iter>1 
            Dif=abs(U(iter,:)*U(iter-1,:)'-1); 
        end 
    end 
end 
 

 
 

Table 4.2: Properties of the RIA and PMA 

 Properties 
RIA 1. Good for reliability analysis 

2. Expensive with sampling method and MPP-based method when 
reliability is high. 

3. MPP-based method could be unstable when reliability is high or a 
performance function is highly nonlinear. 

PMA 1. Good for design optimization. 
2. Not suitable for assessing reliability. 
3. Efficient and stable for design optimization. 

 
 

 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

Mechanical and Aerospace Engineering, Seoul National University 68 
 

Homework 14: First-Order Reliability Method 

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Fig. 4.13.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.8: Simply Supported Beam 
 
Random Vector: 
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The maximum deflection of the beam is shown as 
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2
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384

= = -
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Estimate its reliability using the MPP-based method (HL-RF) when the failure is 
defined as Y < yc = -3´10-3m.  Make your own discussion and conclusion. 

 
 
 
4.7.5 Stochastic response surface method 

Dimension reduction family: 
Dimension reduction (DR) method simplifies a single multi-dimensional 
integration to multiple one-dimensional integration or multiple one- and two-
dimensional integration using additive decomposition. This section introduces 
univariate dimension reduction (UDR) method. 
 
For the approximation of the multi-dimensional integration, consider an 
integration of two dimensional function which can be expressed by the Taylor 
series expansion by 
 

w per unit length 

L 

EI 
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where integration term can be defined as 

( )1 2 1 2 1 2, ( , )
a a

a a
I Y x x Y x x dx dx

+ +

- -
é ù =ë û ò ò  

Because integrations of the odd functions are zero, the integration of Taylor 
series expansion of the target function (Y) can be expressed as: 
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where I(•) calculates integration over the given space.  
This is also computationally expensive because of the terms including multi-

dimensional integration such as 2 2I i jx xé ùë û . To effectively remove the terms with 

multi-dimensional integration, additive decomposition, Ya, is defined as:  
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Integration of Taylor series expansion of the additive decomposition (Ya) can be 
expressed as: 
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This results the largest error at the fourth even-order term, producing negligible 
error. 
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For probabilistic engineering analysis, the mth statistical moments for the 
responses are considered as 
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Applying the Binomial formula on the right-hand side of the equation above gives 

 
One-dimensional integration will be performed with integration weights ,j iw  and 

points ,j ix  as 
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where N is the number of input random parameters and n is the number 
integration point along each random variable. An empirical sample point 
distribution for the UDR when m = 3 is shown in the Fig. 4-DR1. We can see that, 
compared to the full factorial sample points, the UDR achieves a significant 
reduction in the number of sample points. 
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Fig. 4-DR1. Empirical sample point distribution for UDR (m=3) 

 
· Refer to http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4M-

4H74MB0-
1&_user=961305&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C00
0049425&_version=1&_urlVersion=0&_userid=961305&md5=6e56b71561720cf
e918f32c3eaa2cf86 

· Refer to http://www.springerlink.com/content/416l79447313n8q1 
 
Polynomial Chaos Expansion (PCE) method 
Tensor-Product (or Stochastic Collocation) Method 

 
 
4.8 Bayesian Description of Time-Independent Performance 

When modeling uncertainties with insufficient data, the probability of safety (or 
satisfying a specification), referred to as reliability, must be uncertain and subjective. 
Because the Bayes theory provides a systematic framework of aggregating and 
updating uncertain information, reliability analysis based on the Bayes theory, 
referred to as Bayesian reliability, is employed to deal with subjective and 
insufficient data sets. 

 

4.8.1 Bayesian binomial inference - reliability 
• Bayesian binomial inference 
If the probability of a safety event in each sample is r and the probability of failure is 
(1-r), then the probability of x safety occurrences out of a total of N samples can be 
described by the probability mass function (PMF) of a Binomial distribution as 

 ( ) ( )Pr , 1 , 0,1,2,...,N xxN
X x N r r r x N

x
-æ ö

= = - =ç ÷
è ø

  (51) 
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When r is an uncertain parameter and a prior distribution is provided, a Bayesian 
inference process can be employed to update r based on the outcomes of the sample 
tests. It is possible to obtain a posterior distribution with any type of a prior 
distribution. A Bayesian inference model is called a conjugate model if the conjugate 
prior distribution is used. For conjugate Bayesian inference models, the updating 
results are independent of the sequence of data sets. 
 
• Conjugate prior reliability distribution 
For Bayesian reliability analysis, both prior reliability distribution (r) and the 
number (x) of safety occurrences out of the total number of test data set N must be 
known. If prior reliability distribution (r) is unavailable, it will be simply modeled 
with a uniform distribution, r ∼U (a, b) where a<b and a, b∈[0, 1]. In all cases, 
reliability will be modeled with Beta distribution, the conjugate distribution of the 
Bayesian binomial inference, because the uniform distribution is a special case of the 
Beta distribution.  

 ( ) 1 11 (1 ) , ( , ) :  Beta function
( , )

a bf r x r r B a b
B a b

- -= -  (52) 

where a = x + 1 and b = N – x +1. The larger the number of safety occurrences for a 
given N samples, the greater the mean of reliability, as shown in Figure 4.9 (a). As 
the total number of samples is increased, the variation of reliability is decreased, as 
shown in Figure 4.9 (b).  
In Bayesian inference model, the binomial distribution likelihood function is used 
for test data, whereas the conjugate prior distribution of this likelihood function is 
used for reliability (r), which is a beta distribution. However, it is found that the 
Bayesian updating results often depend on the selection of a prior distribution in the 
conjugate models. Besides, the available conjugate Bayesian models are limited. To 
eliminate the dependency and the limitation, a non-conjugate Bayesian updating 
model can be developed using Markov chain Monte Carlo methods. This is, however, 
more computationally intensive. 
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(a)                 (b) 
Figure 4.9: Dependence of the PDF of reliability on the number of safety 

occurrences, x and the total number of samples, N 

 

4.8.2 Definition of Bayesian reliability 
Bayesian reliability must satisfy two requirements: (a) sufficiency and (b) 
uniqueness. The sufficiency requirement means that the Bayesian reliability must be 
no larger than an exact reliability, when it is realized with a sufficient amount of data 
for input uncertainties. The uniqueness requirement means that the Bayesian 
reliability must be uniquely defined for the purpose of design optimization. To meet 
these two requirements, Bayesian reliability is generally defined with a confidence 
level of reliability prediction where the confidence level CL of Bayesian reliability is 
defined as 

 ( ) ( ) ( )
1

Pr 1
B

L B R BR
C R R f r dr F R= > = = -ò x  (53) 

With the predefined confidence level CL, Bayesian reliability can be defined as 

 [ ]1 1B R LR F C-= -  (54) 

Therefore, Bayesian reliability can be formulated as a function of a predefined 
confidence level. Bayesian reliability is desirable since it is defined from the 
reliability distribution with a corresponding confidence level and accounts for 
reliability modeling error due to the lack of data. 
To guarantee the sufficiency requirement, extreme distribution theory for the 
smallest reliability value is employed. Based on the extreme distribution theory, the 
extreme distribution for the smallest reliability value is constructed from the 
reliability distribution, beta distribution. For random reliability R, which follows the 
beta distribution, FR(r), let R1 be the smallest value among N data points, the CDF of 
the smallest reliability value, R1, can be expressed as 

 ( ) ( ) ( )
1 1 1 21 Pr Pr , ,...,R NF r R r R r R r R r- = > = > > >  (55) 

Since the ith smallest reliability values, Ri(i=1, . . . ,N), are identically distributed and 
statistically independent, the CDF of the smallest reliability value becomes 

 ( ) ( )
1

1 1 N
R RF r F r= - -é ùë û  (56) 

Then Bayesian reliability, RB, is uniquely determined as the median value of the 
extreme distribution. Based on this definition, Bayesian reliability and its confidence 
level can be respectively obtained as the solution of the nonlinear equation, by 
setting ( )

1
0.5R BF R =  

 ( )
1

1 11 1 1 0.5NN
B R R B RR F F R F- -é ù é ù= - - = -ë ûë û  (57) 

 ( ) ( )11 1 1 0.5 0.5N N
L R B R RC F R F F - é ù= - = - - =ë û  (58) 
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The Beta distribution for reliability, its extreme distribution for the smallest 
reliability value, and the Bayesian reliability are graphically shown as below. 

 
Figure 4.10: Bayesian reliability 

 

4.8.3 Numerical procedure of Bayesian reliability analysis 
Bayesian reliability analysis can be conducted using a numerical procedure as 
follows. 
• Step 1: collect a limited data set for epistemic uncertainties where the data size is N. 

• Step 2: calculate reliabilities (Rk) with consideration of aleatory uncertainties at all 
epistemic data points. 
• Step 3: build a distribution of reliability using the beta distribution with aleatory 
and/or epistemic uncertainties. 
• Step 4: select an appropriate confidence level, CL, of Bayesian reliability. 

• Step 5: determine the Bayesian reliability. 
 

Refer to http://www.springerlink.com/content/u1185070336p4116/fulltext.pdf. 
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Homework 15: Bayesian Reliability Analysis  

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Fig. 4.14.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.11: Simply Supported Beam 
 
Random Vector: 

 1 1

7 5
1

2

~ ( 3 10 , 10 )
~ epitemic

X XEI X N
w X

= = ´ =
=

m s  

The maximum deflection of the beam is shown as 

  

The X2 is an epistemic uncertainty.  For X2, it is assumed that 10 data sets are 
gradually obtained at different times.  Using MPP-based method (HL-RF), 
determine the reliability of the maximum deflection constraint, P(Y(X1) ³ yc = -
3´10-3m), at all individual X2 points in the table.  Predict the PDF of reliability in 
a Bayesian sense using the first 10 data set and gradually update the PDFs of 
reliability using the second and third data sets.  Make your own discussion and 
conclusion, and attach your code used for Bayesian reliability analysis. 

 
Table 4.3 Three sets of 10 data for X2 (´104) 

 
Set1       1.0000    0.8126    1.0731    1.0677    0.9623    0.9766    1.1444    1.0799    1.0212    0.9258 
Set2      0.9682    1.0428    1.0578    1.0569    0.9704    1.0118    0.9649    1.0941    1.0238    1.1082 
Set3      1.1095    1.0896    1.0040    0.9744    0.8525    1.0315    1.0623    0.9008    0.8992    0.9869 
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CHAPTER 5. PROBABILISTIC ENGINEERING ANALYSIS – TIME-
DEPENDENT PERFORMANCE 
 
In the previous chapter, methods were examined for obtaining the system’s reliability 
function analytically or computationally. In the calculation of probability values, we 
consider time independent safety events. However, in many practical cases, system’s 
performance degrade over time. In this chapter, time dependency in the probability of 
safety occurrence (or reliability) will be introduced. We will develop the reliability 
models necessary to observe the reliability over the life of the system, instead of at just 
one point in time. In addition, performance measure such as MTTF and failure rate are 
presented and also its related distributions are introduced. An accelerated life test will 
be discussed to acquire time dependent data in an efficient manner. Lastly, we take a 
glance at overview of PHM in the end of the chapter. 
 
5.1 Reliability Function (Time-Dependent) 

 
5.1.1 Reliability Function 

The Reliability Function R(t), also known as the Survival Function S(t), is 
defined by:  

R(t) = S(t) = the probability a unit survives beyond a designed life t. 

Since a unit either fails or survives, one of these two mutually exclusive 
alternatives must occur as  

 
0

( ) ( ) 1 ( ) 1 ( )

1 ( ) ( )
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t

T Tt

R t P T t P T t F t

f d f d
¥

= > = - £ = -

= - =ò òt t t t
 (59) 

where FT(t) is the probability distribution function or CDF of an actual life and 
fT(t) is the PDF of an actual life. 
 

5.1.2Expected Life or Mean Time-To-Failure (MTTF): 
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 (60) 

 
5.1.3 Failure Rate (or Hazard Function): 

Insight is normally gained into failure mechanisms by examining the behavior of 
the failure rate.  The failure rate, h(t), may be defined in terms of the reliability or 
the PDF of the time-to-failure (TTF).  Let h(t)Dt be the probability that the system 
will fail at some time T < t + Dt given that it has not yet failed at T = t.  Thus, it is 
the conditional probability as 
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 (61) 

 
There are a handful of parametric models that have successfully served as 
population models for failure times (TTF) arising from a wide range of products 
and failure mechanisms.  Sometimes there are probabilistic arguments based on 
the physics of the failure mechanics that tend to justify the choice of model.  
Other times the model is used solely because of its empirical success in fitting 
actual failure data. 

 
5.1.4 Bathtub Curve: 

The bathtub curve is widely used in reliability engineering, although the general 
concept is also applicable to humans.  It describes a particular form of the hazard 
function which comprises three parts: 
· The first part is a decreasing failure rate, known as early failures or infant 

mortality. 
· The second part is a constant failure rate, known as random failures. 
· The third part is an increasing failure rate, known as wear-out failures. 
 

 
Figure 5.1: Bathtub Curve for Hazard Function (or Failure Rate) 

 

Homework 16: Failure testing 
Perform the failure testing of a paper clip as instructed. 
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5.2 Parametric Distribution for Life Data 

Some parametric models will be described in this section.  There are two classes to 
describe a failure rate: (1) constant failure rate (section 4.4.1) and (2) time-
dependent failure rate (sections 4.4.2-4.4.4). 

5.2.1 Exponential Distribution (Constant Failure Rate) 
 
The exponential model, with only one unknown parameter, is the simplest of all 
life distribution models. 
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Figure 5.2: Exponential Distribution 
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5.2.2 Weibull Distribution 
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and 0 is the scale parameter of the distribution.
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( a ) PDF     ( b ) CDF 

Figure 5.3: Weibull Distribution 
 

The Weibull is a very flexible life distribution model with two parameters.  

· When k = 1, the Weibull reduces to the exponential model with mT = 1/l. 
· For k < 1, failure rates are typical of infant mortality and decrease. 
· For k > 1, failure rates are typical of aging effects and increase. 
· For k = 2, the Weibull becomes the Rayleigh distribution. 
· For k > 4, the Weibull becomes closer to a normal. 

 
 

5.2.3 Normal Distribution 
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( a ) PDF     ( b ) CDF 
Figure 5.4: Normal Distribution 

 
The normal distribution describes the life of a tread on a tire or the cutting edge 
on a machine tool where the wearout time (m) is reasonably well-defined. 
 

5.2.4 Other Distributions 
Lognormal, Gamma, and others are available at http://www.itl.nist.gov/div898/ 
handbook/apr/section1/apr16.htm. 
 
 

Homework 17: Reliability Function 
Suppose it is desired to estimate the failure rate of an electronic component.  A 
test can be performed to estimate its failure rate.  A target life is set to 2000 
minutes.  R(t) = P(T > 2000 minutes) Answer the following questions: 

(1) Construct a histogram of TTF. 

(2) Find out the best probability distribution model and its parameters, fT(t), for 
the TTF data. 

(3) Construct a reliability function. 

(4) Determine MTTF, standard deviation of TTF, and hazard function. 

(5) Compare the reliability, nf/N, from the TTF data with the reliability from the 
reliability function when t = 2000 where nf is the number of failed 
components and N (= 100) is the total components. 

 
Table 5.1: Data for 100 Electronics Time-To-Failure (TTF) [minute] 

1703.2 1071.4 2225.8 1826.5 1131 2068.9 1573.5 1522.1 1490.7 2226.6 
1481.1 2065.1 1880.9 2290.9 1786.4 1867.2 1859.1 1907.5 1791.8 1871 

1990.4 2024.1 1688.6 1962.7 2191.7 1841 1814.1 1918.1 2237.5 1396.8 
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1692.8 707.2 2101.3 2165.4 1975.2 1961.6 2116.7 1373 1798.8 2248.4 
1872.3 1597.8 1865.1 742.8 1436.7 1380.8 2258.2 1960 2182.8 1772.7 

2003.6 1589.4 1988.3 1874.9 1859 2051.9 1763 1854.6 1974.7 2289.9 
1945.7 1774.8 1579.6 1430.5 1855 1757.9 1029.3 1707.2 1864.7 1964.8 
1719.4 1565.2 1736.8 1759.4 1939.4 2065.7 2258.5 2292.8 1452.5 1692.2 
2120.7 1934.8 999.4 1919.9 2162.4 2094.9 2158.2 1884.2 1748.7 2260.3 
1040.8 1535 1283.4 2267.7 2100.3 2007.9 2499.8 1902.9 1599.6 1567.5 

 

 
 

5.3 Time-Dependent Reliability Analysis: (Physical) Accelerated Tests 
 
The product life test would require a long-time test (e.g., 104 ~ 105 hours) under 
normal stress condition.  The questions then arise of how to collect information 
about the corresponding life distributions under normal use conditions and how to 
make a product design reliable. There are two closely related problems that are 
typical with reliability data: 
 

· Censoring (when the observation period ends, not all units have failed - some 
are survivors): Censored Type I (observe r for a fixed time, T) and Type II 
(observe T for a fixed number of failures, r). 
· Lack of Failures (even if there is too much censoring, say a large number of 
units under observation, the information in the data can be limited due to the 
lack of actual failures). 
à How to deal with suspension data and to design life testing 

 
These problems cause practical difficulty when planning reliability assessment tests 
and analyzing failure data.  A common way of tackling this problem is an Accelerated 
Life Testing (ALT). 
 

· Compressed-time testing 
 
Many products experience on-off operation cycles instead of continuous 
operation.  Reliability tests are performed in which appliance doors are more 
frequently opened and closed, consumer electronics is more frequently turned 
on and off, or pumps or motors are more frequently started and stopped to 
reach a designed life.  These are referred to as compressed-time tests.  The 
tests are used more steadily or frequently than in normal use, but the loads 
and environmental stresses are maintained at the level expected in normal 
use. 
 
If the cycle is accelerated too much, however, the conditions of operation may 
change and thus artificially generate different failure mechanisms.  In other 
words, compressed-time testing (e.g., door open/close) may introduce 
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different failure mechanisms instead of a primary failure mechanism under 
normal field operation. 
  

 
· Advanced stress testing (or physical acceleration testing) 

 
Failure mechanisms may not be accelerated using the forgoing time-
compressed testing.  Advanced stress testing, however, may be employed to 
accelerate failures, since as increased loads or harsher environments are 
applied to a device, an increased failure rate may be observed.  If a decrease in 
reliability can be quantitatively related to an increase in stress level, the life 
tests can be performed at high stress levels, and the reliability at normal levels 
inferred.  Both random failures and aging effects may be the subject of 
advanced stress tests. 
 
Some engineering instances include: 
- In the electronics industry, components are tested at elevated 

temperatures to increase the incidence of random failure. 
- In the nuclear industry, pressure vessel steels are exposed to extreme 

levels of neutron irradiation to increase the rate of failure. 
 
 
5.3.1 Physical Acceleration (or True Acceleration) 
 

Physical acceleration means that operating a unit at high stress (i.e., higher 
temperature or voltage or humidity or duty cycle, etc.) produces the same failures 
that would occur at normal-use stresses, except that they happen much quicker.  
Failure may be due to mechanical fatigue, corrosion, chemical reaction, diffusion, 
migration, etc.  These are the same causes of failure under normal stress; the time 
scale is simply different. 
 

Exercise: Non-parametric process 
Accelerated life tests are run on four sets of 12 flashlight bulbs and the 
failure times in minutes are found in Table 5.2.  Estimate the MTTF at 
each voltage and extrapolate the results to the normal operating voltage of 
6.0 volts. 
 

Table 5.2: Life Data for Flashlight Bulbs (TTF) [minute] 

Voltage 9.4 12.6 14.3 16 
1 63 87 9 7 
2 3542 111 13 9 
3 3782 117 23 9 
4 4172 118 25 9 
5 4412 121 28 9 
6 4647 121 30 9 
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7 5610 124 32 10 
8 5670 125 34 11 
9 5902 128 37 12 
10 6159 140 37 12 
11 6202 148 39 13 
12 6764 177 41 14 

 
Solution: 
The MTTFs can be obtained as  
 

MTTF(9.4 voltage) = 4,744 mim. 
MTTF(12.6 voltage) = 126 mim. 
MTTF(14.3 voltage) = 29.0 mim. 
MTTF(16.0 voltage) = 10.3 mim. 

 
>> y = load TTF.dat 
>> m(1)=log(mean(y(:,1)));m(2)=log(mean(y(:,2)));… 
>> m(3)=log(mean(y(:,3)));m(4)=log(mean(y(:,4))); 
>> p=polyfit(x,m,1) 
p = 
   -0.9438   17.0917 
>> hold on; x=[6:0.01:18]; y=exp(p(1)*x+p(2)); plot(x,y) 

 
In the figure above, MTTF versus voltage is plotted in a logarithmic scale: 
 
The least-square fit indicates 

Ln(MTTF) = -0.9438´v + 17.0917 
 
Hence, 
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MTTF = exp(17.0917 - 0.9438´v) = 241´ 106 exp(-0.9438´v) [min] 
= 1.8385´104 exp(-0.9438´v) days 

 
At 6 volts: 

MTTF = 1.8385´104 exp(-0.9438´6) days = 64 days = 2.13 months 
= 9.184´104 minutes 

 
 
The previous approach is a non-parametric process, while straightforward.  It has 
several drawbacks relative to the parametric methods. 
1. It requires that a complete set of life data be available at each stress level in 

order to use the sample mean to calculate the MTTF. 
2. Without attempting to fit the data to a distribution, one has no indication 

whether the shape, as well as the time scale of the distribution, is changing.  
Since the changes in distribution shape are usually indications that a new 
failure mechanism is being activated by the higher-stress levels, there is a 
greater danger that the non-parametric estimate will be inappropriately 
extrapolated. 

 
We use the following notation: 
 
ts = TTF at stress tu = corresponding TTF at use 
Fs(t) = CDF at stress Fu(t) = CDF at use 
 
When there is a true acceleration, changing stress is equivalent to transforming 
the time scale used to record when failures occur. The transformations commonly 
used are linear, which means that TTF at high stress just has to be multiplied by 
a constant (the acceleration factor) to obtain the equivalent TTF at use. 
 

Fu(tu) à Fs(ts) = Fs(ts =tu/AF) 
 
The Weibull and lognormal distributions are particularly well suited for the 
analysis of advanced-stress tests, for in each case there is a scale parameter that 
is inversely proportional to the acceleration factor and a shape parameter that 
should be unaffected by acceleration. 
 

Exercise: Parametric process 
Let us consider the Weibull distribution as 
 

 

 
>> close 
>> wblplot(y(:,1)),hold on; wblplot(y(:,2)); wblplot(y(:,3)); wblplot(y(:,4)); 
 

( )( ; ) 1 exp k
TF t tl lé ù= - -ë û
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>> wblfit(y(:,1)) 
ans = 
  1.0e+003 * 
    5.0904    0.0022 à first parameter for scale (l) and second for shape (k) 
>> wblfit(y(:,2)) 
ans = 
  135.4589    5.9462 
>> wblfit(y(:,3)) 
ans = 
   32.2150    3.6187 
>> wblfit(y(:,4)) 
ans = 
   11.1620    5.6660  
>> wblfit(y(2:12,1))            à excluding one outlier 
ans = 
  1.0e+003 * 
    5.5959    0.0058 
 
Assume that the shape parameter (k: second value) be unchanged but the 
scale parameter (l: first value) be changed. 

 
We use the following notation:   
 
fs(t) = PDF at stress fu(t) = PDF at use 
hs(t) = failure rate at stress hu(t) = failure rate at use 
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Then, an acceleration factor AF between stress and use means the following 
relationships hold: 

 
Linear Acceleration Relationships 

MTTF tu = AF × ts 
Failure Probability Fu(tu) à Fs(tu/AF) 
Reliability Ru(tu) à Rs(tu/AF) 
PDF  fu(t) à (1/AF) ´ fs(tu/AF) 
Failure Rate hu(t) à (1/AF) ´ hs(tu/AF) 

 
5.3.2 Common Acceleration Models 
 

· Arrehenius 
One of the earliest and most successful acceleration models predicts how TTF 
varies with temperature.  This empirical model is known as the Arrhenius 
equation as 

 exp or expH BTTF A TTF A
kq q
Dì ü ì ü= =í ý í ý

î þ î þ
 (62) 

with q denoting temperature measured in degrees Kelvin (273.16 + degrees 
Celsius) at the point when the failure process takes place and k is Boltzmann's 
constant (8.617 x 10-5 in ev/K).  The constant A is a scaling factor that drops 
out when calculating acceleration factors, with DH denoting the activation 
energy, which is the critical parameter in the model. 
The acceleration factor between a high temperature q2 and a low temperature 
q1 is given by  

 
1

2 1 2

1 1expt HAF
t k q q

ì üé ùDï ï= = -í ýê ú
ï ïë ûî þ

 (63) 

The value of DH depends on the failure mechanism and the materials involved, 
and typically ranges from 0.3 to 1.5, or even higher.  Acceleration factors 
between two temperatures increase exponentially as DH increases.  

Using the value of k given above, this can be written in terms of q  in degrees 
Celsius as  

 ( ) ( )1 2

1 1exp 11605
273.16 273.16

AF H
q q

ì üé ùï ï= D ´ ´ -í ýê ú+ +ï ïë ûî þ
 (64) 

Note that the only unknown parameter in this formula is DH.  
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Figure 5.5 Arrehenius plot for Weibull life distribution 

(http://www.weibull.com/AccelTestWeb/arrhenius_relationship_chap_.htm) 

Exercise: Parametric process 
Consider the accelerated life tests for the four sets of 12 flashlight bulbs 
and the failure times in minutes are found in the Table 4.2.  Estimate the 
MTTF at normal operating 6.0 voltage using Arrehius model. 
Assume v1 = 9.4 and v2 = 12.6.  Accordingly, t1 = 4744 and t2 = 126.  
Hence, AF =4744/126 = 37.65.  Reliability function can be calculated as 
>> t=[0:10:500000];r1=exp(-(t./5090.4).^2.2); plot(t,r1) 
>> hold on;  
>> t=[0:1:500000];r2=exp(-(t./135.5).^5.9); plot(t,r2) 
>> t=[0:1:500000];r3=exp(-(t./32.22).^3.6); plot(t,r3) 
>> t=[0:1:500000];r4=exp(-(t./11.16).^5.7); plot(t,r4) 
>> t=[0:10:500000];r5=exp(-(t./5090.4/37.65).^2.2); plot(t,r5) 
>> R = @(t) exp(-(t./5090.4/37.65).^2.2); 
>> MTTF = quad(R,0,10^6) 
  MTTF = 
1.6973e+005 

>> R = @(t) exp(-(t./5595.9/37.65).^5.8); 
>> MTTF = quad(R,0,10^6) 
MTTF = 

  1.9509e+005 
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The Arrhenium model parameters can be also calculated. 

 The Arrhenius model has been used successfully for failure mechanisms that 
depend on chemical reactions, diffusion processes or migration processes. 
This covers many of the thermally-induced mechanical failure modes that 
cause electronic equipment failure. 

· Eyring 
Henry Eyring's contributions to chemical reaction rate theory have led to a 
very general and powerful model for acceleration known as the Eyring Model. 
This model has several key features:  

ü It has a theoretical basis from chemistry and quantum mechanics.  
ü If a chemical process (chemical reaction, diffusion, corrosion, migration, 

etc.) is causing degradation leading to failure, the Eyring model describes 
how the rate of degradation varies with stress or, equivalently, how TTF 
varies with stress.  

ü The model includes temperature and can be expanded to include other 
relevant stresses.  

ü The temperature term by itself is very similar to the Arrhenius empirical 
model, explaining why that model has been so successful in establishing 
the connection between the DH parameter and the quantum theory 
concept of "activation energy needed to cross an energy barrier and initiate 
a reaction".  

The model for temperature and one additional stress takes the general form:   
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 1exp H CTTF A B S
k

aq
q q

ìD üæ ö= + +í ýç ÷
è øî þ

 (65) 

for which S1 could be some function of voltage or current or any other relevant 
stress and the parameters k, DH, B, and C determine acceleration between 
stress combinations.  As with the Arrhenius Model, k is Boltzmann's constant 
and temperature is in degrees Kelvin. If we want to add an additional non-
thermal stress term, the model becomes 

 1 2
1 1 2 2expf

C CHt A B S B S
k

aq
q q q

ì üD æ ö æ ö= + + + +í ýç ÷ ç ÷
è ø è øî þ

 (66) 

and as many stresses as are relevant can be included by adding similar terms. 
 
Advantages of the Eyring Model  
ü Can handle many stresses.  
ü Can be used to model degradation data as well as failure data.  
ü The DH parameter has a physical meaning and has been studied and 

estimated for many well known failure mechanisms and materials. 

Disadvantages of the Eyring Model  
ü Even with just two stresses, there are 5 parameters to estimate. Each 

additional stress adds 2 more unknown parameters.  
ü Many of the parameters may have only a second-order effect.  For example, 

setting a = 0 works quite well since the temperature term then becomes 
the same as in the Arrhenius model.  Also, the constants C1 and C2 are only 
needed if there is a significant temperature interaction effect with respect 
to the other stresses.  

· Other models 
a. (Inverse) Power Rule for Voltage 
b. Exponential Voltage Model 
c. Two Temperature/Voltage Models 
d. Electromigration Model 
e. Three-Stress Models (Temperature, Voltage, and Humidity) 
f. Coffin-Manson Mechanical Crack Growth Model 
 
Refer to http://www.itl.nist.gov/div898/handbook/apr/section1/apr153.htm  
 

Homework 18: Failure analysis of a paper clip twisting 
Answer the following questions: 
(a) Identify data outlier(s) and justify it. 
(b) Develop a probability density function model for TTF data under twisting 

moment.  Use a Weibull distribution. 
(c) Calculate the MTTF and develop reliability function and failure rate models 

for the TTF data under a twisting condition. 
 



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong 

Mechanical and Aerospace Engineering, Seoul National University 91 
 

 

Homework 19: Life analysis of a paper clip bending 
Answer the following questions: 
(a) Develop probability density function models for TTF data under four bending 

conditions, 180o, 135o, 90o, and 45o.  Use a Weibull distribution and report the 
statistical parameters in table. 

(b) Discuss the result above. 
(c) Use the Arrehenius model with the TTF data (180o, 135o, 90o) to calculate the 

Accelerating Factor (AF) and plot Log(Life) vs Stress(bending angle). 
(d) Predict a TTF under a bending angle (45o) using the Arrehenius model 

obtained in (c) and compare the predicted TTF with the observed TTF from 
(a). 

 
 

5.4 Degradation-based Simulations 
 
5.4.1 Fatigue 
See the handout, fatigue_wiki.pdf 

 
5.4.2 Wear 
See the handout, wear_wiki.pdf 

 
5.4.3 Corrosion 
See the handout, corrosion_wiki.pdf 

 
5.4.4 Creep 
See the handout, creep_wiki.pdf 
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Figure 5.6: Fatigue Simulation Model – Fatigue Life = Y(X) 

 

 
Figure 5.7: General Description of Reliability (L-Type) 

 
 

5.5 Health monitoring and prognostics 
Accelerated life testing (ALT) is capable of providing an instantaneous reliability 

estimate for an engineered system based on degradation characteristics of historical 
units. We refer to this approach as the classical reliability approach, which incorporates 
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population characteristics into reliability estimation by modeling a life distribution. 
However, this classical reliability approach only provides an overall reliability estimate 
that takes the same value for the whole population of units. In engineering practice, we 
are more interested in investigating the specific reliability information of a particular 
unit under its actual life cycle conditions to determine the advent of a failure and 
mitigate potential risk.  

To overcome the limitation of the classical reliability approach, prognostics and 
health management (PHM) has recently emerged as a key technology to evaluate the 
current health condition (health monitoring) and predict the future degradation 
behavior (health prognostics) of an engineered system throughout its lifecycle. In 
general, PHM consists of four basic functions: health sensing function, health reasoning 
function, health prognostics function and health management functions (see Fig. 5.8 for 
he first three functions). 

 
Figure 5.8: Basic PHM Functions 

· Health Sensing Function: To acquire sensory signal with in-situ monitoring 
techniques and to ensure high damage detectability by designing an optimal wireless 
sensor network (WSN); 

· Health Reasoning Function: To extract system health relevant information in real-
time with feature extraction techniques and to classify system health condition with 
health classification techniques; 

· Health Prognostics Function: To predict the time remaining before an engineered 
system no longer performs the required function(s) or the remaining useful life (RUL) 
in real-time with advanced machine learning techniques; 
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· Health Management Function: To enable optimal decision making on maintenance 
of engineered systems based on RUL predictions from health prognostics function 
with trade-off analysis and random process modeling techniques. 

In recent years, prognostics and health management (PHM) has been successfully 
applied to many engineered systems to assess their health conditions in real-time under 
actual operation conditions and adaptively enhance life cycle reliabilities with condition-
based maintenance that will effectively avoid unexpected failures. Figure 5.8 exemplifies 
several engineered systems that capitalize on PHM to enable an early anticipation of 
failure, to develop cost-effective maintenance strategies and to seek opportunities for 
life extensions.  

 
Figure 5.9: Engineered Systems Capitalizing on PHM 

An example is provided in Fig. 5.10 to demonstrate the three main PHM functions.  

 
Figure 5.10: An Example Illustrating Three Main PHM Functions.  
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CHAPTER 6. DESIGN OPTIMIZATION 

 

6.1 General Model of Design under Uncertainty 
 
The design under uncertainty can generally be defined as: 

 { }{ }
L U

Minimize Cost( ) or Risk( )
subject to ; ( ) 0 , 1, ,

                       , and
ii f

nd nr

P G P i nc

R R

> £ =

£ £ Î Î

d d
X d X

d d d d X

L  (67) 

where nc is the number of probabilistic constraints; nd is the number of design 
parameters; nr is the number of random variables;  is the design 

vector;  is the random vector; and the probabilistic constraints are 

described by the performance function , their probabilistic models, and 

the probability of failure.  The probability of failure is defined as  with a 

target reliability index  where the failure is defined as { }; ( ) 0iG >X d X . 
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Figure 6.1: Design under Uncertainty 
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6.2 A General Formulation of Design Optimization 
 

In general, design optimization can be formulated as 

 

Minimize (or Maximize) ( )
Subject to    ( ) 0,  1, ,

   ( ) 0, 1, ,

   ,
where  : no of inequality constraints, feasible where ( ) 0

: no of equality constraints, feasible where (

i

j

n
L U

j

i

f
h i p
g j m

R
m g
p h

= =

£ =

£ £ Î

£

x
x
x

x x x x
x

x

L

L

) 0=

 (68) 

 
 
6.3 Optimality Condition 

Refer to Section 6.1 (Arora, 2004): First-order necessary KKT condition. 
 
· Lagrangian function: 

 
1 1

( ) ( ) ( )
p m

i i j j
i j

L f v h u g
= =

= + +å åx x x  (69) 

· Gradient conditions 

 0 ( *) 0; 1 ~i
i

L h i p
v

¶
= Þ = =

¶
x  (70) 

 * *

1 1
0 0; 1 ~

p m
ji

i j
i jk k k k

ghL f v u k nd
x x x x= =

¶¶¶ ¶
= Þ + + = =

¶ ¶ ¶ ¶å å  (71) 

· Feasibility check 

 *( ) 0; 1 ~jg j m£ =x  (72) 

 
· Switching conditions 

 * *( ) 0; 1 ~j ju g j m= =x  (73) 

 
· Nonnegativity of Lagrange multipliers for inequalities 

 * 0; 1 ~ju j m³ =  (74) 

 
· Regularity check 

Gradients of active constraints must be linearly independent.  In such a case, the 
Lagrangian multipliers for the constraints are unique. 
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Exercise: Check for KKT necessary conditions  
 
Minimize 2 2

1 2( , ) ( 10) ( 8) subject to 12 0, 8 0f x y x y g x y g x= - + - = + - £ = - £  
 
Refer to Example 5.1 (Arora, 2004). 
Arora, J.S. Introduction to Optimum Design, Second Edition, Elsevier, 2004 
 

 
The ordinary optimization task is where many constraints are imposed.  In the 
process of finding a usable-feasible search direction, we are able to detect if the KKT 
conditions are satisfied.  If they are, the optimization process must be terminated.  
 
 

6.4 Concept of Numerical Algorithms in Design Optimization 
 

 

 
 

Figure 6.2: Conceptual steps of unconstrained optimization algorithm 
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Figure 6.3: Conceptual steps of constrained optimization algorithm 
 
 
Iterative numerical search methods are employed for the optimization.  Two basic 
calculations are involved in the numerical search methods for optimum design: (1) 
calculation of a search direction and (2) calculation of a step size in the search 
direction.  It can be generally expressed as 

 ( 1) ( ) ( ) ( ) ( )where  k k k k k
ka+ = + D D =x x x x d  (75) 

So, finding ak is a line search and d(k) is the direction search. 
 
6.4.1 Line Search 
 
The cost function f(x) is given as 

 
( 1) ( ) ( )( ) ( ) ( )k k kf f fa a+ = + =x x d  (76) 

It is important to understand this reduction of a function of n variables to a function 
of one variable.  The descent condition for the cost function can be expressed as the 
inequality: 

 ( ) (0)f fa <  (77) 

To satisfy the inequality (77), the curve f(a) must have a negative slope when a=0. 
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Figure 6.4: Descent condition for the cost function 
 
 
Let Ñf(x) be c(x).  In fact, the slope of the curve f(a) at a=0 is calculated as 

( ) ( )(0) 0k kf ¢ = × <c d .  If ( )kd is a descent direction, then a must always be a positive 
scalar.  Thus, the one-dimensional minimization problem is to find ak =a such that 
f(a) is minimized. 
 
The necessary condition for the optimal step size is df(a)/da = 0, and the sufficient 
condition is d2f(a)/da2 > 0.  Note that differentiation of f(x(k+1)) with respect to a 
gives 

 
( 1)

( 1) ( 1)
( 1) ( ) ( 1) ( )( ) ( ) ( ) ( ) 0

k

T k k
k k k kdf df d f

d d da a+

+ +
+ += = Ñ × = × =

x

x x x x d c d
x

 (78) 
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>> [X,Y] = meshgrid(-3:.3:3,-2:.3:4); 
>> f=3*X.^2+2*X.*Y+2*Y.^2+7; 
>> [C,h]=contour(X,Y,f); clabel(C,h); hold on 
>> [U,V] = gradient(f,2,2); quiver(X,Y,U,V) 

 
 

 
Line Search Methods 
1. Equal interval search 
2. Golden section search 
3. Quadratic interpolation method 
 
With the assumption that the function f(a) is sufficiently smooth and unimodal, 
f(a) is approximated using a quadratic function with respect to a as 

 2
0 1 2( ) ( )f q a a aa a a a» = + +  (79) 

The minimum point a  of the quadratic curve is calculated by solving the 
necessary condition dq/da = 0. 
 

 

 

 
al = 0.5,  
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Homework 21: Optimization Reading 1 

Chapters 4.3-4.5 
Chapters 5.1-5.2 
Chapters 8.1, 8.2 

 
 
 
6.4.2 Direction Search 

 
The basic requirement for d is that the cost function be reduced if we make a 
small move along d; that is, the descent condition ( ( ) ( )(0) 0k kf ¢ = × <c d ) be 
satisfied.  This is called the descent direction. 
 
Search Direction Methods 

1. Steepest descent method 
2. Conjugate gradient method 
3. Newton’s Method 
4. Quasi-Newton’s Method 
5. Sequential linear programming (SLP) 
6. Sequential quadratic programming (SQP) 

 
The first four are used for an unconstrained optimization problem whereas the 
last two are often used for a constrained optimization problem. 
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( a ) Steepest descent method  ( b ) Conjugate gradient method 

Figure 6.5: Search direction methods using gradient method 
 

a. Steepest decent method 
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b. Conjugate gradient method 
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Homework 21: Optimization Reading 2 

Chapters 8.3, 8.4 
 

 
c. Newton’s method 

The basic idea of the Newton’s method is to use a second-order Taylor’s 
expansion of the function about the current design point. 

 ( ) ( ) 0.5T Tf f+ D = + D + D Dx x x c x x H x  (80) 

The optimality conditions (¶f/¶(Dx) = 0) for the function above 

 
10 -+ D = D = -c H x x H c  (81) 

The optimal step size must be calculated for design optimization. 
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· M-file  
function opt() 
x0 = [-1;3]; 
x = x0; 
[x,fval,exitflag,output,grad]= fminunc(@obj,x0); 
end 
  
function f = obj(x) 
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f = 10*x(1)^4-20*x(1)^2*x(2)+10*x(2)^2+x(1)^2-2*x(1)+5 
end 

 

 
 

 
 

 

 

 

 
 

 
 
d. Quasi-Newton Method 

Only the first derivatives of the function are used to generate these Newton 
approximations.  Therefore the methods have desirable features of both the 
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conjugate gradient and the Newton’s methods.  They are called quasi-Newton 
methods. 

  (82) 

There are several ways to approximate the Hessian or its inverse.  The basic 
idea is to update the current approximation of the Hessian using two pieces of 
information: the gradient vectors and their changes in between two successive 
iterations.  While updating, the properties of symmetry and positive 
definiteness are preserved.  Positive definiteness is essential because the 
search direction may not be a descent direction for the cost function with the 
property. 

 
Hessian Updating: BFGS (Broyden-Fletcher-Goldfarb-Shanno) 
Method 
 

 
 
 
 
Example of BFGS Method 
 

10 -+ D = D = -c H x x H c
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Table 6.1: Summary of Numerical Aspects in Unconstrained Optimization Algorithms 

Methods Steepest Conjugate Newton Quasi 
Newton 

Requirements Function, 
Gradient 

Function, 
Gradient 

Function, 
Gradient, 
Hessian 

Function, 
Gradient 

Stability Good Good Good Good 

Efficiency Bad Good Bad Good 

Speed Bad Good Good Good 

 
 

Let us recall a constrained design optimization formulated as 

 

Minimize ( )
Subject to   ( ) 0,  1, ,

  ( ) 0, 1, ,

  ,
where  : no of inequality constraints, feasible where ( ) 0

: no of equality constraints, feasible where ( ) 0
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Homework 22: Optimization Reading 3 

Chapters 9.1, 9.3, 9.4.1, 9.4.2, 9.5  
 

 
 
6.5 Sequential Linear Programmning (SLP) 

At each iteration, most numerical methods for constrained optimization compute 
design change by solving an approximate subproblem that is obtained by writing 
linear Taylor’s expansions for the cost and constraint functions. 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Minimize ( ) ( ) ( )
Subject to   ( ) ( ) ( ) 0,  1, ,

  ( ) ( ) ( ) 0, 1, ,
  ,

k k k T k k

k k k T k k
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L U
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+ D @ + Ñ D

+ D @ + Ñ D = =

+ D @ + Ñ D £ =

£ £ Î
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x x x x x

x x x x

L

L
 (84) 

The linearization of the problem can be rewritten in a simple form as 
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It must be noted that the problem may not have a bounded solution, or the changes 
in design may become too large.  Therefore, limits must be imposed on changes in 
design.  Such constraints are usually called “move limits”, expressed as   

 ( ) ( ) 1 to k k
il i iud i n-D £ £ D =  (86) 

 
Figure 6.6: Linear move limits on design changes 
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6.6 Sequential Quadratic Programmning (SQP) 
There are several ways to derive the quadratic programming (QP) subproblem that has 
to be solved at each optimization iteration.  The QP subproblem can be defined as 

 

1Minimize
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The Hessian matrix can be updated using the quasi-Newton method.  The optimization 
with the equality constraints can be extended to that with both equality and inequality 
constraints.  There is no need to define a move limit unlike SLP. 
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Homework 22: Optimization Reading 4 

Chapters 9.1, 9.3, 9.4.1, 9.4.2, 9.5  
 

 
 

 
Homework 23: Design Optimization of Crashworthiness Problem 
A vehicle side impact problem is considered for design optimization.  All the 
design variables are shown in Table 6.2. In this example, the weight of the vehicle 
is treated as an objective function with ten constraints defined in Table 5.3.   
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Table 6.2: Properties of design variables 

(X10 and X11 have “0” value) 
Random  
Variables dL d dU 

X1  0.500 1.000 1.500 
X2  0.500 1.000 1.500 
X3  0.500 1.000 1.500 
X4  0.500 1.000 1.500 
X5  0.500 1.000 1.500 
X6   0.500 1.000 1.500 
X 7   0.500 1.000 1.500 
X8    0.192 0.300 0.345 
X9    0.192 0.300 0.345 
X10    X10  and X11 are not design variables X11   

 
 

Table 6.3: Design variables and their bounds 
Constraints  

Safety Criteria  
G1: Abdomen load (kN) £ 1 
G2-G4: Rib deflection (mm) Upper £ 32 
 Middle 
 Lower 
G5-G7: VC (m/s) Upper £ 0.32 
 Middle 
 Lower 
G8: Pubic symphysis force (kN) £ 4 
G9: Velocity of B-pillar £ 9.9 
G10: Velocity of front door at B-pillar £ 15.7 

 
Responses:  

Cost(weight) = 1.98+4.90*x(1)+6.67*x(2)+6.98*x(3)+4.01*x(4)+1.78*x(5)+2.73*x(7) 
 
G1= (1.16-0.3717*x(2)*x(4)-0.00931*x(2)*x(10)-
0.484*x(3)*x(9)+0.01343*x(6)*x(10))-1;  
 
G2 = (28.98+3.818*x(3)-4.2*x(1)*x(2)+0.0207*x(5)*x(10)+6.63*x(6)*x(9)-
7.7*x(7)*x(8)+0.32*x(9)*x(10))-32;  
 
G3= (33.86+2.95*x(3)+0.1792*x(10)-5.057*x(1)*x(2)-11*x(2)*x(8)-
0.0215*x(5)*x(10)-9.98*x(7)*x(8)+22*x(8)*x(9))-32;  
 
G4 = (46.36-9.9*x(2)-12.9*x(1)*x(8)+0.1107*x(3)*x(10))-32;  
 
G5 = (0.261-0.0159*x(1)*x(2)-0.188*x(1)*x(8)-
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0.019*x(2)*x(7)+0.0144*x(3)*x(5)+0.0008757*x(5)*x(10)+0.08045*x(6)*x(9)+0.00
139*x(8)*x(11)+0.00001575*x(10)*x(11))-0.32;  
 
G6 = (0.214+0.00817*x(5)-0.131*x(1)*x(8)-0.0704*x(1)*x(9)+ 0.03099*x(2)*x(6)-
0.018*x(2)*x(7)+0.0208*x(3)*x(8)+ 0.121*x(3)*x(9)-
0.00364*x(5)*x(6)+0.0007715*x(5)*x(10)-
0.0005354*x(6)*x(10)+0.00121*x(8)*x(11)+0.00184*x(9)*x(10)- 0.018*x(2).^2)-
0.32;  
 
G7 = (0.74-0.61*x(2)-0.163*x(3)*x(8)+0.001232*x(3)*x(10)-
0.166*x(7)*x(9)+0.227*x(2).^2)-0.32;  
 
G8 = (4.72-0.5*x(4)-0.19*x(2)*x(3)-
0.0122*x(4)*x(10)+0.009325*x(6)*x(10)+0.000191*x(11).^2)-4;  
 
G9 = (10.58-0.674*x(1)*x(2)-1.95*x(2)*x(8)+0.02054*x(3)*x(10)-
0.0198*x(4)*x(10)+0.028*x(6)*x(10))-9.9;  
 
G10 = (16.45-0.489*x(3)*x(7)-0.843*x(5)*x(6)+0.0432*x(9)*x(10)- 
0.0556*x(9)*x(11)-0.000786*x(11).^2)-15.7; 

 
The Design Optimization is formulated as 

9

Minimize ( )
Subject to   ( ) ( ) 0, 1, ,9

  ,

c
j j j

L U

f
g G G j

R

= - £ =

£ £ Î

x
x x

x x x x

L  

 
Solve this optimization problem using the sequential quadratic programming 
(use the matlab function, ‘fmincon’, in Matlab).  Make your own discussion 
and conclusion. 
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CHAPTER 7. SURROGATE MODELING (OR RESPONSE SURFACE 
METHODOLOGY) 
 
7.1 Introduction 

Response surface methodology (RSM) is a 
collection of statistical and mathematical 
techniques useful for developing, improving, 
and optimizing processes.  The most extensive 
applications of RSM are in the industrial world, 
particularly in situations where several input 
variables potentially influence some responses 
(e.g., performance measure or quality 
characteristic of the product or process).  The 
input variables are called “independent 
variables”, and they are subject to the control of 
the engineer or scientist, at least for purposes of 
a test or an experiment. 

Figure in the side shows graphically the 
relationship between the response (y) and the 
two design variables (or independent control 
variables).  To construct the response surface, 
there must be a systematic way of gathering 
response data in the design space.  Two primary 
procedures are involved with collecting the 
response information: (1) Design of Experiment 
(DOE) and (2) Response Approximation (or Surrogate Modeling).  The general 
procedure can be summarized as 

Step 1. Choose design variables and response model(s) to be considered. 
Step 2. Plan “Design of Experiments (DOE)” over a design space. 
Step 3. Perform “experiments” or “simulation” at the DOE points. 
Step 4. Construct a response surface over the design space. 
Step 5. Determine a confidence interval of the response surface. 
Step 6. Check the model adequacy over the design space. 
Step 7. If not adequate, then go to step 1 and refine the model. 

 
7.2 Design of Experiments (DOEs) 

Design of experiments is the design of all information-gathering exercises where 
variation is present, whether under the full control of the experimenter or not.  Often 
the experimenter is interested in the effect of some product or process parameters on 
some relevant responses, which may be product performances or process quality 
attributes.  Design of experiments is thus a discipline that has very broad application 
across all the natural and social sciences, and various engineering. 

In basic, it is concerned about how to gather the information as effective as possible.  
Thus, the objective of the DOE is to collect the information with minimal experimental 
cost and maximum model accuracy.  The existing DOEs include: 

1. (Two-level) Full factorial designs 
2. (Two-level) Fractional factorial designs 
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3. Orthogonal designs (or arrays) 
3.a Box-Behnken designs 
3.b Koshal design 
3.c Hybrid design 
3.d Design optimality 

 
7.3 Response Surface Methods (RSMs) 

In general, suppose that the scientist or engineer is concerned with a product, 
process, or system involving a response y that depends on the controllable input 
variables (x1, x2, …,xn).  The relationship is 

 ( ) ( )1 2 1 2, , , , , ,n ng f x x x x x xe= +)
L L  (88) 

where the form of the true response function f is unknown and perhaps very 
complicated, and e is a term that represents other sources of variability not accounted 
for in f.  Thus, e includes errors in measurement, regression (or interpolation), 
numerical noise, etc. 
 

7.3.1 Least Squares (LS) Method 
The LS approximation can be formulated as 

 
1

( ) ( ) ( ) ,NB T ND
i ii

g h a R
=

= º Îåx x h x a x)  (89) 

where NB is the number of terms in the basis, ND is the number of elements in the 
union set of both design and random parameters, h is the basis functions, and a is 
the LS coefficient vector.  Mutually independent functions must be used in a basis. 
A global LS approximation at xI can be expressed as 

 
1

( ) ( ) ( ) , 1, ,NB T
I i I i Ii

g h a I NS
=

= = =åx x h x a)
L  (90) 

where NS is the number of sample points and xI is a given sample point.  The 
coefficients ai are obtained by performing a least squares fit for the global 
approximation, which is obtained by minimizing the difference between the global 
approximation and exact response at the set of given sample points.  This yields the 
quadratic form 

 
[ ]2

1
2

1 1

( ) ( )

( ) ( )

NS
I II

NS NB
i I i II i

E g g

h a g

=

= =

= -

é ù= -ë û

å

å å

x x

x x

)

 (91) 

Equation above can be rewritten in a matrix form as 

 [ ] [ ]TE = - -Ha g Ha g  (92) 

where 
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 (93) 

To find the coefficients a, the extreme of the square error E(x) can be obtained by 

 0T TE¶
= - =

¶
H Ha H g

a
 (94) 

where H is referred to as the basis matrix. The coefficient vector in Eq. (89) is 
represented by 

 ( ) 1T T-
=a H H H g  (95) 

By substituting Eq. (95) into Eq. (89), the approximation ( )g x)  can then be 
expressed as 

 
( ) 1

( ) ( )

( )

T

T T T

g
-

=

=

x h x a

h x H H H g

)

 (96) 

Read Chapter 2 in the reference book, Response Surface Methodology, written by 
Raymond H. Myers and Douglas C. Montgomery. 
 
7.3.2 Moving Least Squares (MLS) Method 
The MLS approximation can be formulated as 

 
1

( ) ( ) ( ) ( ) ( ),NB T ND
i ii

g h a R
=

= º Îåx x x h x a x x)  (97) 

where NB is the number of terms in the basis, ND is the number of elements in the 
union set of both design and random parameters, h is the basis functions, and a(x) is 
the MLS coefficient vector, which as indicated, is a function of the design parameter 
x.  Mutually independent functions must be used in a basis.  Any function included 
in the basis can be exactly reproduced using MLS approximation, which is 
characterized as a consistency. 
Lancaster and Salkauskas (1986) defined a local approximation at xI by 

 
1

( , ) ( ) ( ) ( ) ( ), 1, ,NB T
I i I i Ii

g h a I NS
=

= = =åx x x x h x a x)
L  (98) 

where NS is the number of sample points and Id  is a given sample point.  The 
coefficients ( )ia x  are obtained by performing a weighted least squares fit for the 
local approximation, which is obtained by minimizing the difference between the 
local approximation and exact response at the set of given sample points.  This yields 
the quadratic form 
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where ( )Iw -x x  is a weight function with a compact support.  An appropriate support 
size for the weight function at any data point xI must be selected so that a large 
enough number of neighboring data points is included to avoid a singularity.  A 
variable weight over the compact support furnishes a local averaging property of the 
response. 
Equation (99) can be rewritten in a matrix form as 

 [ ] [ ]( ) ( ) ( ) ( )TE = - -x Ha x g W x Ha x g  (100) 

where 
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 (101) 

and 

 

1 1

2 2

( ) 0 0
0 ( ) 0
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w D
w D

w D
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L
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 (102) 

To find the coefficients ( )a d , the extreme of the weighted square error E(x) can be 
obtained by 

 ( ) ( ) ( ) ( ) 0
( )

E¶
= - =

¶
x M x a x B x g

a x
 (103) 

where ( )M x  is referred to as the moment matrix, and is given by 

 ( ) ( ) and ( ) ( )T T= =M x H W x H B x H W x  (104) 

The coefficient vector in Eq. (97) is represented by 

 1( ) ( ) ( )-=a x M x B x g  (105) 

By substituting Eq. (105) into Eq. (97), the approximation  can then be 
expressed as 

( )g x)
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1
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 (106) 

 
In this study, the modified form of the original exponential weight function, 

2

( ) 2ID
Iw D e a-= , is proposed to yield the form 
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in order to possess C1 continuity.  The parameter a  determines the localizing 
magnitude of the weight function.  As parameter a  decreases, exponential 
weighting possesses more localizing characteristics, since it approaches the Dirac 
delta function with an unchanged support.  The appropriate localizing parameter is 
selectively suggested in the range a=8~12. 
The cubic-spline weight function, which is a C2-function, is expressed in the 
form 
 

 

2 32 1
3 2

2 34 4 1
3 3 2

4 4  for 0

( ) 4 4   for 0
0     for 1

( )

I I I

I I I I I

I

I I

D D D
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D

D

ì - + £ £
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ï ³ïî

= -x x x

  

 
Exponential and cubic-spline weight functions are comparatively plotted in Figure 
below.  In comparison, the cubic-spline function possesses less localizing and greater 
averaging features over the compactly supported subdomain.  Hence, the 
approximation is evenly accurate. 
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Exponential Weight (a=8) and Cubic-Spline Weight (s=2.5) Functions 

 

   
( a ) Exact Response ( b ) Using LS Method ( c ) Using MLS Method 

Response Surface Approximation for Branin Response 

 

        
( a ) Exact Response ( b ) Using LS Method       ( c ) Using MLS Method 

Response Surface Approximation for Severe Response 
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7.3.3 Kriging Method 
Kriging belongs to the family of nonlinear least squares estimation algorithms. As 
illustrated in Figure below, the aim of kriging is to estimate the value of an unknown 
real-valued function, g, at a point, x*, given the values of the function at some other 
points, x1, …, xNS.  A kriging estimator is said to be linear because the predicted value 

( )g x) is a linear combination that may be written as 

 
1

( ) ( ( )) ( ) where ( )
NS

I I I I
I

g w D g D
=

= = -åx x x x x x)
 

The weights wi(D) are solutions of a system of linear equations which is obtained by 
assuming that g is a sample-path of a random process G(x), and that the error of 
prediction 

 
1

( ) ( ) ( ( )) ( )
NS

I I
I

G w D ge
=

= - åx x x x  

is to be minimized in some sense. For instance, the so-called simple kriging 
assumption is that the mean and the covariance of G(x) is known and then, the 
kriging predictor is the one that minimizes the variance of the prediction error. 
 

 
 
 
Other advanced RSM techniques include “radial basis function”, “support vector 
machine”, “relevance vector machine”, “polynomial chaos expansion”, “stochastic 
collocation method”, etc. 
 
Advantages of RSM: 

1. Sensitivity (or derivative) of system performances with respect to design variables 
can be obtained based on the approximate responses. 
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2. No need to construct an interface between design optimization and engineering 
analysis. 

3. Graphical method can be used for design optimization. 
 
Disadvantages of RSM: 

1. A curse of dimensionality 
2. Accuracy of an approximate response surface and its derivative is of greatest 

concern. 
3. It may lead to a wrong solution although it is more convenient. 
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CHAPTER 8. DESIGN UNDER UNCERTAINTY 
 
8.1 Formulation of Design under Uncertainty 

The design under uncertainty, so-called Reliability-Based Design Optimization 
(RBDO) model, can generally be defined as: 

 { }{ }
L U

Minimize Cost( )
subject to ; ( ) 0 , 1, ,

                       , and
ii f

nd nr

P G P i nc

R R

> < =

£ £ Î Î

d
X d X

d d d d X

L   

where nc is the number of probabilistic constraints; nd is the number of design 
parameters; nr is the number of random variables;  is the design 

vector;  is the random vector; and the probabilistic constraints are 

described by the performance function , their probabilistic models, and 

the probability of failure.  The probability of failure is defined as  with a 

target reliability index  where the failure is defined as 

 .  The RBDO procedure is graphically illustrated in 
Fig. 7.1. 
 
 

 
 

Figure 8.1: Reliability-Based Design Optimization (RBDO) 
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8.2 Deterministic Design Optimization vs. RBDO Procedure 

Initial Design

Feasibility 
Check

Design 
Optimization

Critical G?
Engineering 

Analysis
(e.g.,, FEA)

Converged?

Termination

Design 
Update

Figure 8.2 Deterministic Design 
Procedure 

 
Deterministic 

Design 
Optimization

Preliminary 
Reliability 
Analysis

Design 
Optimization

Critical Gp?
Refined 

Reliability 
Analysis

Engineering 
Analysis

(e.g.,, FEA)

Converged?

Termination

Design 
Update

Figure 8.3 RBDO Procedures 
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8.3 Approaches 
 
The statistical description of the failure of the performance function  requires a 
reliability analysis and is expressed by the CDF  of the performance function as 

 ( ( ) 0) (0) ( )
i ii G tP G F b£ = ³ FX   

where the CDF of the performance function is ( )
iG iF g  and its reliability is described 

as 

   

The probabilistic constraint can be further expressed in two different ways through 
inverse transformations: 

 RIA:     

 PMA:   { }1 ( ) 0
i i ip G tG F b-= F £   

where  and  are respectively called the safety reliability index and the 
probabilistic performance measure for the ith probabilistic constraint. 
 
RIA-RBDO: 

L U

Minimize Cost( ; )
subject to ( ; ) ( ; ) 0, 1, ,

                       , and
i iRIA t s
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U
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Figure 8.4: Random Search Space in RIA 
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PMA-RBDO: 
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                       , and
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Figure 7.5: Random Search Space in PMA 

 
Table 7.1: Summary of the RIA and PMA 

 Summary 
RIA 1. Good for reliability analysis 

2. Expensive for sampling method and MPP-based method when 
reliability is high. 

3. MPP-based method could be unstable when reliability is high or a 
performance function is highly nonlinear. 

PMA 1. Good for design optimization. 
2. Efficient and stable when reliability is high and/or a performance 

function is highly nonlinear. 
 
 

Neither analytical multi-dimensional integration nor direct numerical integration is 
possible for large-scale engineering applications.  Existing approximate methods for 

Feasible design space 
G1<0, G2<0 

Failure design 
space for G1>0 

Failure design 
space for G2>0 
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probability analysis can be categorized into five groups: 1) sampling method; 2) 
expansion method; 3) the most probable point (MPP)-based method; and 4) stochastic 
response surface approximate method. 
 
 
8.4 Probabilistic Design Sensitivity Analysis for Design under Uncertainty 
 

In the process of design under uncertainty, an important component is a sensitivity 
analysis of the estimated failure probability with respect to both random and 
deterministic design parameters, which is known as the Reliability-Based Design 
Sensitivity Analysis.  The sensitivity information is useful since it quantifies the 
effect of variations in design parameters on the structural failure probability.  The 
reliability-based design sensitivity analysis of the probabilistic constraint in RIA and 
PMA with respect to design parameters are presented. 

 

8.4.1 Probabilistic Design Sensitivity Analysis in RIA 

In RIA, probabilistic constraints are expressed in terms of the safety reliability index.  
The derivative of safety reliability with respect to design parameter di, i=1,…, n can 
be obtained by using a chain rule as 
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where *

( ) 0G =Uu  is the MPFP in U-space.  Using the transformation U=T(X;d), Eq. 
(107) can be rewritten as 
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8.4.2 Probabilistic Design Sensitivity Analysis in PMA 

In PMA, probabilistic constraints are described in terms of the probabilistic 
performance measure, which in PMA is nothing but the performance measure 
evaluated at the MPP.  The derivative of the estimated probabilistic performance 
measure with respect to design parameter di, i=1,…, n can be obtained as 
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where *
tb b=u  is the MPP in U-space.  Using the transformation U=T(X;d), Eq. (109) 

can be rewritten as 

 
*

,FORM ( ( ; ))

t

p

i i

G G
d d

b b==

¶ ¶
=

¶ ¶ X x

T X d  (110) 

 
 

Table 8.2: Nonlinear Transformation, T: X à U 

 
 
 
8.5 Code for Design under Uncertainty 
%%%%%%%%%%   A 99 LINE RBDO CODE WRITTEN BY WANG P.F. & YOUN B.D.  %%%%%%%% 
function RBDO(nc,nd,x0,dist,lb,ub,rt) 
clear all; close all; clc; 
global nc nd nm bt stdx Iters Cost      
nm=2; nc=3; nd=2;  bt=norminv(0.99,0,1);  
x0=[5,5]; stdx=[0.6,0.6]; lb=[0,0]; ub=[10,10];  
xp=x0; Iters=0; 
options = optimset('GradConstr','on','GradObj','on','LargeScale','off'); 
[x,fval]=fmincon(@Costfun,x0,[],[],[],[],lb,ub,@frelcon,options) 
%====================      Obj. Function   ===============================% 
function [f,g]= Costfun(x)  à Interface must be implemented here. 
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    f=x(1)+x(2); 
    g=[1 1]; 
    Cost=f; 
end 
%====================  Define Constraints and Gradiants  =================% 
function [c,ceq,GC,GCeq] = frelcon(x)  
    ceq=[]; GCeq=[]; 
    for j = 1:nc 
        if nm==1 
            [G,DG]=AMV(x,j); 
            beta(j)=G; 
            dbeta(:,j)=DG./stdx; 
        elseif nm==2 
            [G,DG]=HL_RF(x,j); 
            beta(j)=bt-G; 
            dbeta(:,j)=-DG; 
        end 
    end 
    c=beta; GC=dbeta;  
    dx=norm(x-xp); 
    if  dx>1d-5  || Iters == 0 
        Iters=Iters+1; 
        SHOW(Iters,x,c,GC); 
    end 
    xp = x; 
end 
%=================  PMA Approach with AMV Algorithm  =====================% 
function [G,DG]=AMV(x,kc) 
    u=zeros(1,nd); iter = 0; Dif=1; 
    while Dif>1d-5 & iter<20                       
        iter=iter+1;  
        if iter>1 
            u=DG*bt/norm(DG); 
        end         
        [G,DG]=cons(u,x,kc); 
        U(iter,:)=u/bt;         
        if iter>1 
            Dif=abs(U(iter,:)*U(iter-1,:)'-1); 
        end 
    end 
end 
%================== RIA Approach with HL_RF Algorithm ====================% 
function [beta,dbeta]=HL_RF(x,kc) 
    u=zeros(1,nd); iter=0;  Dif=1; sign = 1; 
    while Dif >= 1d-5 & iter < 20    
        iter=iter + 1; 
        [ceq,GCeq]=cons(u,x,kc); 
        u=(GCeq*u'-ceq)/norm(GCeq)^2*GCeq; 
        U(iter,:)=u/norm(u); 
        if iter ==1 
            sign = -ceq/abs(ceq);    
        elseif iter>1 
            Dif=abs(U(iter-1,:)*U(iter,:)' - 1); 
        end 
    end 
    beta = sign*norm(u); 
    dbeta = -u./(beta*stdx); 
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end 
%============================ Constraint Fun. ============================% 
function [ceq,GCeq]=cons(u,d,kc) à Interface must be implemented here. 
    x = u.*stdx+d; 
    if kc == 1 
       ceq=1-x(1)^2*x(2)/20; 
       GCeq(1)=-x(1)*x(2)/10*stdx(1); 
       GCeq(2)=-x(1)^2/20*stdx(2); 
    elseif kc == 2 
       ceq=1-(x(1)+x(2)-5)^2/30-(x(1)-x(2)-12)^2/120; 
       GCeq(1)=(-(x(1)+x(2)-5)/15-(x(1)-x(2)-12)/60)*stdx(1); 
       GCeq(2)=(-(x(1)+x(2)-5)/15+(x(1)-x(2)-12)/60)*stdx(2); 
    elseif kc == 3 
       ceq=1-80/(x(1)^2+8*x(2)+5); 
       GCeq(1)=x(1)*160*stdx(1)/((x(1)^2+8*x(2)+5))^2; 
       GCeq(2)=80*8*stdx(2)/((x(1)^2+8*x(2)+5))^2; 
    end 
end 
function  SHOW(Iters,x,c,GC)%====== Display the Iteration Information=====% 
    fprintf(1,'\n********** Iter.%d ***********\n' ,Iters); 
    disp(['Des.: ' sprintf('%6.4f  ',x)]); 
    disp(['Obj.: ' sprintf('%6.4f',Cost)]);   
    if nm==1 
        disp(['Cons.: ' sprintf('%6.4f  ',c)]); 
    elseif nm==2 
        disp(['Index.: ' sprintf('%6.4f ',bt-c)]); 
    end 
    disp(['Sens.: ' sprintf('%6.4f  ',GC)]); 
    fprintf('\n\n') 
end 
end 
 
 

 
Homework 24: RBDO of a Crashworthiness Problem 
 
A vehicle side impact problem is considered for design optimization.  All the design 
variables are shown in Table A.  In this example, the abdomen load is treated as an 
objective function with nine constraints defined in Table B.   
 

Table A: Properties of random and design variables 
(X10 and X11 have “0” value) 

Random  
Variables 

Distr.  
Type 

Std 
 Dev. dL d dU 

X1  Normal 0.050 0.500 1.000 1.500 
X2  Normal 0.050 0.500 1.000 1.500 
X3  Normal 0.050 0.500 1.000 1.500 
X4  Normal 0.050 0.500 1.000 1.500 
X5  Normal 0.050 0.500 1.000 1.500 
X6   Normal 0.050 0.500 1.000 1.500 
X 7   Normal 0.050 0.500 1.000 1.500 
X8    Lognorm 0.006 0.192 0.300 0.345 
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X9    Lognorm 0.006 0.192 0.300 0.345 
X10    Normal 10.0 X10  and X11 are not 

design variables X11   Normal 10.0 
 
 

Table B: Design variables and their bounds 
Constraints Safety Criteria 

G1: Abdomen load (kN) £ 1 
G2-G4: Rib deflection (mm) Upper £ 32 
 Middle 
 Lower 
G5-G7: VC (m/s) Upper £ 0.32 
 Middle 
 Lower 
G8: Pubic symphysis force (kN) £ 4 
G9: Velocity of B-pillar £ 9.9 
G10: Velocity of front door at B-pillar £ 15.7 

 
 

 
Cost(weight) = 1.98+4.90*x(1)+6.67*x(2)+6.98*x(3)+4.01*x(4)+1.78*x(5)+2.73*x(7) 
 
G1= (1.16-0.3717*x(2)*x(4)-0.00931*x(2)*x(10)-0.484*x(3)*x(9)+0.01343*x(6)*x(10))-
1;  
 
G2 = (28.98+3.818*x(3)-4.2*x(1)*x(2)+0.0207*x(5)*x(10)+6.63*x(6)*x(9)-
7.7*x(7)*x(8)+0.32*x(9)*x(10))-32;  
 
G3= (33.86+2.95*x(3)+0.1792*x(10)-5.057*x(1)*x(2)-11*x(2)*x(8)-0.0215*x(5)*x(10)-
9.98*x(7)*x(8)+22*x(8)*x(9))-32;  
 
G4 = (46.36-9.9*x(2)-12.9*x(1)*x(8)+0.1107*x(3)*x(10))-32;  
 
G5 = (0.261-0.0159*x(1)*x(2)-0.188*x(1)*x(8)-
0.019*x(2)*x(7)+0.0144*x(3)*x(5)+0.0008757*x(5)*x(10)+0.08045*x(6)*x(9)+0.00139
*x(8)*x(11)+0.00001575*x(10)*x(11))-0.32;  
 
G6 = (0.214+0.00817*x(5)-0.131*x(1)*x(8)-0.0704*x(1)*x(9)+ 0.03099*x(2)*x(6)-
0.018*x(2)*x(7)+0.0208*x(3)*x(8)+ 0.121*x(3)*x(9)-
0.00364*x(5)*x(6)+0.0007715*x(5)*x(10)-
0.0005354*x(6)*x(10)+0.00121*x(8)*x(11)+0.00184*x(9)*x(10)- 0.018*x(2).^2)-0.32;  
 
G7 = (0.74-0.61*x(2)-0.163*x(3)*x(8)+0.001232*x(3)*x(10)-
0.166*x(7)*x(9)+0.227*x(2).^2)-0.32;  
 
G8 = (4.72-0.5*x(4)-0.19*x(2)*x(3)-
0.0122*x(4)*x(10)+0.009325*x(6)*x(10)+0.000191*x(11).^2)-4;  
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G9 = (10.58-0.674*x(1)*x(2)-1.95*x(2)*x(8)+0.02054*x(3)*x(10)-
0.0198*x(4)*x(10)+0.028*x(6)*x(10))-9.9;  
 
G10 = (16.45-0.489*x(3)*x(7)-0.843*x(5)*x(6)+0.0432*x(9)*x(10)- 0.0556*x(9)*x(11)-
0.000786*x(11).^2)-15.7; 

 
The Design Optimization is formulated as 

( )
9

Minimize ( )

Subject to   ( ) 0 90%, 1, ,10

  ,
j

L U

f

P G j

R

£ ³ =

£ £ Î

x

x

x x x x

L  

 
Solve the RBDO optimization problem using the matlab function, ‘fmincon’, in 
Matlab) starting at the initial design (d1 to d7 = 1.000, d8 = d9 = 0.300) and 
deterministic optimum design.  Make your own discussion and conclusion. 
 

 
 
8.6 Case Studies 
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Example 1: Reliability Analysis of Durability Model 
 
A roadarm in a military tracked vehicle shown in Fig. E1 is employed to 

demonstrate the effectiveness of the HMV method for a large-scale problem.  Reliability 
analysis for this example involves the crack initiation fatigue life performance measure.  
A 17-body dynamics model is created to drive the tracked vehicle on the Aberdeen 
proving ground 4 at a constant speed of 20 miles per hour forward (positive X2).  A 20-
second dynamic simulation is performed with a maximum integration time step of 0.05-
second using the dynamic analysis package DADS. 
 

 
Figure E1. Military Tracked Vehicle 

 
Three hundred and ten 20-node isoparametric finite elements, STIF95, and four 

beam elements, STIF4, of ANSYS are used for the roadarm finite element model shown 
in Fig. E2.  The roadarm is made of S4340 steel with material properties of Young’s 
modulus E=3.0´107 psi and Poisson’s ratio n=0.3.  Finite element analysis is performed 
to obtain the stress influence coefficient of the roadarm using ANSYS by applying 18 
quasi-static loads.  To compute the multiaxial crack initiation life of the roadarm, the 
equivalent von Mises strain approach is employed.  The fatigue life contour in Fig. E3 
shows critical nodes and the shortest life is listed in Table E1.  The computation for 
fatigue life prediction and for design sensitivity require, respectively, 6950 and 6496 
CPU seconds (for 812´8 design parameters) on an HP 9000/782 workstation. 

Intersection 1
Intersection 2

Intersection 3

Intersection 4

20 in.

1x'

3x'

2x'

2x'

 
( a ) Geometry of Roadarm Model 
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( b ) Finite Element Model of Roadarm Model 
 

Figure E2. Geometry and Finite Element Model for Roadarm Model 
 

Table E1. Critical Nodes for Crack Initiation Fatigue Life 
Node ID Life [Load Cycle] Life [Year] 

885 .9998E+07 6.34 
889 .1134E+08 7.19 
990 .5618E+08 35.63 
994 .6204E+08 39.35 

 

 
 

Figure E3. Contour for Crack Initiation Fatigue Life 
 

The random variables and their statistical properties for the crack initiation life 
prediction are listed in Table E2.  Eight tolerance random parameters characterize four 
cross sectional shapes of the roadarm.  The contour of a cross sectional shape consists of 
four straight lines and four cubic curves, as shown in Fig. E4.  Side variations ( 1x¢ -
direction) of the cross sectional shapes are defined as the random parameters b1, b3, b5, 
and b7 for intersections 1 to 4, respectively, and vertical variations ( 3x¢ -direction) of the 
cross sectional shapes are defined using the remaining four random variables. 

For reliability analysis, a failure function is defined as 

1236

12Torsion
Bar

Center of the
Roadwheel

1x'

3x'
2x'

Intersection 1
b1, b2 Intersection 2

b3, b4 Intersection 3
b5, b6

Intersection 4
b7, b8

A cluster of nodes  
with shortest life; 
nodes 885,889, 990, 994 
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( )( ) 1

t

LG
L

= -
XX  (E1) 

where ( )L X  is the number of service blocks to initiate crack at node 885 and tL  is the 
number of target service blocks to initiate crack in the structural component.  The 
number of blocks at node 885 for the current design is 9.998E+6 (20 seconds per 
block), which constitutes the shortest life of the component.  The target crack initiation 
fatigue life is set as 0.1 years (i.e., 1.577E+5 cycles) to illustrate the concave performance 
function. 
 

Table E2. Definition of Random Variables for Crack Initiation Fatigue Life Prediction 
Random 
Variables 

Mean 
Value 

Standard 
Deviation 

Distribution 
Type 

Tolerance b1 1.8776 0.094 Normal 
Tolerance b2 3.0934 0.155 Normal 
Tolerance b3 1.8581 0.093 Normal 
Tolerance b4 3.0091 0.150 Normal 
Tolerance b5 2.5178 0.126 Normal 
Tolerance b6 2.9237 0.146 Normal 
Tolerance b7 4.7926 0.246 Normal 
Tolerance b8 2.8385 0.142 Normal 

 

1x'

Design Parameters:
b1, b3, b5, b7 Design Parameters:

b2, b4, b6, b8

Cross Sectional Shape

Straight
Lines

Cubic Curves

3x'

bi, i = 1,3,5,7

bi, i = 2,4,6,8

 
Figure E4. Definition of Random Parameters in Roadarm Model 

 
The conventional AMV and proposed HMV method are used to calculate the reliability 
of the crack initiation life.  Beginning at the mean point, the HMV method has 
converged to MPP at * [1.872,3.093,1.708,2.830,2.218,2.755,4.758,2.836]T=x  with a target 
reliability index 3.325tb = , as obtained from RIA.  In contrast, the AMV method has 
diverged due to oscillation.  Consistent with the previous concave function examples, the 
HMV method has converged while the AMV method has diverged. 
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Table E3. MPP Search History in Roadarm Durability Model 

Iteration 
AMV HMV 

G(X) b G(X) b V 
0 62.404 0.0 62.404 0.0 N.A. 
1 0.014 3.325 0.014 3.325 N.A. 
2 0.004 3.325 0.004 3.325 N.A. 
3 -0.001 3.325 0.001 3.325 -0.0038 
4 0.002 3.325 0.000 3.325 -0.0042 
5 -0.001 3.325 

 

6 0.002 3.325 
7 -0.001 3.325 
… … … 
19 -0.001 3.325 
20 0.002 3.325 

 Diverged Converged 
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Example 2: Bracket Problem in RBDO Model 
Figure E5 shows design parameterization and stress analysis result of a bracket at the 
initial design.  A total of 12 design parameters are selected to define the inner and outer 
boundary shapes of the bracket model while maintaining symmetry.  Design 
parameterization is performed by selecting the control points of the parametric curves.  
The bracket is modeled as a plane stress problem using 769 nodes, 214 elements, and 
552 DOF with the thickness of 1.0 cm.  The boundary condition is imposed to fix two 
lower holes.  Using FEM, stress analysis required 18.23 CPU sec., while a design 
sensitivity analysis required 35.44/12=2.95 sec. per design variable.  The bracket is 
made of steel with E = 207 GPa, n = 0.3, and the yield stress of s=400 MPa.  
Probabilistic constraints are defined on two critical regions using the von Mises stress as 
shown in Fig. E5(b).  Random parameters are defined in Table E4 and a sequential 
quadratic programming optimizer is used with a target reliability index of b=3.0 in the 
RBDO model. 

   
 ( a ) Design Parameterization ( b ) Stress Contour at Initial Design 

Figure E5. Initial Bracket Design 
 

Table E4. Random Variables in Bracket Model 

Random 
Variables dL Mean 

(Design) dU Standard 
Deviation 

Distrib. 
Type 

1 0.800 1.006 3.000 0.2 Normal 
2 1.600 3.004 3.500 0.2 Normal 
3 0.000 0.000 1.500 0.2 Normal 
4 4.470 6.388 7.000 0.2 Normal 
5 3.850 4.139 4.500 0.2 Normal 
6 2.690 3.332 3.800 0.2 Normal 
7 13.030 13.32 14.000 0.2 Normal 
8 1.850 2.493 2.800 0.2 Normal 
9 15.550 15.84 16.500 0.2 Normal 
10 2.500 3.509 3.800 0.2 Normal 
11 0.000 0.000 1.200 0.2 Normal 
12 6.000 7.776 14.000 0.2 Normal 

Gp1,Gp2 

Gp3, Gp4 

d1 
d2 

d6 
d7 

d3 
d4 

d5 

d8 

d9 

d1

0 

d1

1 

d1

2 

15000 N 
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Figure E6 shows several design iterations throughout the RBDO process.  At the 
optimum design, the overall area is substantially reduced at the inner boundary and 
slightly at the outer boundary.  Figure E7 (a) shows the stress contour at the MPP of the 
initial design where all probabilistic constraints are largely inactive.  Figure E7 (b) 
shows the stress contour at the MPP of the optimum design. 
Design histories are shown in Fig. E8.  The area of the reliability-based optimum design 
is reduced by 47% of the original area.  The first probabilistic constraint becomes active 
while other probabilistic constraints inactive at the optimum design with 99.9% 
reliability as shown in Fig. E8 (b).  The significantly changed shape design parameters 
are 12th, 1st, and 2nd parameters.  In Table E5, the PMA with both HMV and AMV 
methods is compared to RIA in terms of computational efficiency and robustness.  As in 
the roadarm model, the RIA fails to converge in reliability analysis, whereas PMA 
successfully obtains an optimal design for the bracket model.  In addition, PMA with the 
HMV method performs better than with the conventional AMV method in terms of 
numerical efficiency (195 analyses vs. 295 analyses). 
 

     

( a ) Initial Design ( b ) 1ST RBDO Iteration ( c ) 4TH RBDO Iteration 

    

( d ) 7TH RBDO Iteration  ( e ) Optimum Design 

Figure E6. Shape Design History in RBDO Process 
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( a ) Stress Contour At Initial Design ( b ) Stress Contour At Optimum Design 

Figure E7. Analysis Results Comparison 

 

( a ) Volume History   ( b ) Probabilistic Constraint History 

 

( c ) Design Parameter History 

Figure E8. Design Optimization with 99.9 % Reliability 

Table E5. Computational Efficiency and Robustness in RIA and PMA 
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Opt. Iter. 

PMA RIA 
HMV AMV HL-RF 

Line 
Search Analysis Line 

Search Analysis Line 
Search Analysis 

0 1 5 1 5 1 40 
1 1 7 1 7 3 120 
2 2 14 2 14 1 N.A. 
3 1 5 1 5 

 

4 3 25 3 46 
5 2 16 2 16 
6 1 10 1 12 
7 1 10 1 16 
8 1 9 1 17 
9 1 10 1 8 
10 1 14 1 8 
11 1 16 1 9 
12 1 9 1 18 
13 2 25 1 19 
14 1 10 1 19 
15 1 10 2 25 
16  3 51 

Optimum 21 195 24 295 Failure to 
Converge 
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Example 3: Reliability-Based Robust Design Optimization for Gasket 
Sealing Performance 
 

Reliability-based robust design optimization is applied to an engine rubber 
gasket design problem.  An engine gasket is used to prevent oil leakage.  The design 
objective is to determine the shape of the gasket so that robustness of the sealing 
performance and reliability of other performances like the contact force ( CT

iF ) and stress 
( is ) are improved when installed and during the operation.  Parametric spline curves 
are used to represent the gasket boundary, and the shapes of these curves are defined as 
design parameters. Nine shape design parameters are defined, as shown in Fig. E9. In 
order to maintain the symmetrical shape, four design parameters are linked.  Both 
design and random parameters are defined in Table E6.  All random parameters are 
assumed to be statistically independent. 
 

Table E6. Properties of Design and Random Variables 
IDV,IRV dL d, mean dU Standard Dev. Distribution 

1 -0.01 0.00 0.01 0.001 normal 
2 -0.01 0.00 0.01 0.001 normal 
3 -0.4 0.00 0.4 0.01 normal 
4 -0.4 0.00 0.4 0.01 normal 
5 -0.4 0.00 0.4 0.01 normal 
6 -0.4 0.00 0.4 0.01 normal 
7 -0.4 0.00 0.4 0.01 normal 
8 0.00 0.00 0.01 0.001 normal 
9 0.00 0.00 0.01 0.001 normal 

 
Figure E9 shows the initial gasket geometry before installation. Since the engine 

block is much stiffer than the rubber gasket, only the gasket is modeled, using a 
meshfree method with 325 particles; it is assumed that all other parts are rigid. 

 
 

 
Figure E9. Design Parameterization of the Gasket 

 
Although the sealing performance can be enhanced by increasing the gasket size 
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or by applying a large amount of installation force, such methods can cause stress 
concentration, and thus, short service life.  The improvement of the sealing performance 
is defined as the minimization of the gap.  Thus, the reliability-based robust design 
optimization is formulated as an S-Type as 

 

0 0

2 2

,

min  sgn( )

s.t.    ( ( ; ) 0) ( ), 1, ,

        
( ; ) 0, 1, ,

             ( ; ) 0, 1, ,
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Since the contact region cannot be defined before analysis is carried out, a possible 
contact region is initially defined, and the square sum of the gap (∑gap2) along the 
region is then measured at the specified points, as shown in Fig. E10. 

 
Figure E10. Sealing Performance 

 
 

Figure E11. Stress Result at Initial Design 

Contact Region 

Contact Region 
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Figure E12. Stress Result at Deterministic Optimum Design 

 
Figure E13. Stress Result at Reliability-Based Robust Optimum Design 

 

    
( a ) Deterministic Optimum Design ( b ) Reliability-Based Robust Optimum Design 

Figure E14. Deterministic Optimum Design and Reliability-Based Robust Optimum 
Design 

 
A reliability-based robust optimum design is successfully obtained after seven 

iterations of reliability-based robust design optimization.  As shown in Figs. E12-14, the 
reliability-based robust optimum design is compared to the initial and deterministic 
optimum designs.  The reliability-based robust optimum design has higher reliability 

Contact Region 

Contact Region 
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and quality while it has slightly smaller contact region than the deterministic optimum 
design.  It is interesting to note that the initial circular region of the gasket top changes 
to an V-shape at the optimum design in order to reduce the concentration of stress, 
while increasing the contact region.  The reliability-based robust optimum design has 
smaller dip than the deterministic optimum design, as shown in Fig. E14.  Table E7 
summarizes the result of sealing performance in terms of the gap, showing product 
quality improvement at the initial and optimum design.  The quality of sealing 
performance ( opt int1 ( ) ( )ql qlC C- x x ) is improved by 39.2%. 
 

Table E7. Gasket Sealing Quality Improvement 
Gap Initial Reliability-Based 

Robust Optimum 
Mean 0.8692 0.3894 
Std. Dev. 0.0131 0.0132 
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Example 4: LCD Manufacturing Process 
 

The bonding process of layered plates (called an Indium-Tin-Oxide (ITO) sputtering 
target process) is very popular in the manufacturing of semi-conductor or electronic 
display components.  During this process, two plates (glass and copper) are bonded 
together by a suitable adhesive to form laminated stacks, which can be further processed 
in the following 4 steps: 

1) heating the two plates above the melting temperature of the adhesive; 
2) applying the adhesive at each surface of the plate; 
3) putting them in contact with each other; 
4) cooling them down to a room temperature. 
 

Heating

Adherent [1] = ITO target
Adherent [2] = backing plate

Apply liquid adhesive

Adhesive = Indium

Put together & Cooling

 
In this process, residual stress due to the mismatch of the thermal expansion 

coefficients of two layered plates could result in failures of the component such as crack, 
distortion, and interfacial delamination.  Therefore, it is very important to accurately 
estimate the stress in order to improve the product quality.  Herein, a transient thermal 
Finite Element (FE) analysis was used to predict the stress and deformation of plates.  
The model for the layered bonding plates is shown in Fig. E15.  Considering the 
symmetry of the problem, a quarter of the model is used, as shown in Fig. E15(a).  Due 
to the brittle property and high stress at the adherent 1, cracks and distortion could 
occur.  To reduce such defects, weights are applied on top of the adherent 1, as shown in 
Fig. E15(a) from the beginning of the process, and are removed at the end of the cooling 
process.  The bonding assembly is placed on a pair of supporting bars, as shown in Fig. 
E15(a).  Three design variables, weight at the edge (X1 or F2), weight at the center (X2 or 
F1), and height of the bar (X3 or y0), are considered in this problem.  Their statistical 
information is shown in Table E8.  The objective function is to minimize the mean and 
standard deviation of residual stress.  Two constraints are maximum stress during the 
process (< 130MPa) and center displacement (< 3mm). 
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Table E8 Design/random properties of layered plate bonding model 
Design 

Variables Distr.Type Mean Std. 
Dev. 

X1 Normal 4000 400 
X2 Normal 2000 200 
X3 Normal 1 0.1 

 
 

  
 

(a) Isometric view of the quarter model   (b) FM model 

Figure E15 Target bonding process and FE model 

The RBRDO is formulated as   

1 2 3
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where mr and sr are the mean and standard deviation of residual stress; G1(X) is the 
instantaneous stress; G2(X) is the edge displacement; bti=3. 

The EDR method is carried out to evaluate the quality (= mean + standard deviation) 
of residual stress and the reliabilities of two constraints. The eigenvector sampling 
scheme for the EDR method is adaptively chosen in the RBRDO process, since the 
system responses are highly nonlinear. First, RBRDO starts with 2N+1 sampling scheme 
for the EDR method.  Then when satisfying a relaxed convergence criteria (e £ 0.1), the 
RBRDO process turns the 4N+1 sampling on.  In this example, the standard deviation at 
the fourth design iteration is quite small but this estimation is not accurate enough 
because of highly nonlinear responses.  Therefore, after the fourth design iteration, 
RBRDO is performed with the 4N+1 sampling scheme to enhance accuracy of the quality 
and reliability estimates.  The SQP is used for a design optimizer in RBRDO.  After eight 
design iterations, the optimum design is found where X2 is close to the upper bound, as 
shown in Table E9.  The EDR method requires totally 87 function evaluations for 
RBRDO.  MCS with 1000 random samples is used to confirm the EDR results at 
optimum design.  It is found that the EDR estimates for the mean and standard 
deviation of the residual stress at the optimum design are very close to those using MCS.  
The overall quality is drastically improved by 38%. 
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Table E9 Design history of layered bonding plates model 

Iteration Obj Mean  
Std. 
Dev.  X1 X2 X3 G1 G2 

# of 
analysis 

0 23.322 23.020 0.302 4000.000 2000.000 1.000 -94.876 1.051 7 
1 21.437 21.350 0.087 4579.841 3633.035 2.317 -85.742 0.108 7 
2 21.358 21.215 0.143 4659.514 4704.467 3.356 -79.354 -0.467 7 
3 21.177 21.040 0.137 4316.124 5000.000 3.734 -77.240 -0.631 7 
4 20.884 20.808 0.075 3121.245 5000.000 3.772 -77.371 -0.567 7 
5 20.976 20.862 0.115 3121.245 5000.000 3.772 -77.342 -0.563 13 
6 20.909 20.802 0.110    2752.275   4996.178   3.024 -80.775 -0.207 13 
7 20.900 20.798 0.102    2554.780   4998.089   2.862 -81.861 -0.122 13 
8 20.898 20.795 0.103    2520.106   4998.208   2.849 -82.046 -0.114 13 

Optimum 20.898 20.795 0.103    2520.106   4998.208   2.849 Inactive Inactive 87  
MCS 20.891 20.786 0.105 2520.106   4998.208   2.849 Inactive Inactive 1000  
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8.5 Bayesian RBDO 
 

Knowing that both aleatory and epistemic uncertainties exist in the system of 

interest, Bayesian RBDO can be formulated as 

 
minimize  ( , ; )
subject to  ( ( , ; ) 0) ( ), 1, ,
                 ,  and ,

i

a e

B i a e t
nd na ne

a e

C
P G i np
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where PB(Gi(Xa, Xe; d) £0)=RB,i is Bayesian reliability where Gi(Xa, Xe ;d) £ 0 is 

defined as a safety event; C(Xa, Xe ;d) is the objective function; d = m(X) is the design 

vector; Xa and Xe are the aleatory and epistemic random vectors, respectively; bti is a 

prescribed target Bayesian reliability index; and np, nd, na, and ne are the numbers 

of probabilistic constraints, design variables, aleatory random variables, and 

epistemic random variables, respectively.  
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 Figure 8.6: Bayesian RBDO 

Procedures 
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Example 5: Bayesian RBDO 
 

For Bayesian RBDO, different reliability analysis methods are used to compare 

numerical accuracy and efficiency: the FORM and the EDR method. Consider the 

following mathematical problem with three random variables. Two of them are aleatory 

with Xi ~ Normal(mi, 0.6), i = 1, 2, and X3 is epistemic with N samples. In this paper, 

aleatory random variables are considered as design variables, d = [d1, d2]T =  [m1 = m(X1), 

m2 = m(X2)]T.  Epistemic random variable, X3, is not considered as a design variable, 

since none of its statistical properties are known.  Here, the RBDO problem is defined as 

 
1 2

,

1 2

Minimize

Subject to ( ( ) 0) (0) , 1, 2,3
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In this study, the target reliability is set to RB,it = 90%. 

Before performing Bayesian RBDO, the EDR method is compared to FORM, in terms 

of numerical accuracy of Frequentist RBDO.  The optimum design using the EDR 

method is quite different from that from RBDO using FORM. These two optimum 

designs are verified using MCS with one million samples and the results are summarized 

in the Table E10. It is found that FORM yields an error in reliability estimates due to a 

linearization of the failure surface at the MPP. Since G1 and G2 at the optimum design 

are concave and convex, respectively, the reliability for G1 is underestimated, while G2 is 

overestimated. Whereas the optimum design using the EDR method precisely satisfies 

reliability constraints. 

Bayesian RBDO is carried out for different sample sizes with N = 50, 100, and 500. 

These samples are randomly generated during the design optimization by assuming X3 

~ Normal(1.0, 0.1). Different optimum designs will be obtained whenever Bayesian 

RBDO is performed, even with the same sample size, N. This is mainly because an 

insufficient data size leads to a subjective decision.  To understand the subjective 
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decision due to the dearth of data, Bayesian RBDOs for each sample size are performed 

20 times using both FORM and the EDR Method.  Moreover, these results are compared 

to the Frequentist reliability-based optimum design by assuming X3 as aleatory with the 

statistical properties given above. As expected, both Bayesian RBDO results using 

FORM and the EDR method asymptotically approach that from the Frequentist results, 

when increases the sample size of the epistemic variables, as shown in Fig. E16. 

Bayesian RBDO with the smaller sample size (N = 50) leads to more subjective 

decisions.  In other words, the optimum designs are more widely scattered. Because of 

the sufficiency requirement given in Section 2.3, Bayesian RBDO with a smaller sample 

size yields the optimum designs with greater reliability compared with Frequentist 

RBDO results. When more than 500 samples are engaged into Bayesian RBDO, it 

produces the optimum design quite close to that from Frequentist RBDO. The Pareto 

frontier of the optimum designs can be constructed along the optimum design trajectory 

as the data size increases, as shown in Fig. E16. 

Table E11 shows the total number of function and sensitivity evaluations using 

FORM and the EDR method in Bayesian RBDO. This example employs 50 data samples 

for epistemic variables. It is found that the EDR method is much more efficient than 

FORM.  This is because one EDR execution evaluates reliabilities for all constraints 

unlike FORM. From this example, it is apparent that the EDR method is much more 

efficient and accurate than FORM for Bayesian RBDO. 

 

Table E10   Verification of optimum designs (MCS with one million samples) 

Method Optimum Points Reliability ( By MCS ) 
X1 X2 G1 G2 G3 

FORM 3.3786 3.1238 0.8833 0.9170 1.0000 
EDR 3.4576 3.0898 0.9000 0.9001 1.0000 

 

Table E11 Efficiency comparison between EDR and FORM  
Methods EDR FORM 

Total times of function 
evaluation 250 1052 

Total times of sensitivity 
evaluation 50 1052 
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(a) The optimum designs in the entire design space  (b) The optimum designs (zoomed) 

Figure E16 Bayesian RBDO by using FORM and EDR with sample Size N 
 
 
Example 6: Bayesian RBDO for A-Arm 

The EDR method is more efficient and accurate than FORM and SORM. Since 

Bayesian RBDO is computationally intensive, it is integrated with the EDR method that 

evaluates Bayesian reliabilities efficiently and accurately.  In this section, Bayesian 

reliability analysis using the EDR method is performed, considering a lower control arm 

for the High Mobility Multipurpose Wheeled Vehicle (HMMWV). 

Vehicle suspension systems experience intense loading conditions throughout their 

service lives.  Control arms act as the back-bone of suspension systems, where the 

majority of the loads are transmitted through.  Therefore, it is crucial that control arms 

be highly reliable, while remaining cost effective.  For the purpose of validating the 

Bayesian RBDO method, a HMMWV lower control arm is presented as a case study.  

The following example incorporates Bayesian reliability analysis, where a later section 

shows the use of Bayesian RBDO.  

The lower control arm is modeled with plane stress elements using 54,666 nodes, 

53,589 elements, and 327,961 DOFs, where all welds are modeled using rigid beam 

elements.  For FE and design modeling, HyperWorks 7.0 is used.  The loading and 

boundary conditions for this case study are shown in Fig. E17, where loading is applied 

at the ball-joint (Point D) in 3 directions, and the boundary conditions are applied at the 

bushings (Points A and B) and the shock-absorber/Spring Assemble (Point C).  Due to a 

lack of data, the loads are considered as epistemic random variables.  The design 
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variables for this problem are the thicknesses of the seven major components of the 

control arm, as shown in Fig. E17.  The statistical information of these components, 

shown in Table E12, is well known, and these random parameters are therefore 

considered as aleatory variables in the Bayesian RBDO. 

To determine the hot spots (high stress concentrations) in the model, which are used 

to determine the constraints, a worst case scenario analysis of the control arm is 

performed.  For this worst case scenario, all the design variables are set at their lower 

bounds as shown in Table E12, and all the loads are set at their highest values attained 

from the epistemic data points. 

From the worst case scenario, thirty nine constraints (G1 to G39) are defined on 

several critical regions using the von Mises stress in Fig. E18. For those constraints, 

Bayesian reliabilities are defined as 

 ( )
( , ; ) ( ( ) 1 0)B i

i a e B i
U

s
R P G

s
= = - £

X
X X d X  (111) 

The PDFs for reliabilities at the critical spots are estimated using Bayesian inference. 

Four representative PDFs (G1, G24, G35 and G38) are plotted in the dotted curve in Fig. 

E19. The extreme distributions (solid curves) of the reliability PDFs are presented in the 

figures. The median values of the extreme distribution are then defined as the Bayesian 

reliabilities for different constraints which are also plotted in Fig. E19 as vertical dash 

lines. As illustrated in Figs. E19, G1 and G35 (the most critical spots at the current design 

point) are much less reliable than G24 and G38. This observation is consistent with a 

stress contour in Fig. E18, since the stresses in G1 and G35 are extremely high. When a 

target Bayesian reliability is set to 90%, G1 and G35 are violated but others are inactive. 

Table E12 Random properties in lower control A Arm model 

Random 
Variable 

Lower 
Bound of 

Mean 
Mean Std. Dev. Dist. 

Type 

X1 0.1 0.12 0.006 Normal 
X2 0.1 0.12 0.006 Normal 
X3 0.1 0.18 0.009 Normal 
X4 0.1 0.135 0.00675 Normal 
X5 0.15 0.25 0.0125 Normal 
X6 0.1 0.18 0.009 Normal 
X7 0.1 0.135 0.00675 Normal 
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Figure E17  Three loading variables (Epistemic) and Seven thickness variables 

(Aleatory) 

 

 
Figure E18   39 Critical constraints of the lower control A-Arm model 
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Figure E19 Bayesian reliability for G1, G24, G35, and G38 

 

The control arm used in Section 4 is used for Bayesian RBDO. In this example, seven 

thickness design variables are considered as aleatory random variables, whereas three 

load variables (not design variables) are considered as epistemic random variables. 50 

data sets are employed for the epistemic loads during Bayesian RBDO. These samples 

are randomly generated using the assumed distributions shown in Table E13.  The 

properties of the design and random variables are shown in Table E14. 

Table E13 Assumed random properties for epistemic uncertainties 

Epistemic Variable Distribution 
 Fx ~  Normal(1900, 95) 
Fy ~  Normal(95, 4.75) 
Fz ~  Normal(950, 47.5) 

 

Table E14 Random properties in lower control A-Arm model 

Random 
Variable dL μX=d 

(Mean) dU Std. 
Dev. 

Dist. 
Type 

X1 0.1 0.120 0.5 0.00600 Normal 
X2 0.1 0.120 0.5 0.00600 Normal 
X3 0.1 0.180 0.5 0.00900 Normal 
X4 0.1 0.135 0.5 0.00675 Normal 
X5 0.15 0.250 0.5 0.01250 Normal 
X6 0.1 0.180 0.5 0.00900 Normal 
X7 0.1 0.135 0.5 0.00675 Normal 

 
With 39 constraints, Bayesian RBDO is formulated as 
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In this study, target reliability is set to RB,it = 90%. Ten design iterations reach the 

Bayesian reliability-based optimum design. The histories of the design parameters, 

objective function, and the Bayesian reliabilities for significant constraints are shown in 

Table E15, and Fig. E20. At the optimum design, three constraints, G1, G35 and G38, 

become active and others are feasible. Figure E21 illustrates the reliability PDFs and 

Bayesian reliabilities at the optimum design for G1, G24, G35 and G38, of which the PDFs 

at the initial design are shown in Fig. E19. 

 

Table E15   Bayesian RBDO design history 
 Design  

Iter. X1 X2 X3 X4 X5 X6 X7 Mass 
1 0.12 0.120 0.180 0.135 0.25 0.180 0.135 30.76 
2 0.10 0.100 0.109 0.307 0.15 0.500 0.100 37.04 
3 0.10 0.143 0.143 0.100 0.15 0.500 0.100 26.70 
4 0.10 0.144 0.153 0.107 0.15 0.242 0.500 28.013 
5 0.10 0.137 0.153 0.141 0.15 0.500 0.100 29.64 
6 0.10 0.138 0.157 0.151 0.15 0.500 0.100 30.51 
7 0.10 0.138 0.156 0.156 0.15 0.500 0.100 30.84 
8 0.10 0.137 0.156 0.158 0.15 0.500 0.164 31.01 
9 0.10 0.137 0.156 0.160 0.15 0.500 0.156 31.11 
10 

(optimum) 0.10 0.137 0.1559 0.1598 0.15 0.500 0.177 31.13 

 

 
Figure E20 Objective function and Bayesian reliability history 
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Figure E21  Bayesian reliability for G1, G35 and G38 (left) and G24 (right) at the 

optimum design 

 

Finally, the Bayesian reliability-based optimum design is verified by MCS with 10,000 

samples. In this verification, three epistemic load variables are assumed to follow the 

distributions in Table E13. At the optimum design, reliabilities for G1, G35 and G38 are 

98.85%, 99.15%, and 98.6%. The sufficiency requirement assures higher reliability than 

the target reliability, 90%. 
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CHAPTER 9. HEALTH DIAGNOSTICS AND PROGNOSTICS 
 
 
9.1 Introduction 

Last several decades, tremendous advance has been made on the physics-based 
analysis and design under uncertainties. However, it is still difficult for the physics-
based analysis and design to deal with system failures with multiple failure mechanisms, 
complex physics-of-failure, and/or complicated joint behaviors. To overcome the 
difficulties of physics-based approaches, sensor-based approach has been emerged 
and actively engaged to promote life prediction, reliability analysis, and maintenance. 
Basic elements of sensor-based approach are shown in Figure 29. 

 

Figure 29: Basic Elements of Sensor-Based Risk Management  
 
Diagnostics – The ability to detect and classify fault conditions. 
 
Prognostics – The capability to provide early detection of a possible failure condition 
and to manage and predict the progression of this fault condition to component failure. 
 
Maintenance: 

Corrective Maintenance (CM): Action after failure 
Preventive Maintenance (PM): Time-based action 
Condition-Based Maintenance (CBM): Action if needed 
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Figure 30: Cost Associated to Maintenance Strategies  

 
 

Health diagnostics and prognostics are very useful to analyze health condition, to 
predict remaining useful life (RUL), and to make cost-effective maintenance action for 
large-scale systems, such as power plants, nuclear reactors, wind turbine generators, 
solar power systems, etc. 
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9.2 Signal Processing 
Signal Processing can be any computer operation or series of operations performed on 
data to get insightful information. Usually, sensory data will be processed in either time 
domain, or frequency domain, and sometime in joint time-frequency domain to show 
extract the data feature.  
 
9.2.1 Matlab Signal Processing Block-Set 

The Signal Processing Blockset is a tool for digital signal processing algorithm 
simulation and code generation. It enables you to design and prototype signal 
processing systems using key signal processing algorithms and components in the 
Simulink® block format.  Figure 31 shows the Library contained for signal processing 
block-set library (Type “dsplib” in the Matlab command window to open this library). 
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Figure 31: Matlab Signal Processing Block-Set Library  

 
9.2.2 Time Domain Data Processing 

Different statistics tools can be applied to time domain sensory signals to acquire data 
features, for example:  
Distribution Fitting: find the best distribution fit of the input data 
Histogram: generate histogram of input or sequence of inputs 
Autocorrelation: compute autocorrelation of vector inputs 
Correlation: compute cross-correlation of two inputs  
Max. /Min.: find max. /Min. values in an input or sequence of inputs 
Mean: find mean value of an input or sequence of inputs 
RMS: compute root-mean-square (RMS) value of an input or sequence of inputs 
Sort: Sort input elements by value  
Standard Deviation: find standard deviation of an input or sequence of inputs 
Variance: Compute variance of an input or sequence of inputs   
 
Example: Building the following data processing block diagram as shown in Fig. 32, 
when the sinusoid signal, as shown in Fig. 33(a) is being processed, the RMS signal in 
Fig. 33(b) can be obtained. RMS signals are usually used to detect the changes of 
machine vibrations. 
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Figure 32: Signal Processing Example: RMS block diagram  

 
 

     
(a)                                                                         (b) 

Figure 33: Sample Sinusoid Signal (a) and the RMS signal (b)  
 
 
9.2.3 Frequency Domain Data Processing 

When it is not clear of the data feature in time domain, usually we will transform the 
signal into frequency domain.  

FFT 
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The Fourier transform transforms a time domain signal into a frequency domain 
representation of that signal. This means that it generates a description of the 
distribution of the energy in the signal as a function of frequency. This is normally 
displayed as a plot of frequency (x-axis) against amplitude (y-axis) called a spectrum. In 
signal processing the Fourier transform is almost always performed using an algorithm 
called the Fast Fourier Transform (FFT).  

Example: FFT 

t = 0:0.001:0.6; 
x = sin(2*pi*50*t)+sin(2*pi*120*t)+sin(2*pi*200*t); 
y = x + randn(size(t)); 
figure(1) 
subplot(2,1,1) 
plot(1000*t(1:50),y(1:50)) 
xlabel('Time (Milli-Seconds)') 
ylabel('Signal with Random Noise') 
 
subplot(2, 1, 2) 
Y = fft(y, 512); 
Fy = Y.* conj(Y) / 512; 
f = 1000*(0:256)/512; 
plot(f, Fy(1:257)) 
xlabel('frequency (Hz)'); 
ylabel('Frequency Content of Signal'); 
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Figure 34: Sample Time Doman Signal (a) and Frequency Doman Signal (b)  

* You can also build a FFT block Diagram to do this example. 

 
9.2.4 Joint Time-Frequency Domain Analysis 

There is a tradeoff between resolution in frequency and resolution in time. Good 
frequency resolution implies poor time resolution and good time resolution implies poor 
frequency resolution.  Although frequency-domain representations such as the power 
spectrum of a signal often show useful information, the representations don’t show how 
the frequency content of a signal evolves over time.  

Joint Time-Frequency Analysis (JFTA) is a set of transforms that maps a one-
dimensional time domain signal into a two-dimensional representation of energy 
versus time and frequency. JTFA shows the frequency content of a signal and the 
change in frequency with time.  
There are a number of different transforms available for JTFA. Each transform type 
shows a different time-frequency representation. The Short Time Fourier Transform 
(STFT) is the simplest JTFA transform. For the STFT, you apply FFT repeatedly to short 
segments of a signal at ever-later positions in time. You can display the result on a 3-D 
graph or a so-called 2-D 1/2 representation (the energy is mapped to light intensity or 
color values). 
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The STFT technique uses FFT and suffers from an inherent coupling between time 
resolution and frequency resolution as mentioned earlier (increasing the first decreases 
the second, and vice versa). Other JTFA methods and transforms can yield a more 
precise estimate of the energy in a given Frequency-Time domain. Some options include:  

· Gabor spectrogram 
· Wavelet transform 
· Wigner distribution 
· Cohen class transforms 

 
9.3 Health Monitoring 
The process of implementing a damage detection strategy for engineering structures is 
referred to as Structural Health Monitoring (SHM). The SHM process involves the 
observation of a system over time using periodically sampled dynamic response 
measurements from an array of sensors, the extraction of damage-sensitive features 
from these measurements, and the statistical analysis of these features to determine the 
current state of system health. For long term SHM, the output of this process is 
periodically updated information regarding the ability of the structure to perform its 
intended function in light of the inevitable aging and degradation resulting from 
operational environments.  
The SHM problem can be addressed in the context of a statistical pattern recognition 
paradigm, which includes four-step process: (i) Operational evaluation, (ii) Data 
acquisition, normalization and cleansing, (iii) Feature extraction and information 
condensation, and (iv) Statistical model development for feature discrimination. 

· Operational evaluation 

Operational evaluation attempts to answer the following four questions regarding the 
implementation of a damage identification capability.  

a) What are the life-safety and/or economic justification for performing SHM? 
b) How is damage defined for the system being investigated and, for multiple 

damage possibilities, which cases are of the most concern?  
c) What are the conditions, both operational and environmental, under which the 

system to be monitored functions? 
d) What are the limitations on acquiring data in the operational environment?  

 
· Data acquisition, normalization and cleansing 

The data acquisition portion of the SHM process involves selecting the excitation 
methods, the sensor types, number and locations, and the data acquisition/storage 
/transmittal hardware. 

As data can be measured under varying conditions, the ability to normalize the data 
becomes very important to the damage identification process. One of the most common 
procedures is to normalize the measured responses by the measured inputs. 
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Data cleansing is the process of selectively choosing data to pass on to or reject from the 
feature extraction process. Signal processing techniques such as filtering and re-
sampling can be used as data cleansing procedures. 

· Feature extraction and information condensation 

The area of the SHM process that receives the most attention in the technical literature 
is the data feature extraction that allows one to distinguish between the undamaged 
and damaged structure. Inherent in this feature selection process is the condensation of 
the data. The best features for damage identification are, again, application specific. 

One of the most common feature extraction methods is based on correlating measured 
system response quantities, such a vibration amplitude or frequency, with the first-hand 
observations of the degrading system.  

Another method of developing features for damage identification is to apply engineered 
flaws, similar to ones expected in actual operating conditions, to systems and develop an 
initial understanding of the parameters that are sensitive to the expected damage. The 
flawed system can also be used to validate that the diagnostic measurements are 
sensitive enough to distinguish between features identified from the undamaged and 
damaged system. The use of analytical tools such as experimentally-validated finite 
element models can be a great asset in this process. In many cases the analytical tools 
are used to perform numerical experiments where the flaws are introduced through 
computer simulation.  

Damage accumulation testing, during which significant structural components of the 
system under study are degraded by subjecting them to realistic loading conditions, can 
also be used to identify appropriate features. This process may involve induced-damage 
testing, fatigue testing, corrosion growth, or temperature cycling to accumulate certain 
types of damage in an accelerated fashion. Insight into the appropriate features can be 
gained from several types of analytical and experimental studies as described above and 
is usually the result of information obtained from some combination of these studies. 

 
The operational implementation and diagnostic measurement technologies needed to 
perform SHM produce more data than traditional uses of structural dynamics 
information. A condensation of the data is advantageous and necessary when 
comparisons of many feature sets obtained over the lifetime of the structure are 
envisioned. Also, because data will be acquired from a structure over an extended period 
of time and in an operational environment, robust data reduction techniques must be 
developed to retain feature sensitivity to the structural changes of interest in the 
presence of environmental and operational variability. To further aid in the extraction 
and recording of quality data needed to perform SHM, the statistical significance of the 
features should be characterized and used in the condensation process. 
 
· Statistical model development 

Statistical model development is concerned with the implementation of the algorithms 
that operate on the extracted features to quantify the damage state of the structure. The 
algorithms used in statistical model development usually fall into two categories: 
supervised learning and unsupervised learning. When data are available from 
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both the undamaged and damaged structure, the statistical pattern recognition 
algorithms fall into the general classification referred to as supervised learning. Group 
classification and regression analysis are categories of the supervised learning 
algorithms. Unsupervised learning refers to algorithms that are applied to data not 
containing examples from the damaged structure. Outlier or novelty detection is the 
primary class of algorithms applied in unsupervised learning applications. All of the 
algorithms analyze statistical distributions of the measured or derived features to 
enhance the damage identification process. 
 
9.4 Health Prognostics 

Real-time diagnosis and prognosis which interprets data acquired by smart sensors 
and distributed sensor networks, and utilizes these data streams in making critical 
decisions provides significant advancements across a wide range of application. Figure 
35 shows a typical paradigm of the sensor-based life and reliability prognostics, which 
utilizes the sensory signal to produce the system degradation signal through the signal 
processing, and then the diagnostics of the system current health condition and further 
predict the system Residual Useful Life (RUL) and reliability will be carried out based 
on the system degradation signals. Uncertainties for sensory signal noise, data 
processing error and prediction variability are considered in this process. Technical 
approaches to system sensor-based life and reliability prognostics can be categorized 
broadly into model-based approaches and data-driven approaches. 
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Figure 35: Sensor-Based Life and Reliability Prognostics  
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Figure 36: Procedures of Health Prognostics 

 
· Model-Based Prognostics 

Model-based prognostic approaches attempt to incorporate physical understanding 
(physical models) of the system into the estimation of remaining useful life (RUL). 
Different stochastic degradation models have been investigated in the literature, to 
model various degradation phenomena of systems or components.  
Real-time degradation model parameters updating with evolving sensory signals is a 
challenge of model-based prognostic approaches. Bayesian updating techniques are 
commonly used for this purpose. Table 1 describes a Markov-Chain Monte Carlo 
(MCMC) method for non-conjugate Bayesian updating. 
 
Example:  An exponential degradation model 

2
2

0( ) exp( ( ) )
2i i i iS t S t t t sd a b e= + × + + -  

where S(ti) represents the degradation signal at time ti; S0 is a known 
constant;  d, a, and b  are stochastic model parameters and e represents the 
random error term which follows normal distribution with zero mean and s2 deviation. 
Figure 37 shows the updating of this model and corresponding RUL. 
 

 
Figure 37: Model and RUL updating  

 
· Data-Driven Prognostics 

Data-driven prognostic techniques utilize monitored operational data related to system 
health. The major advantage of data driven approaches is that they can be deployed 
quicker and cheaper compared to other approaches, and that they can provide system-
wide coverage. The principal disadvantage is that data driven approaches may have 
wider confidence intervals than other approaches and that they require a substantial 
amount of data for training.  

Sensory 
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Data and information updating schemes 
a) Numerical Methods 

Linear Regression  
Kalman Filters 
Particle Filters 
 

Machine learning techniques 
b) Artificial Intelligence Based Techniques  

Artificial Neural Networks  
Decision Tree Method 
Novelty Detection Algorithms 
Support Vector Machine (SVM) 
Relevance Vector Machine (RVM) 
Fuzzy Logic 
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Homework 1: Sources of uncertainty in a vibration problem 
Let us consider an undamped system with a lumped mass and spring.  The 
motion behavior of the system can be ideally modeled using a second-order 
ordinary differential equation as 

 ( ) ( ) 0; (0) 15, (0) 0my t ky t y y¢¢ ¢+ = = =  

where m and k are the mass and spring coefficient of the system, respectively.  
According to the manufacturer of the system, the mass and spring coefficient are 
believed to be 10 kg and 1000 N/m, respectively.  At time t = 1 second, ten 
experimental tests show a set of y data as (4.4456, 4.2094, 4.3348, 4.2441, 
4.1768, 4.1756, 4.4057, 4.2448, 4.2303, 4.0952).  Answer the following questions: 
 
(1) Identify all possible sources of uncertainties involved in this problem. 
(2) Please explain why experimentally measured y values are random. 
(3) Also, provide possible reasons for what causes the difference between 
experimental and analytical y values. 
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Homework 2: Probability Distribution & Statistical Moments 
Let us recall the example of fatigue tests.  The sample data can be obtained about 
the physical quantities in the damage model below. 

  

Let us consider a 30 data set (Table 5) for the fatigue ductility coefficient (ef¢) and 
exponent (c) used in the strain-life formula shown above.  Answer the following 
questions: 

(1) Construct the covariance matrix and find out the coefficient of correlation 
using the data set given in Table 5. 

(2) Use normal, weibull, and lognormal distributions. Find out the most suitable 
parameters of three distributions for the fatigue ductility coefficient (ef¢) and 
exponent (c) using the MLE method. 

(3) Find out the most suitable distributions for the data set (ef¢, c) using the chi-
square GOF. 

(4) Verify the results with the graphical methods (histogram and probability 
plots). 

 

 
Figure 8: Statistical Correlation 

 
Table 5: Data for the fatigue ductility coefficient and exponent 

(ef¢, c) (ef¢, c) (ef¢, c) (ef¢, c) (ef¢, c) 
0.022 0.289 0.253 0.466 0.539 0.630 0.989 0.694 1.611 0.702 
0.071 0.370 0.342 0.531 0.590 0.621 1.201 0.690 1.845 0.760 
0.146 0.450 0.353 0.553 0.622 0.653 1.304 0.715 1.995 0.759 
0.185 0.448 0.354 0.580 0.727 0.635 1.388 0.717 2.342 0.748 
0.196 0.452 0.431 0.587 0.729 0.645 1.392 0.716 3.288 0.821 
0.215 0.460 0.519 0.655 0.906 0.703 1.426 0.703 6.241 0.894 

 

( ) ( )2 2
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 Homework 3: Reliability Function 
Supposed it is desired to estimate the failure rate of an electronic component.  A 
test can be performed to estimate its failure rate.  A target life is set to 2000 
minutes.  R(t) = P(T > 2000 minutes) Answer the following questions: 

(1) Construct a histogram of TTF. 

(2) Find out a probability distribution model and its parameters, fT(t), for the TTF 
data. 

(3) Construct a reliability function. 

(4) Determine MTTF, standard deviation of TTF, and hazard function. 

(5) Compare the reliabilities from nf/N from the TTF data and the reliability 
function when t = 2000 where nf is the number of failed components and N (= 
100) is the total components. 

 
Table 5: Data for 100 Electronics Time-To-Failure (TTF) [minute] 

1703.2 1071.4 2225.8 1826.5 1131 2068.9 1573.5 1522.1 1490.7 2226.6 
1481.1 2065.1 1880.9 2290.9 1786.4 1867.2 1859.1 1907.5 1791.8 1871 

1990.4 2024.1 1688.6 1962.7 2191.7 1841 1814.1 1918.1 2237.5 1396.8 
1692.8 707.2 2101.3 2165.4 1975.2 1961.6 2116.7 1373 1798.8 2248.4 
1872.3 1597.8 1865.1 742.8 1436.7 1380.8 2258.2 1960 2182.8 1772.7 

2003.6 1589.4 1988.3 1874.9 1859 2051.9 1763 1854.6 1974.7 2289.9 
1945.7 1774.8 1579.6 1430.5 1855 1757.9 1029.3 1707.2 1864.7 1964.8 
1719.4 1565.2 1736.8 1759.4 1939.4 2065.7 2258.5 2292.8 1452.5 1692.2 
2120.7 1934.8 999.4 1919.9 2162.4 2094.9 2158.2 1884.2 1748.7 2260.3 
1040.8 1535 1283.4 2267.7 2100.3 2007.9 2499.8 1902.9 1599.6 1567.5 

 

(6) Attempt to update the TTF mean value (q) with aggregation of 100 TTF data 
using Bayesian inference.   Assume that the TTF follows a normal distribution 
with the standard deviation (s = 315.16) and the prior distribution of q  be 
P(q) = N( = 1750.0, = 5002). 

 

u 2t
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Homework 4: Reliability Analysis 

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Fig. 19.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
 
 

Figure 19: Simply Supported Beam 
 
Random Vector: 

  

The maximum deflection of the beam is shown as 

  

Using Monte Carlo simulation, first-order expansion method, MPP-based 
method (HL-RF) and Eigenvector Dimension Reduction (EDR) method, 
determine the PDF (or CDF) of the maximum deflection and estimate its 
reliability when the failure is defined as Y < yc = -3´10-3m.  Make your own 
discussion and conclusion. 
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Homework 5: Bayesian Reliability Analysis 

Consider the following simply supported beam subject to a uniform load, as 
illustrated in Fig. 19.  Suppose L = 5 m and w=10 kN/m. 
 
 
 
 
 
 
 
 

 
 
 

Figure 19: Simply Supported Beam 
 
Random Vector: 

  

The maximum deflection of the beam is shown as 

  

The X2 is an epistemic uncertainty.  For X2, it is assumed that 10 data sets are 
gradually obtained at different times.  Using MPP-based method (HL-RF) 
and Eigenvector Dimension Reduction (EDR) method, determine the 
reliability of the maximum deflection constraint, P(Y(X1) ³ yc = -3´10-3m), at 
all individual X2 points in the table.  Predict reliability in a Bayesian sense 
using the first 10 data set and gradually update the reliability using the 
second and third data sets.  Make your own discussion and conclusion, and 
attach your code used for Bayesian reliability analysis. 

 
Table 9 Three sets of 10 data for X2 (´104) 

 
Set1       1.0000    0.8126    1.0731    1.0677    0.9623    0.9766    1.1444    1.0799    1.0212    0.9258 
Set2      0.9682    1.0428    1.0578    1.0569    0.9704    1.0118    0.9649    1.0941    1.0238    1.1082 
Set3      1.1095    1.0896    1.0040    0.9744    0.8525    1.0315    1.0623    0.9008    0.8992    0.9869 
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Homework 6: Design Optimization of Crashworthiness Problem 
A vehicle side impact problem is considered for design optimization.  All the 
design variables are shown in Table 11.  In this example, the abdomen load is 
treated as an objective function with nine constraints defined in Table 12.   

 
 

Table 11: Properties of design variables 
(X10 and X11 have “0” value) 

 
 

Table 12: Design variables and their bounds 

 
 
Responses: 
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OBJ= (1.16-0.3717*x(2)*x(4)-0.00931*x(2)*x(10)-
0.484*x(3)*x(9)+0.01343*x(6)*x(10));  
 
G1 = (28.98+3.818*x(3)-4.2*x(1)*x(2)+0.0207*x(5)*x(10)+6.63*x(6)*x(9)-
7.7*x(7)*x(8)+0.32*x(9)*x(10))-32;  
 
 G2= (33.86+2.95*x(3)+0.1792*x(10)-5.057*x(1)*x(2)-11*x(2)*x(8)-
0.0215*x(5)*x(10)-9.98*x(7)*x(8)+22*x(8)*x(9))-32;  
 
 G3 = (46.36-9.9*x(2)-12.9*x(1)*x(8)+0.1107*x(3)*x(10))-32;  
 
G4 = (0.261-0.0159*x(1)*x(2)-0.188*x(1)*x(8)-
0.019*x(2)*x(7)+0.0144*x(3)*x(5)+0.0008757*x(5)*x(10)+0.08045*x(6)*x(9)+0.00
139*x(8)*x(11)+0.00001575*x(10)*x(11))-0.32;  
 
G5 = (0.214+0.00817*x(5)-0.131*x(1)*x(8)-0.0704*x(1)*x(9)+ 0.03099*x(2)*x(6)-
0.018*x(2)*x(7)+0.0208*x(3)*x(8)+ 0.121*x(3)*x(9)-
0.00364*x(5)*x(6)+0.0007715*x(5)*x(10)-
0.0005354*x(6)*x(10)+0.00121*x(8)*x(11)+0.00184*x(9)*x(10)- 0.018*x(2).^2)-
0.32;  
 
G6 = (0.74-0.61*x(2)-0.163*x(3)*x(8)+0.001232*x(3)*x(10)-
0.166*x(7)*x(9)+0.227*x(2).^2)-0.32;  
 
G7 = (4.72-0.5*x(4)-0.19*x(2)*x(3)-
0.0122*x(4)*x(10)+0.009325*x(6)*x(10)+0.000191*x(11).^2)-4;  
 
G8 = (10.58-0.674*x(1)*x(2)-1.95*x(2)*x(8)+0.02054*x(3)*x(10)-
0.0198*x(4)*x(10)+0.028*x(6)*x(10))-9.9;  
 
G9 = (16.45-0.489*x(3)*x(7)-0.843*x(5)*x(6)+0.0432*x(9)*x(10)- 
0.0556*x(9)*x(11)-0.000786*x(11).^2)-15.7; 

 
The Design Optimization is formulated as 

9

Minimize ( )
Subject to   ( ) 0, 1, ,9

  ,
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x

x x x x

L  

 
Solve this optimization problem using the sequential quadratic programming 
(use the matlab function, ‘fmincon’, in Matlab).  Make your own discussion 
and conclusion. 
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Homework 7: RBDO of a Crashworthiness Problem 
 
A vehicle side impact problem is considered for design optimization.  All the 
design variables are shown in Table A.  In this example, the abdomen load is 
treated as an objective function with nine constraints defined in Table B.   
 

Table A: Properties of random and design variables 
(X10 and X11 have “0” value) 

Random  
Variables 

Distr.  
Type 

Std 
 Dev. dL d dU 

X1  Normal 0.050 0.500 1.000 1.500 
X2  Normal 0.050 0.500 1.000 1.500 
X3  Normal 0.050 0.500 1.000 1.500 
X4  Normal 0.050 0.500 1.000 1.500 
X5  Normal 0.050 0.500 1.000 1.500 
X6   Normal 0.050 0.500 1.000 1.500 
X 7   Normal 0.050 0.500 1.000 1.500 
X8    Lognorm 0.006 0.192 0.300 0.345 
X9    Lognorm 0.006 0.192 0.300 0.345 
X10    Normal 10.0 X10  and X11 are not 

design variables X11   Normal 10.0 
 
 

Table B: Design variables and their bounds 

 
 
The Design Optimization is formulated as 

( )
9

Minimize ( )

Subject to   ( ) 0 99%, 1, ,9

  ,
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Solve the RBDO optimization problem using the matlab function, ‘fmincon’, 
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in Matlab) starting at the initial design (d1 to d7 = 1.000, d8 = d9 = 0.300) and 
deterministic optimum design (obtained in the previous homework).  Make 
your own discussion and conclusion. 
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