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1. Objective

The course covers three important issues encountered in practical engineering fields: uncertainty
characterization, probabilistic engineering (or reliability) analysis, design under uncertainty, and
system management under uncertainty (or health monitoring). Probabilistic engineering analysis
includes advanced topics in statistics, uncertainty characterization, and test-/simulation-based
probabilistic engineering (or reliability) analysis. Design under uncertainty includes probability
sensitivity anlaysis, surrogate modeling, and advanced methodologies for design under uncertainty.
Some health diagnostics and prognostics techniques are briefly introduced for the purpose of
system management under uncertainty.

2. Textbook
and References

® Youn, B.D. and Hu, C., Engineering Analysis and Design under Uncertainty, SNU Print,
2012.

® Haldar, A., and Mahadevan, S., Probability, Reliability, and Statistical Methods in
Engineering Design, John Wiley & Sons Inc., 2000.

® Arora, J.S. Introduction to Optimum Design, Second Edition, Elsevier, 2004.

® Myers and Montgomery, Response Surface Methodology, Wiley, 1995.

® G. Vachtsevanos G, et al., Intelligent Fault Diagnosis and Prognosis for Engineering
Systems, 1st edition. Hoboken, New Jersey, USA: John Wiley & Sons, 2006.

3. Evaluation
method

Exam I Exam II

(10.19) Loy | Pl | eeeil Total

Homework

20% 20% 20% 20% 30% 110%

4. Lecture Plan

Contents

=
=

Course introduction; Concepts of uncertainty, reliability and risk; Basic probability theory

Graphical methods for exploratory data analysis

Uncertainty characterization

Definition of reliability; Reliability analysis (time-independent);

Numerical methods for probabilistic engineering analysis (MCS, FORM methods)

Case studies of reliability analysis (cellular phone, LCD, and others)

Reliability modeling (time-dependent);

Exam I & Project I review

O (00| J|\ ||| —

/Accelerated life testing; Accelerated life testing;

10 |Bayesian analysis;

11 Design optimization review;

12 Design optimization review;

13 Design under uncertainty (methodology)

14 [Design under uncertainty (formulation; numerical methods); Exam II

15 [Prognostics and Health Management (PHM): reasoning function; Course review

5. - Prerequisites : Engineering Statistics, Design Optimization
Consideration | = 2 open-book exams and one individual project
IAll students are presumed upon enrollment to have an understanding of the Honor System.
6. Rules /Academic dishonesty by a student will be treated in accordance with the SNU procedures. A score

of “0” can be assigned for the corresponding test/assignment and/or a course grade of ‘F’ can be

assigned.
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CHAPTER 1. INTRODUCTION

1.1 Instances of Catastrophic Failures

Chernobyl disaster, April 26 1986
Adverse events due to Faulty operation
Consequence: 4K deaths & 600K contaminated, hundreds of billion dollar

AL |

I-35 Bridge Failure, August 2007
Adverse events due to Faulty design and maintenance
Consequence: 13 deaths, 145 injured, $2 Billion annual loss

Wind turbine failure, Feb. 22 2008
Adverse events due to Faulty design (controller)
Consequence: Collapse of whole wind turbine

Power transformer failure, July 6, 2002
Adverse events due to faulty bushing design
% Consequence: $5 million property & business loss

UPS Flight 1307 fire, Feb. 7, 2006,
Adverse events possibly due to faulty Lithium-ion battery design
Consequence: 3 injured, loss of whole airplane

Research Questions:
Q1. Is it possible to predict engineering performances on a reliable basis, i.e.,

failure rates and reliability?

Q2. Is it possible to design engineered systems reliable and robust under various
uncertainties?

Q3. What technologies make it possible to a reliable and robust design under
uncertainty?

Mechanical and Aerospace Engineering, Seoul National University 4
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1.2 Uncertainty (inferable) or variability (measurable)

1.2.1 Sources of uncertainty or variability
» Physical uncertainty or variability: Actual variability (or uncertainty) of physical
quantities, such as loads, material properties, and dimensions. This variability
can be described in terms of probability distributions or stochastic processes.
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Figure 1.1: Histogram of Tensile Strength, MPa

» Statistical uncertainty or variability: This uncertainty arises solely as a result of
the lack of information. Data must be collected to build a probabilistic model of
the physical variability of physical quantities. The probabilistic model is
composed of a probability distribution and its parameters. When the amount of
data is small, the distribution and parameters are considered to be uncertain.

* Model uncertainty or variability: This source of uncertainty occurs as a result of
simplifying assumptions, unknown boundary conditions, and their interactions
which are not included in the model. To minimize this uncertainty, Verification
and Validation (V&V) is quite important.

Uncertainty Sources Meaning

- Inherentvariation in physical quantity

- Description by probability distribution

- Ex) material property, manufacturing tolerance,
loading condition, boundary condition, ...

Physical Uncertainty

- Imprecise statistical estimation (probability
distribution type, parameters, ...)

Only depending on the sample size and location
- Ex) lack of data, improper sampling

Statistical Uncertainty

.

- Uncertainty from invalid modeling
- Ex) improper approximation, inaccurate
boundary condition, ...

Modeling Uncertainty

Mechanical and Aerospace Engineering, Seoul National University 5
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Uncertainty is ubiquitous!
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Figure 1.2: Model Uncertainty in Fatigue Analysis

Homework 1: Sources of uncertainty in a vibration problem

Let us consider an undamped system with a lumped mass and spring. The
motion behavior of the system can be ideally modeled using a second-order
ordinary differential equation as

my"(t)+ky(t)=0; y(0)=-1.5, »'(0)=0

where m and k are the mass and spring coefficient of the system, respectively.
According to the manufacturer of the system, the mass and spring coefficient are
believed to be 10 kg and 1000 N/m, respectively. Attime t =1 second, ten
experimental tests show a set of y data as (1.1202, 1.2474, 1.3472, 1.1767, 1.3113,
1.2890, 1.3171, 1.1244, 1.1421, 1.2539). Answer the following questions:

(1) Please explain why experimentally measured y values are scattered.
(2) Identify all possible sources of uncertainties involved in this problem.
(3) Also, provide possible reasons for what causes the difference between
experimental and analytical y values.

Mechanical and Aerospace Engineering, Seoul National University 6
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1.2.2 Types of uncertainty
» Aleatory uncertainty:
It is an uncertainty with the sufficient size of data, referred to as objective

uncertainty or irreducible uncertainty. It means the degree of uncertainty is
irreducible with more relevant data.

Table 1.1: Aleatory Uncertainty (or Objective Uncertainty)

>> thickness_a = normrnd(1,0.05,100000,5); mean(thickness_a), std(thickness_a)

ans =

1.0003 1.0001 1.0000 1.0001 1.0001

ans =

0.0501 0.0499 0.0501 0.0501 0.0500

» Epistemic uncertainty:

It is mainly an uncertainty due to the lack of data, referred to as subjective

uncertainty or reducible uncertainty. It means the degree of uncertainty is
reducible with more relevant data.

Table 1.2: Epistemic Uncertainty (or Subjective Uncertainty)

>> thickness_e = normrnd(1,0.05,10,5); mean(thickness_ e), std(thickness_e)

ans =

0.9995 1.0150 1.0217 1.0024 0.9763

ans =

0.0514 0.0410 0.0375 0.0394 0.0546

Mechanical and Aerospace Engineering, Seoul National University
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Aleatory Uncertainty

Epistemic Uncertainty

Frequency

Inherent randomness in physical
properties

Latin alea: The rolling of dice

Irreducible with the acquisition of
additional data

Ex) material properties, product geometry,
loading condition, boundary condition, ...
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Plenty of Data

Due to the lack of knowledge

The smaller sample size, the wider
confidence interval in statistical parameter
estimation

Reducible with additional information

Ex) manufacturing tolerance, material
property, expert opinion in case of
knowledge absence, ..
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Epistemic Uncertainty

Recognized Uncertainty

Unrecognized Uncertainty

“Know what | don’t know” type
Recognized uncertainty without accurate
information

Come from a conscious decision making
Ex) surrogate model error, boundary
condition modeling, plastic/fatigue
material property, ...

“Don’t know what | don’t know” type
Existent in physical quantity but
unrecognized uncertainty

Come from being incognizant of
knowledge incompleteness or necessity of
knowledge

Ex) mistakes, blunders, errors, ...

1.2.3 Probability Theory

Frequentist probability theory — a conventional probability theory

Bayesian probability theory

1.3 Reliability, Risk, Availability, Maintainability, Durability, etc.

* Reliability:
The ability of a system or component to perform its required functions under stated
conditions for a specified period of time. Commonly used techniques include:
Accelerated (life) testing, Weibull analysis, Simulation-based analysis under

Mechanical and Aerospace Engineering, Seoul National University
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uncertainty, Product qualification tests, Failure mode and effects analysis (FMEA),
Fault tree analysis, Root cause analysis, etc.

* Risk:
A measure of the loss due to potential failures of social, built, and natural
systems (or components). Related research topics include: qualitative risk analysis,
quantitative risk analysis, risk management, etc.

* Availability:
The degree to which a system, subsystem, or equipment is in a specified operable
and committable state at the start of a mission, often described as a ratio of expected
value of the uptime of a system to the aggregate of the expected values of up and
down time.

* Maintainability:
The degree of the ease with which a product can be maintained in order to: (i)
correct defects, (ii) meet new requirements, (iii) make future maintenance easier, or
(iv) cope with a changed environment.

* Durability:
The ability to perform over a specified period of time while withstanding potential
hazards (wear, corrosion, fatigue, etc.).

1.4 Introduction to Risk Assessment

1.4.1 Definition

A measure of the loss due to potential failures of social, built, and natural systems
(or components).
The loss is the consequence of potential failure (or the adverse consequence) given in
the form of human fatality, property loss, monetary loss, etc. For a given failure
event, the loss is believed to be known or predictable in most situations.

The potential failure of social, built, and natural systems (or components) is
expressed as the probability or frequency of the failure (or hazard) per unit time or
space.

e Risk by natural systems: Hurricanes, floods, wild fires, etc.
¢ Risk by social systems: company bankruptcy, subprime mortgage, etc.
¢ Risk by built systems: bridges, space shuttle, nuclear plant, etc.

Mechanical and Aerospace Engineering, Seoul National University 9
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Figure 1.3: Potential failures and their risk

Risk is everywhere!

From an engineering point of view, risk is the sum of the products of the consequences
and their probabilities of engineered system (or component) failures as

R= Z e )

Example: For instance, according to the U.S. Transportation, 12 million vehicle
accidents are reported in 2007; 1 in 320 accidents resulted in death. Assuming average
loss of US $500,000 per death and US $25,000 of property loss per accident involving
fatality, calculate both fatality and economic risk values.

1.4.2 Approaches for risk prediction

* Qualitative risk assessment
It is easier to perform a qualitative risk analysis because it does not require
gathering data. This approach uses linguistic scales, such as low, medium, and
high. A risk assessment matrix is formed which characterizes risk in form of the
frequency (or likelihood) of the loss versus potential magnitudes (amount) of the
loss in qualitative scales. Because this type of analysis does not need to rely on
actual data and probabilistic treatment of such data, the analysis is far simpler
and easier to use and understand, but is extremely subjective. The matrix is then
used to make policy and risk management decisions in a conceptual design stage.

Mechanical and Aerospace Engineering, Seoul National University 10
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Table 1.3: Qualitative Risk Assessment Matrix

Catastrophic Critical Marginal Negligible

Very frequent > 0.5 H H H I
Frequent o5-101 H H I L
Probable 101-102 H H L L
Occasional 102—-104 H H L L
Improbable 104—-106 H I L T
Rarely <100 I I T T

H (high risk); I (intermediate risk); L (low risk); T (trivial risk)

* Quantitative risk assessment (or Probabilistic Risk Analysis)
The quantitative risk assessment attempts to estimate the risk in form of the
frequency (or likelihood) of the loss versus potential magnitudes (amount) of the
loss in quantitative scales. Risk-relevant data must be involved in estimating the
frequency of the loss and potential amount of the loss. Risk-relevant data include
field data, test data, and other evidences. So, this approach is clearly the
preferred approach when risk-relevant data exist to estimate the probability of
failure and its consequence.

Risk Value = Probability of powertrain system failure x Consequence (1)
+ Probability of steering system failure x Consequence (2)
+ Probability of central controller failure x Consequence (3)
+ Probability of air-conditioning failure x Consequence (4)
+ Probability of airbag sensor failure x Consequence (5)

+ Probability of tire failure x Consequence (n)

1.5 Introduction to Engineering Design

Four important factors for success of a product:
* Performance, price, and quality from the customer’s perspective
* Time needed to bring product to the market (Time-to-market)
* Cost of product development
* Cost to manufacture the product

1.5.1 Product Development Process (PDP)

Mechanical and Aerospace Engineering, Seoul National University 11
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Figure 1.4 Product Development Process (PDP)

Duration of each program phase depends on product complexity, technology maturity,

and specific requirements.

1.5.2 Product Design

* Concept generation

- Define subsystems

- Find existing concepts (patent survey; Triz)
- Generate new concepts (Pugh chart)

- Eliminate poor ideas (Pugh chart)

- Prepare design proposals

* System Design

- Need for subsystems — modular concept (product family design)

- Define the characteristics of subsystems
- Allocate system design
- Provide interfacing

* Detail Design

- Define the characteristics of components
- Providing interfacing

- Design for manufacturing

- Design for assembly

- Design for maintenance

- Design optimization

Mechanical and Aerospace Engineering, Seoul National University
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Homework 2: Reliability engineering problem

Read the following article carefully.
http://webcache.googleusercontent.com/search?q=cache:http://www.squaretra
de.com/htm/pdf/cell_phone_comparison_study_nov_10.pdf

Generally, smartphone manufacturers conduct product qualification tests with
five samples before shipping the phones to customers. The phone manufacturer
begins to ship the phones when the five phones pass the test. The qualification
test involves structural, functional, environmental, and accelerated life tests.
Discuss why the qualification tests cannot guarantee defect-free products and
how this difficulty can be taken care of. Assume that the phone manufacturer
cannot increase sample size because of its limited resources.

Homework 3: Product Development Process

Review the videos for your understanding of product development process.

1. Customer needs for product specification
http://www.youtube.com/watch?feature=player_detailpage&v=FA9Yzunsrlc

N

Concept generations
https://www.youtube.com/watch?v=7KVbRWFIvtY

3. Detail design (w/ suspension arm)
http://www.youtube.com/watch?v=OHVXvv5GAcI
http://www.youtube.com/watch?NR=1&feature=endscreen&v=qrhbOeJaaxg

4. Discussion
Study “embodiment design” and “modular design” and report each with 250
words at minimum in English.

Mechanical and Aerospace Engineering, Seoul National University 13
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1.6 Probabilistic Description of Engineering Performances

1.6.1 Description of engineering performance:

Probabilistic performance
= Y(X); Xis a vector of uncertainty that affects system performance

Probability (Y(X) < Yu) = Reliability
= Probability of safety (=success)
=1 — Probability of failure
Probability (Y1 < Y(X) < Yu) = Robustness

1.6.2 Challenges in probabilistic engineering analysis and design:

One of the primary challenges is “how to collect system performance data under
uncertainty?”

Engineering analysts and designers want to precisely predict the probability of system
performance while designing engineered systems (or components), prior to
manufacturing them. However, it is extremely difficult to predict system performance
before producing and testing the systems (or components). To predict the probability* of
a system (or component) performance, numerous testing (or warranty) data must be
collected after releasing the system to the market.

Table 1.4: Challenge in predicting the probability of system performance

“The designer must predict system performance prior to making design
decisions, and data cannot be obtained from physical tests of the system prior to
construction of the system.” by George A. Hazelrigg, an NSF program manager.

“It appears the new emission technology may have affected engine performance
and quality, as customer satisfaction with both factors dropped significantly in
2005 ... This is a common pattern whenever new technologies are introduced in
an industry, and the assumption is that the scores for these engines will improve
over time,” by Etchelle, senior manager of commercial vehicle research at J.D.
Power and Associates.

Homework 4: Essay to describe the challenges in system design

Above is the discussion about the challenges in system design. In this work,
assume you are an engine designer in the company to make sure the engine
performance, lifetime, and reliability before shipping the engines to your

! Probability is the likelihood or chance that something is the case or will happen.

Mechanical and Aerospace Engineering, Seoul National University 14
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customers. Given a four-month period for the engine design and performance
(including life/reliability) testing, what challenges are expected for engine
design? Write your essay using at least 250 words in English.

Other challenges include:

Uncertain factors in manufacturing and operational processes.

Fidelity in techniques to predict system performance and reliability (or
probability of safety).

Effective design and management of engineered systems under uncertainty.
Precise estimation of the consequence of potential failures.

Data = Money, Time, Know-how

1.6.3 System performance data under uncertainty (Example: Automotive Industries):

Reliability & Owner Satisfaction Data from ConsumerReports.org

http://www.consumerreports.org/cro/cars/used-cars/reliability /best-worst-in-
car-reliability-1005/overview/index.htm

- Overall, Asian models still dominate in reliability, accounting for 34 of the
39 models in the Most reliable new car list. Thirty-one are Japanese and
three are South Korean.

- Despite Toyota's problems, the automaker still ranks third overall in
reliability, behind only Honda and Subaru, with 17 models in the best list.
Honda has seven with a smaller model lineup.

- Only four domestic models made the Most reliable list: the Ford Fusion,
Mercury Milan, Pontiac Vibe, and the two-wheel-drive Ford F-150 with
the V6 engine. U.S. makes, however, account for almost half the models--
20 of 44--on the Least reliable list. There are 13 from GM, 6 from Chrysler,
and 1 from Ford.

- European makes account for 17 models on the Least reliable list. This
includes six each from Mercedes-Benz and Volkswagen/Audi.

Initial Quality Study (IQS) (with 9o days of ownership) from J.D. Power and
Associates
http://www.jdpower.com/press-releases/pressrelease.aspx?id=2007088

National Highway Traffic Safety Administration (NHTSA):
http://www.nhtsa.gov/

Top Safety Picks from Insurance Institute for Highway Safety (IIHS):
http://www.iihs.org/ratings/default.aspx

Warranty data

Mechanical and Aerospace Engineering, Seoul National University 15
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e Testing and measurement data

Use material test, reliability test, life test, measured tolerance data, etc. They can
be found in Standard references disclosed by DOD, NIST, and other professional

societies (ASME, IEEE, etc.) and companies.
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* Customer data from survey, clinic testing, and user-generated contents
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Figure 1.5: 1QS from J.D. Power and Associates

1.6.4 Key elements for probabilistic description of engineering performances

(Probability of Failure or inversely Reliability)
* Variability in manufacturing tolerances, use conditions, etc.
* Uncertainty (or variability) and bias in modeling and test results
Complexity in engineering mechanics (test-based, model-based, sensor-based,

or hybrid-based)
* Uncertainty propagation (or probabilistic engineering analysis)

Mechanical and Aerospace Engineering, Seoul National University
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CHAPTER 2 BASIC PROBABILITY THEORY

2.1 Sample Space
For any physical quantity, a set of data can be obtained through physical tests or
surveys under a homogeneous condition. The set of all possible outcomes of such
tests is called the sample space (or random space) Q and each individual outcome is
a sample point. For the example of fatigue tests, the sample data can be obtained
about the physical quantities, as shown in Figure 2.1. The sample space can be
described by a probability distribution (or mass) function or histogram.

MMTS 0.2y
t( ‘
| | b 01F -
0.05 ¥

A o ! b c
Strain-life equation: 78 = ff(2N f.) +&) (2N f) : Low-cycle fatigue

Figure 2.1: Fatigue Tests and Sample Data Set (Coutesy of Prof. Darrell F. Socie, UIUC,
Probabilistic Fatigue, 2005)

2.2 Axioms and Theories of Probability
Axiom 1. For any event E

0<P(E)<1 (2)
where P(E) is the probability of the event E.

Axiom 2. Let the sample space be Q. Then,
P(Q)=1 3)

Axiom 3. If E1, E-, ..., En are mutually exclusive events then

P[uE) = P(E) @

Some Useful Theorems

Mechanical and Aerospace Engineering, Seoul National University 18
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P(E)=1-P(E)
P(F)=0

P(ElUE2)=P(E1)-I-P(E2)—P(E1f\Ez)
P(E,NE,)

P(E, | E)) = P(E)

Conditional Probability

Professor Youn, Byeng Dong

(5)

P(E,NE,)=P(E)P(E,) ifE, and E, are independent.

2.3 Random Variables

A random variable is a function which maps events in the sample space Q2 into the
real value R where the outcomes of the event can be real or integer, continuous or
discrete, success or fail, etc. The random variable is often denoted as X: E — R.

02r
015 :
b ooaf -
005
O 1
102 1q3

The outcome of an event need not be a number, for example, the outcome of coin
toss can be either “head” or “tail”. However, we often want to represent outcomes as

numbers.

e Discrete random variable (Fig. 2.2a):

The outcome of an experiment is discrete. For example, specimen tensile tests
with 10 kN are conducted one hundred times. Each tensile test employs 20
specimens. Let say, the random variable X is the number of failed specimens in

each tensile test. Then, X is a discrete random variable.

e Continuous random variable (Fig. 2.2b):

The outcome of an experiment is continuous. For example, an LED light bulb is
tested until it burns out. The random variable X is its lifetime in hours. X can
take any positive real value, so X is a continuous random variable. Similar
examples include the tensile strength of specimen tensile tests.

Mechanical and Aerospace Engineering, Seoul National University
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Figure 2.2: Random Variable

2.4 Univariate Distributions

e To understand probability distributions relevant to engineering applications
e To investigate statistical properties of probability distributions
e To make use of Matlab statistical toolbox

Let X be a random variable in an engineering application. The probability density function
(PDF) and cumulative distribution function (CDF) of X are denoted by f, and F ,

respectively. Their relationship is fy (x) = % F (x).

Normal Distribution (or Gaussian Distribution)

_(x=p)’
2
(6 u,0) = fy(x)=—p=e *°
oN2r7

>> x=[-10:0.1:10]; 04
>> y=normpdf(x,0,1); 03s|
>> plot(x,y)
v'  Symmetric distribution, skewness=0, kurtosis=3 0zl

v" Central limit theorem states that any distribution with
finite mean and standard deviation tends to follow normal
distribution

v' Special case of chi-squared distribution and gamma

distribution % e o 5 0

Dimension of fabricated part

Uncontrolled random quantities (i.e., White Gaussian

noise)

ANEN

Lognormal Distribution

Mechanical and Aerospace Engineering, Seoul National University 20
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1 (nx-p)

y(x;,u,O')ZfX(x)zme

>> x=[-10:0.1:10];
>> y=lognpdf(x,0,1);
>> plot(x,y)

v

Limited to a finite value at the lower limit

v' Positively skewed
v’ Strengths of materials, fracture toughness
Weibull Distribution
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k
k-1 _(x=a
yOsv,k,a) = fy(x) = k—a(x—aj e (V"’) , 2 parameter Weibull if a =0

v—a

>> x=[0:0.1:10];
>> y=wblpdf(x,1,2);
>> plot(x,y)

<\

AN

k is a shape parameter; vis a scale parameter; a is a
location parameter

Originally proposed for fatigue life

Used in analysis of systems with weakest link
Wear, fatigue, and fracture

Exponential Distribution

xX—a

Vo) = fe()=re
U

>> x=[0:0.1:10];
>> y=exppdf(x,1);
>> plot(x,y)

v
v

v
v

a is a location parameter; s a scale parameter

Used to model data for time between failures with a
constant failure rate

Called as “memoryless random distribution”

Continuous version of Poisson distribution to describe the
number of occurrences per unit time

Poisson Distribution (Discrete)
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X

Yosd)= fy) =2
X.

>> x=[0:0.1:10];

>> y=p0i55pdf(X,1); 035
>> plot(x,y) 03
025
v/ An event occurrence in a given interval o2t
v The occurrences are independent; called as “memoryless ons] |

random distribution”

v" Used to model data for the number of failed specimens (or
product defects) in a given batch with a constant failure
rate % lz 4 3 8 10

Uniform Distribution

ym%ma&m=;L
—a

>> x=[0:0.1:10];
>> y=unifpdf(x,3,7);
>> plot(x,y)

v' Symmetric, skewness=0 01
v" Equal occurrence
v" Random number generator

Beta Distribution
1 _ _ .
y(x;a,b) = fy(x) = x“'(1-x)"", B(a,b): Beta function
B(a,b)

>> x=[-10:0.1:10]; 4
>> y=betapdf(x,3,6); -
>> plot(x,y)

Bounded distributions 15

Related to Gamma distribution
Manufacturing tolerance
Reliability data in a Bayesian model

ANENENEN
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Other Distributions in Engineering

Rayleigh distribution, Gamma distribution, Extreme Type I, II distributions, etc.
Refer to http://mathworld.wolfram.com/topics/ProbabilityandStatistics.html and
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm.

Homework 5.1: Statistical uncertainty

Device a way to quantify the amount of statistical uncertainty. Use n=10, 100,
1000 for X~N(0,12).

Homework 5.2: Statistical modeling of material strengths

Download the excel file named ‘tensile_test.xlsx’ at the ETL. You can find the
yield strength and tensile strength data from uniaxial tensile tests. Among the
probability distribution functions listed above, you are asked to determine two
best candidates to model the yield strength and tensile strength. DO NOT use any
advanced techniques but rely on the basic analysis of the distribution types
described above. Write your essay with at least 150 words.

2.5 Random Vectors (Material properties, etc.) — Statistical correlation
(related to random vectors)

Suppose X: and X: are jointly distributed and joint event is defined as x, <x, and
X, < x,. The corresponding bi-variate distribution of a random vector is defined as

Joint CDF:  Fy y (x,x,) = P(X, <x, X, <x,)

. (6)

Joint PDF: fy v (%,%,) = ﬁp)@(2 (X1, %,)

02r

p =0.828

015 4
b *

01r e

0.05T

E,
0 . NSy R i Reieiediatolind
102 103 104
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Assume that two random variables are normally distributed. To define the joint PDF of
a multivariate distribution, five parameters are required, namely, the mean values of X;

and X, My and My, , their standard deviations Oy and Oy, , and the correlation

coefficient Py y . The PDF of the bivariate normal distribution can be expressed as

1 1 X~ Hy,

expq —
2oy Oy, \/1 - ,012\,1)(2 2(1- P)quz ) Oy,

5 (7)

2

Jxx,(X,%,) =

2

(x - Hy, YO0, =ty ) | Xy Hy,
-2 + :

Px x, oo o
Xl XZ XZ

If X; and X- are correlated, namely, oy y #0, f xx,(%,X%,) is not symmetry.

5

5

>> [x1,x2]=meshgrid(-5:0.1:5); >> [x1,x2]=meshgrid(-5:0.1:5);

>> f=1/(2*pi)*exp(- >> f=1/(2*pi*sqrt(1-0.8"2))*exp(-(x1." 2-
(x1.22+(x2).%2)./2); 1.6*x1.¥*x2+x2.72) /(2*(1-0.8"2)"2));

>> mesh(x1,x2,f) >> mesh(x1,x2,f)

Bivariate distribution of random vector can be generalized for n-dimensional random
vector, X:Q — R". Joint CDF and PDF for n-dimensional random vector are written as

i=

Joint CDF:  Fy (x) = P(fn\l{)(l. < x,.}j

(8)
Joint PDF:  fy(x) = &f}_—T&FX (x)
A multi-variate normal random vector is distributed as
-2 _% 1 T ——
fx(x):(zﬁ) Iy| “exp _E(X_llx) Exl(x_llx) 9)

where . and x are mean and covariance matrix of X.
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2.6 Conditional Probability — Statistical dependence (related to joint events)
The probability of the event E: occurrence conditional upon the event E- occurrence
is defined as:

P(E,NE,)

P(E1|E2): P(E,)

(10)

Let us recall the example of fatigue tests. The sample data can be obtained about
the physical quantities in the damage model below.

A ' ’ c
ng%(sz)b +ap (2N

Exercise: Let us consider a 20 data set for the fatigue strength coefficient (o) and
exponent (b) used in the strain-life formula shown above. Two events are defined as
E. = {(X, X2)| X1>8x102 and X> > 0.09}
E> = {(X31, X2)| Xi<1.02x103 and X < 0.11}

P(E\)=8/20=2/5,  P(E:) =16/20 = 4/5, P(E:nEs) = 4/20 = 1/5

_P(ENE) 15 1
© P(E,) 45 4
_P(ENE)_15 _1

P(E | E,)

P(E, | E
(BB == =053
02r
0.15F .
o E:
b 0o1r pomes
0051 Fa.
O M .......lf N Jo =heiieap gy ol
102 10° 104
oF:

Bayesian statistics (or inference) is based on the conditional probability. It will be
recalled in the Bayesian probability theory.
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2.7 Statistical Moments — Quantification of randomness

e Tounderstand the statistical moments of a random variable.
e To apply statistical moments to an uncertain response.
e To prepare uncertainty propagation analysis through a system in Sections 4 & 5.

Let X = {Xl,---,Xn}T be an n-dimensional random vector and g(X) be a function of
X. In general, the Nth statistical moment of g(X) is defined as

E[gX)]" =[_ 2" () fx(x)x (11)

where f, (x) is the joint PDF of X and Q is a sample (or random) space.

2.7.1 Statistical Moments of a Random Vector
First, one special case is considered to find out statistical moments of an input

random variable, thatis, g(X) = X,,i=1,---,n.

Mean of a Random Vector
Let g(X) = X, and set N=1. The first moment of random variable X is defined as

E[X, ]l = _[: xS x, (% )dx, (12)
= Hyx,

Similarly,

E[Xz ]l = Iixzfxz (x,)dx, = Hx,

E[Xn ]l = Jjoxann (xn)dxn = IUX,,

Nxz{ﬂxl :UX,,}T

2.7.2 Covariance of a Random Vector

Let g(X)=(X; —#4;)(X; - 4;). The statistical moment is defined as

E[(X; = )X, =) | = [ (6= )0y = 1)) f, (6o )i, (13)
=[2, |=2«

where [y y (x;,X;) and L, are the joint PDF and the covariance matrix of X; and X,

respectively.
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When i = j, the diagonal terms in the covariance matrix are obtained as

E[Xl —H ]2 E.[:)(xl _lul)zle (% )dx,

= 0)2(1 =2
(14)
2 0
E[X,-u] = j_w (x, = 1,)* [y (x,)dx,
= 0?(” = Znn
If i # J, the off-diagonal terms in the covariance matrix are obtained as
E [(Xl — )X, - ,Uz)] = Lw (o = 1), = 1) [y x, (X155 )lxydlx,
=X
: (15)
E [(Xn —Hy )(anl - ,Un,I)] = J._OO (xn —Hy )(xnfl My )f)(,,X,,,l (xn > xnfl)dxndxnfl
= Z:nn—l
The covariance matrix is written as
z:11 zln
T | .
an z:nn
2.7.2 Higher moments
Skewness and Kurtosis (314 and 4th order moments)
N —\3
A3 Ax =X
skewness = E [(X—”) ] or skewness =L3) (16)
o (N-Ds
N —\4
AN . i\ -X
kurtosis = E [(X—“) ] or kurtosis :M (17)
o (N-1)s

2.7.3 Properties of Covariance Matrix,

. - T
e 3y issymmetric, i.e., Ly =Xy
e Variance of Xi is the ith diagonal element of X, i.e., o3 =2,

e X, isapositive semi-definite matrix, i.e., ATZXA >0, VAeR"
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2.7.4 Correlation Coefficient, P

The correlation coefficient p; is defined as
Py = o (18)
\/zii \/Ejj 2y

The correlation coefficient p; is a degree of correlation between two random

variables. Note that Z,-j = p;j0;0; represents the off-diagonal elements of covariance
matrix, Xy .

o If X ande are independent (i.e., fX1X2 (x;,%,) =fX1 (xl)fX2 (x,)), then X, ande
are uncorreleated (i.e. p; = 0), but vice versa is not true.
o -I< pij <+1

o If X;=aX;+b, p;=%l=sgn(a).

2.7.5 Coefficient of Variation, COV(X) = o, / 2z,

Homework 6: Statistical moments and joint PDF

Use the same excel file named ‘tensile_test.xlsx” at the ETL. Calculate the
sampled means and standard deviations of yield strength and tensile strength.
With the calculated means, standard deviations, and correlation coefficient, you
can plot a joint pdf of yield strength and tensile strength. ASSUME the yield
strength and tensile strength follow normal distribution.

Homework 7: Read Chapter 2 of the Textbook
Read Chapter 2 to reinforce your knowledge about the fundamentals of the
engineering statistics.
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CHAPTER 3. UNCERTAINTY CHARACTERIZATION

This chapter discusses statistical analysis based on available sample data that
characterizes uncertain data in a statistical form. Specifically, it introduces statistical
procedures to determine an appropriate probability distribution for a random variable
based on a limited set of sample data. There are two approaches in the statistical data
analysis techniques: (a) conventional statistical methods (graphical methods and
statistical hypothesis tests) and (b) Bayesian methods.

3.1 Conventional (or Frequentist) Statistical Methods
The conventional statistical methods impose models (both deterministic and
probabilistic) on the data. Deterministic models include, for example, regression
models and analysis of variance (ANOVA) models. The most common probabilistic
models include the graphical methods and quantitative methods.

3.1.1 Graphical Methods

e Histogram (Fig. 3.1)
The purpose of a histogram is to graphically summarize the distribution of a
univariate data set. This histogram graphically shows the following:

1. center (i.e., the location) of the data;

2. spread (i.e., the variation) of the data;
3. skewness of the data;

4. presence of outliers; and

5. presence of multiple modes in the data.

These features provide strong indications of the proper distributional model for

the data. The probability plot or a goodness-of-fit test can be used to verify the
distributional model.

7 . :

6 M

o— I NI‘I

7 8 9 10 11 12 1
X

Figure 3.1: Histogram

Histogram
w & <)

L]

=

3
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Normal probability plot

The normal probability plot is a graphical technique for assessing whether or not
a data set can be approximated as a normal distribution. The data are plotted
against a theoretical normal distribution in such a way that the points should
form an approximate straight line. Departures from this straight line indicate
departures from normality. The normal probability plot is a special case of the
probability plot.

Normal Probability Plot
0.99 T T

0.98 o g +-
>> x = normrnd(10,1,25,1); 095 - .
>> normplot(x); 090 %
»
¥
0.75 /f
= +
3 050 o .
e + /
o ¥
o
025 | e
+
#+
0.10 t;
0.05 A
0.02 :
0.01 L L .
8 8.5 9 9.5 10 105 1

- Data

Probability plot

The uniform distribution has a linear relationship between ordered physical data
and probability. So any probability distribution can be used for approximating a
given data set if a probability distribution is related to the uniform distribution.
The relationship can be defined as

U@) = G(P(x(D))

where P(i) is the probability of the event E = {X | x(i) € Q} and U(i) follows a
uniform distribution.

>> x1 = wblrnd(3,2,100,1);

>> x2 = raylrnd(3,100,1);

>> probplot(‘'weibull',[x1 x2])

>> legend('Weibull Sample','Rayleigh Sample','Location', NW")
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Probability plot for Weibull distribution

0.999+
099l * Weibull Sample

po5H © Rayleigh Sample

0.75+
0.5+

025+

Probability

0.05+ .y

oo1F .~ -

0.005r0 7

Data

Rayleigh distribution is a special case of weibull distribution when a shape
parameter is 2. Therefore both distributions follow the straight lines very closely.

Homework 8: Graphical methods

Use the data set for elastic modulus and yield strength in the excel file named
‘tensile_test.xlex’. Build histograms and plot each data set on the normal
probability plot to determine if they follow a normal distribution. Discuss your
observation.

3.1.2 Quantitative Methods

e Statistical Moments:
First-order moment (e.g., mean, location)

N

mean(X) = % (19)

a. Confidence limits (or interval) for the mean (T-test)
X £t s/NN (20)

where X and s are the sampled mean and standard deviation, N is the sample
size, « is the desired significance level (or 1—« = confidence level), and t(y/2,n-1)
is the critical value of the t-distribution with N-1.
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TABLE B: 1-DISTRIBUTION CRITICAL VALUES

Tail probability p
afr | 25 20 A5 10 05 025 02 01 nos 003 001 L0s
1] Log0 1376 1963 3078 6314 1271 1589 3182 6366 1273 3133 6366
21 816 1061 12336 1386 2920 4303 4849 60565 9925 14090 2233 3180
3| 765 A78 1230 1638 2353 3182 3482 4.541 S5B41 7453 1021 1292
4 T 841 1190 1533 2132 2776 2999 3747 4604 0 5398 7173 8610
51 727 920 1156 L476 2015 2571 2757 3365 4032 4773 5393 4860
6| .718 006 1134 1440 1.843 2447 2612 3143 3AT07T 4317 5208 59593
71 711 ges 1119 1415 1895 2365 2517 2998 3490 4000 4TES 5408
| 706 EEF LI0E 1397 LA6D 2306 2440 2896 3355 3833 4501 5041
91 3 B33 L1000 1333 1833 2262 1398 ZEZ1 3250 3690 4397 4781
10 | 00 479 1093 1372 LB1Z 2228 2359 2764 3169 3581 d1dd 4587
11 | 6497 A76 0 L1082 1363 1796 2201 2328 2718 306 3497 4025 4437
12| 695 873 1083 135 L7E2 2379 2309 2681 3055 3428 3530 4313
13 | 694 A70 1079 1350 1771 2160 2282 . 2550 3012 3372 3852 47221
4 | 492 868 1076 1345 L7el 2145 23264 2624 2997 3326 3787 4140
15 | 691 Be6 1074 1341 LTS3 2131 2249 26020 2947 3286 3733 4073
16 | 690 865 1071 1337 1746 2120 2235 2583 2921 3252 36RS 4.015
17| .08% 863 LGP 1333 1740 2110 2224 2567 2893 3222 34646 3963
18 | 688 862 L1067 1330 1734 2001 2214 2552 2878 3197 3511 3912
19 | .688 A6l 1Deas 1323 1729 2003 2205 2539 2861 3174 35790 3383
20| .687 Ael 1064 1325 1735 2086 2197 2528 2845 3153 3552 3850
21| 686 A539 0 10683 1323 1721 2080 2133 251% 2831, 3135 3537 35819
22| 686 258 10461, 1321 1717 2074 2183 2508 2819 3119 3505 3992
23| 4685 838 OG0 1319 1714 2089 2177 2500 2807 2104 3485 3748
24 |- 685  B57 1059 1318 LTIl 2064 2072 2402 2797 3.091 3467 5.745
25 | 6B4  RS6 1053 131§ 1708 2080 2067 2485 2787 3078 3450 3725
26 | 684 B56 1038 1315 1706 2056 0 2182 2479 2779 3067 3435 3707
27 | 684 LBS5  LO5T 1314 1703 2052 2158 2473 2771 3057 3421 3400
28 | 683 855 LOSE 1313 L1700 Z.0dE 2154 2467 2763 3047 3408 3674
29 | 683 B3 LDSS 1311 1.68% 2045 2150 2462 2756 3038 3305 3650
an [ 583 Bi 0 L0555 L3100 1607 2042 2147 2457 2730 3030 3383 3645
T 851 LoS0D 1303 1684 2021 2123 2423 2704 2971 3307 3551
30| 679 B4 LT 1299 1476 2009 109 2403 2678 2937 3261 3496
a0 | a7 848 LM5 129 1671 2000 2009 2390 26580 2915 3232 2460
80 | 678 346 143 1292 1664 1990 2088 2374 2639 2887 2195 3416
100 677 A45 0 1042 1290 1650 1984 2081 2384 2626 Z8T1 3074 3390
oo | 675 L4200 1037 1282 1846 1062 2036 2330 2531 2E13 30898 3300
e | B74 841 1036 1282 1445 19680 2084 2336 2576 2807 3051 3,291
0% 6% T0% % 906 95% D% SREm W% BOS%m  DOEm  §99%
Confidesca level
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From the formula, it is clear that the width of the interval is controlled by two
factors:

v As N increases, the interval gets narrower from the /» term and t(s/2,n-1).
That is, one way to obtain more precise estimates for the mean is to
increase the sample size.

v The larger the sample standard deviation, the larger the confidence
interval. This simply means that noisy data, i.e., data with a large standard
deviation, are going to generate wider intervals than data with a smaller
standard deviation.

To test whether the population mean has a specific value, uo, against the
two-sided alternative that it does not have a value o, the confidence
interval is converted to hypothesis-test form. The test is a one-sample t-
test, and it is defined as:

Ho: )? = HUo

Hu: X # 1o

Tested statistics: T=(X - u)/(s/IN)

Significance level: a (=0.05 is most commonly used.)

Critical region: Reject the null hypothesis that the mean is a

specified value, po, if
T < _t(a/2,N—1) or T > t(U!/2,N—1)

Let’s say the null hypothesis is rejected. The p-value indicates the probability
that the rejection of the null hypothesis is wrong.

>> x1 = normrnd(0.1,1,1,100); The test fails to reject the
>> [h,p,ci] = ttest(x1,0) null hypothesis at the
ho= 0 default a. The 95%
b = confidence interval on the
0.8323 mean contains o.
ci =
-0.1650 0.2045
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>> x2 = normrnd(0.1,1,1,1000);

>> [h,p,ci] = ttest(x2,0) The test rejects the null

h = ) hypothesis at the default .
The p-value has fallen

P 0.0160 below « = 0.05 and 95%
ci = confidence interval on the
0.0142 0.1379 mean does not contain 0.

b. 1-factor ANOVA (Analysis of Variance)
http://www.itl.nist.gov/div898 /handbook/eda/section3/eda354.htm

Second-order moment (e.g., variation)

zj\;(xi _)?)2

(N-1) (21)

variation(s®) =

a. Bartlett’s test: http://www.itL.nist.gov/div898/handbook/eda/section3/eda357.htm

b. Chi-Square test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm
c. F-test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm

d. Levene test: http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm

The formula for computing the covariance of the variables X and Y is

coy = 2t X) (3 -T)
N-1

(22)

e Maximum Likelihood Estimation (MLE):

The principle behind the MLE method is that for a random variable X, if x1, x, ... ,
xn are the N observations or sample values, then the estimated value of the
parameter is the value most likely to produce these observed values. Consider the
density function of X to be fx(x,0), where 6 is the unknown parameter(s). In
random sampling, the x/’s are assumed to be independent. If the likelihood of
observing xi’s is proportional to their corresponding density functions, the
likelihood function can be defined as
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L(x;,x,, -+, x, |0)=Hf‘i1 Sx(x,160)
=fe (x5 [ [ (x,0)-- fr(x,|6)

(23)

The MLE can be formulated as

To determine 8, maximize L(xq,x5,...Xx,)

Homework 9: Quantitative methods

Use the data set for elastic modulus and yield strength in the excel file named
‘tensile_ test.xlex’. Test whether or not the population mean has a specific value,
1o=200 GPa, for a quality control. Let’s assume the elastic modulus follow a
normal distribution. Determine the optimal mean and standard deviation using
the maximum likelihood method.
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Distributional Measures:

Chi-squared Goodness-of-Fit (GOF) Tests:

The chi-square test is used to test if sampled data come from a population with a
specific distribution. An attractive feature of the chi-square GOF test is that it
can be applied to both continuous and discrete distributions. The chi-square
GOF test is applied to binned data (i.e., data put into classes). So the values of
the chi-square test statistic are dependent on how the data is binned. Another
disadvantage of the chi-square test is that it requires a sufficient sample size in
order for the chi-square approximation to be valid.

Ho:

Hi:

Significance level:
Test statistics:

Critical region:

The data follow a specified distribution.

The data do not follow the specified distribution.
o (=0.05 is most commonly used.)

For the chi-square goodness-of-fit computation,
the data are divided into k bins and the test
statistics is defined as

k
2

ZZZZ(Oi_Ei) /Ei (24)

i=1
where O:i is the observed frequency for bin i and Ei is
the expected frequency for bin i. The expected
frequency is calculated by
E=N-(F(X,)-F(X)) =N-f, (25)
where F is the cumulative distribution function (CDF)
for the distribution being tested, Xu is the upper limit
for bin i, X is the lower limit for a bin 7, and N is the
sample size.

The hypothesis that the data are from a population
with the specified distribution is rejected if

2 2
X 2 X (ko
where ¥ 2(06,,{_6) is the chi-square percent point

function with k—c degrees of freedom and a
significant level of «. k is the number of non-
empty cells and ¢ = the number of estimated
parameters (including location and scale
parameters and shape parameters) for the
distribution.

Anderson-Darling (A-D) Goodness-of-Fit Test:
http://www.itl.nist.gov/div898/handbook/eda/section3/edagse.htm

Kolmogorov-Smirnov (K-S) Goodness-of-Fit Test:
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http://www.itl.nist.gov/div898 /handbook/eda/section3/eda35g.htm

>> load gas
>> prices = [price1 price2];

>> normplot(prices)

Normal Probability Plot

0.98 -

0.95
0.90

0.75

0.50

Probability

0.25

0.10
0.05

0.02 |

110 115
>> sample_means = mean(prices)
sample_means =

115.1500 118.5000
>> [h,pvalue,ci] = ttest(price2/100,1.1515)

h=

pvalue =
4.9517€-004
ci=

1.1675 1.2025

Data

Mechanical and Aerospace Engineering, Seoul National University

37



446.779: Probabilistic Engineering Analysis and Design

>> price2=normrnd(118,3.8,100,1);
>> [h,p] = chi2gof(price2, cdf',{ @normcdf,mean(price2),std(price2)})
>> [h,p] = chi2gof(price2,'cdf',{ @normcdf,119,3.5})

Professor Youn, Byeng Dong

>> X = randn(100,1);

>> [h,p,st] = chi2gof(x,'cdf',@normcdf)

h=

chiastat: 7.5909

df: 7

Probability

0:[89101918 2110 5]

>> normplot(x)

Probability

0.997

0.99
0.98

0.95
0.90

0.75

0.50

0.25

0.10
0.05

0.02
0.01
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] 382 417 538 639 B34 1066 1224 1468 | 1692 21.67 27.88
10 394 486 618 727 934 1178 1344 1599 18:31 2221 20.59
edges: [-2.1707 -1.2999 -0.8645 -0.4291 0.0063 0.4416 0.8770 1.3124 2.1832]
E: [9.6817 9.6835 14.0262 16.8581 16.8130 13.9138 9.5546 9.4690]
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Homework 10: Probability Distribution & Statistical Moments
Let us recall the example of fatigue tests. The sample data can be obtained about
the physical quantities in the damage model below.

Ae O , .
78 = %(2Nf )b té&y (2Nf)

Let us consider a 30 data set (Table 3.1) for the fatigue ductility coefficient (&)
and exponent (c) used in the strain-life formula shown above. Answer the
following questions and provide a matlab code:

(1) Construct the covariance matrix and find out the coefficient of correlation
using the data set given in Table 3.1.

(2) Use normal, weibull, and lognormal distributions. Determine the most
suitable parameters of three distributions for the fatigue ductility coefficient
(&') and exponent (c) using the MLE method.

(3) Find out the most suitable distributions for the data set (&, ¢) using a GOF

test.
(4) Verify the results with the graphical methods (histogram and probability
plots).
10
0.75 | el
e
‘::
C 05F . "
L4
025 F
B ettt
0.01 0.1 1 10

&¢

Figure 3.2: Statistical Correlation

Table 3.1: Data for the fatigue ductility coefficient and exponent

(¢,0) (¢,0) (¢,0) (¢,0) (¢,0)
0.022 | 0.289 | 0.253 | 0.466 | 0.539 | 0.630 | 0.989 | 0.694 | 1.611 | 0.702
0.071 | 0.370 | 0.342 | 0.531 | 0.590 | 0.621 | 1.201 | 0.690 | 1.845 | 0.760
0.146 | 0.450 | 0.353 | 0.553 | 0.622 | 0.653 | 1.304 | 0.715 | 1.995 | 0.759
0.185 | 0.448 | 0.354 | 0.580 | 0.727 | 0.635 | 1.388 | 0.717 | 2.342 | 0.748
0.106 | 0.452 | 0.431 | 0.587 | 0.729 | 0.645 | 1.392 | 0.716 | 3.288 | 0.821
0.215 | 0.460 | 0.519 | 0.655 | 0.906 | 0.703 | 1.426 | 0.703 | 6.241 | 0.894

Mechanical and Aerospace Engineering, Seoul National University 39




446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong

3.2 Bayesian

We have discussed methods of statistical inference which view the probability as relative
frequency and exclusively rely on the sample data to estimate the underlying probability
distribution of the population. In addition to these frequentist statistical methods, the
Bayesian approach utilizes some prior information in conjunction with the sample
information. The Bayesian inference is capable of continuously updating the prior
information with evolving sample data to obtain the posterior information.

3.2.1 Bayes’ Theorem

Bayes' theorem (also known as Bayes' rule or Bayes' law) is developed based on
conditional probabilities. If A and B denote two events, P(A|B) denotes the
conditional probability of A occurring, given that B occurs. An important application
of Bayes' theorem is that it gives a rule how to update or revise a prior belief to a
posterior belief. Bayes' theorem relates the conditional and marginal probabilities of
stochastic events A and B:

P(B|4)-P(4)
P(4]|B) P(B) (26)

Each term in Bayes' theorem has a conventional name:

e P(A) is the prior probability or marginal probability of A. The prior probability
can be treated as the subjective probability which expresses our belief prior to the
occurrence of A. It is “prior” in the sense that it does not take into account any
information about B.

e P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

e P(A|B) is the conditional probability of A, given B. It is also called the posterior
probability of A, given B because it depends upon the specified value of B.

e P(B|A) is the conditional probability of B given prior information of A.

An important application of Bayes’ theorem is that it gives a rule how to update or
revise a prior belief to a posterior belief. Let us take a look at an interesting example
to get a better understanding.

Example 3.1

There are three doors and behind two of the doors are goats and behind the third door
is a new car with each door equally likely to provide the car. Thus the probability of
selecting the car for each door at the beginning of the game is simply 1/3. After you
have picked a door, say A, before showing you what is behind that door, Monty opens
another door, say B, revealing a goat. At this point, Monty gives you the opportunity to
switch doors from A to C if you want to. What should you do? (Given that Monty is
trying to let you get a goat.)

Solution
The question is whether the probability is 0.5 to get the car since only two doors left,
or mathematically, P(A|Bmonty) = P(C|Bmonty) = 0.5. Basically we need to determine the
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probabilities of two event Ei = {ABmonty}, E2 = {CBmonty}. We elaborate the
computation in the following steps:

1. The prior probabilities read P(A) = P(B) = P(C) = 1/3.

2. We also have some useful conditional probabilities P(Bmony|A) = Y2,
P(BMonty|B) = 0, al’ld P(BMonty|C) = 1.

3. We can compute the probabilities of joint events as P(Bmonty, A) = ¥2x1/3
P(BMmonty, B) =0, and P(Bmonty, C) = 1x1/3 = 1/3.

4. Finally, with the denominator computed as P(Bmontyy) = 1/6 + 0 + 1/3 = Y5, we
then get P(A|Bmonty) = 1/3, P(C|BMonty) = 2/3. Thus, it is better to switch to C.

1/6,

3.2.2 Bayesian Inference

Let X and ®@be random variables with a joint probability density function f(x, 6),
6 € Q. When the amount of data for X is small or X is rapidly evolving, its statistical
parameter 6 (e.g., i, o) is considered to be random. From the Bayesian point of view,
6 is interpreted as a realization of a random variable @ with a probability density
fe(6). Based on the Bayes’ theorem, the posterior distribution of @ given a new
observation X can be expressed as

Jro(*:0) _ fre(x10)- f6(0)

£ () 7o) (=7)

Jox (@)=

It can be seen that the Bayesian inference employs both the prior distribution of 6,
f0), and the conditional probability distribution of the sample (evidence or
likelihood), fxje(x|6), to find a posterior distribution of 8, fe|x(6|x). Let us consider a
normal inference model as one example to illustrate the Bayesian inference process.

Example 3.2: Suppose that we have a set of random samples x = {x1, x2,..., xyr} from a
normal PDF fx(x; u, o) of a random variable X, where u is unknown and ¢ is known.
Assume that the prior distribution of u, fi(u), is a normal distribution with its mean, ,
and variance, 7. Determine the posterior distribution of s, finx(u|x).

Solution
Firstly, we compute the conditional probability of obtaining x given u as

- Tl gee] {22
o)

Next, we compute the joint probability of x and u as

(28)
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fX,M (Xa,u) = fX\M (X | :u)fM (:u)

—M/2 -1/2 1 ¥ 1
:(27[02) (27[2'2) exp[— =) (xi—u)z—z—zﬂ(,u—u)ﬂ

(M1 Mx
=K, (X500 X, 0,1, T ) €XP _( +_)ﬂz+(_§+%jlu}
O T

207 277

We then set up a square with u in the exponent as

Mf+ u
1M 1 5 .2
S (x,y)=K2(xl,...,xM,a,u,r)exp —E(?+T—2j ’u_M—Tl
oty
o’ T

2 2
(e T

2— 2 \?
LK, (55005t 7) X0 __(M+Lj Mj

Since the denominator fx(xi, x2,..., xui) does not depend on u, we then derive the
posterior distribution of u as

(M1 Mx+0%u )
Joux (,u|x):K3(xl,...,xM,O',u,f)exp|:—5(?+?)(,u——] }

M7t*+ o2

Clearly, this is a normal distribution with the mean and variance as

Mx+cu . (M 1) o’r?
xrou - (29)

o’ 7 M1’ +o°
Therefore, the Bayes estimate of u is essentially a weighted-sum of the sample mean
and the prior mean. In contrast, the maximum likelihood estimator is only the sample
mean. As the number of samples M approaches the infinity, the Bayes estimate
becomes equal to the maximum likelihood estimator since the sample data tend to have
a predominant influence over the prior information. However, for the case of a small
sample size, the prior information often plays an important role, especially when the
prior variance 7° is small (or we have very specific prior information).

3.2.3 Conjugate Bayes Models

As can be seen in the Example 3.2, the Bayes inference and the maximum likelihood
estimation essentially provide the same estimator if we have a very large sample size.
In engineering practice, however, we often have very limited sample data possibly
due to the high expense to obtain the data. In such cases, the maximum likelihood
estimation may not give an accurate or even reasonable estimator. In contrast, the
Bayesian inference would give much better estimator if we assume a reasonable prior
assumption. By “reasonable”, we mean that the prior assumption is at least consistent
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with the underlying distribution of the population. If there is no such consistency, the
Bayesian inference may give an erroneous estimator due to the misleading prior
information.

Another important observation we can make from Example 3.2 is that the posterior
distribution shares a similar form (i.e., normal distribution) with the prior. In this
case, we say that the prior is conjugate to the likelihood. If we have a conjugate prior,
the posterior distribution can be obtained in an explicit form. Looking back to
Example 3.2, we note that the normal or Gaussian family is conjugate to itself (or self-
conjugate): if the likelihood function is normal, choosing a normal prior will ensure
that the posterior distribution is also normal. Other conjugate Bayes inference models
include the binomial inference, exponential inference, and Poisson inference. Among
these inferences, the binomial inference is the most widely used. Consider a Bernoulli
sequence of n experimental trials with x occurrences of an outcome whose probability
of occurrence po is unknown. We assume a beta prior B(a,b) for the unknown
binomial probability po, expressed as

I (m)=%p§'1 (1-p,)"

The likelihood function can be expressed according to a binomial distribution as

L(x;n,py)=C(n,x)ps (1=py)" " o py (1= py)

We can easily obtain the posterior distribution of po as a beta distribution, expressed
as

n—x

F(x+a,n+b—x) 4 nb—x-1
x)= xX+a l_

L v e T P TR S
The posterior distribution has the same form (beta distribution) as the prior
distribution, leading to the conjugacy condition. Let us take a look at the use of this
inference with a simple reliability analysis problem.

Example 3.3

Suppose that we intend to quantify the reliability of a product by conducting a
sequence of 10 repeated tests. The product passes 8 of these tests and fails at the other
two. We assume a beta prior B(4, 4) for the probability of success (or reliability) po in
each test. Compute the posterior distribution of po with the reliability test data.

Solution

Clearly, the parameters in this example take the following values: a=4,b=4,x=8,n
= 10. Then the posterior distribution can be obtained as B(x+a, n+b—x), or B(12, 6).
The prior and posterior distributions of po are plotted in Figure 3.3, where we can see
the posterior distribution combines the prior information and the testing information
(evidence) and achieves a compromise between the prior distribution and the
maximum likelihood estimator.
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Figure 3.3 Prior and posterior distributions

Homework 11. Matlab coding for Bayesian statistics
Build your own Matlab coding for accomplishing the Example 3.3 (results and
figure) above.

In many engineering problems, the conjugacy condition does not hold and explicit
solutions cannot be readily obtained with simple mathematical manipulations. In
such cases, we can build the posterior distributions by random sampling. A
commonly used simulation method for drawing samples from the posterior
distribution is referred to as Markov chain Monte Carlo (MCMC) in which the two
most common techniques, the Metropolis—Hastings algorithm and Gibbs sampling,
are used. Others include particle filtering, (extended) Karman filtering, etc. An in-
depth theoretical discussion of these techniques is beyond the scope of this book.
Readers are recommended to refer to some Bayesian statistics books for detailed
information.

Updating
Iteration, i=i+1 <

Prior Density
Je(6)
Observed data, X'

Figure 3.4: Process of Bayesian Updating

Likelihood function 5;}:1221[; Posterior Density
Sxe(x|6) Mechanism Jox(€ )
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The Bayesian approach is used for updating information about the parameter 6. First,
a prior distribution of ® must be assigned before any future observation of X is taken.
Then, the prior distribution of ® is updated to the posterior distribution as the new
data for X is employed. The posterior distribution is set to a new prior distribution
and this process can be repeated with an evolution of data sets. This updating process
can be briefly illustrated in Fig. 3.4.

Markov model is widely used in various fields such as word recognition, voice
recognition and gesture recognition in which sequence of the data is very meaningful.
Markov chain which consists of Markov model defines probability of posterior event
given the prior events. For example, 15t Markov chain considers just last event and 2nd
Markov chain take last two events into consideration to calculate probability of the
current event, expressed as

1* Markov chain

IP(XI =x|)(t—1 zxz—l’Xt—z =x72,~'-,X1 =x1)=P(X

2" Markov chain

P(X, =x|X_ =x_,X_,=x_,.X =x)=P(X,=x|X_ =x_,X_,=x_,)

M1 - t—12“% =2

A state diagram for a simple example of the 15t Markov chain is shown in the Figure
3.5.

tzz =O.1

t23 =0.6
Figure 3.5: State diagram of a simple Markov chain

‘a’ represents the observations which can be obtained from the model, and ‘t; is
probability that aj occurs when ai is given. For example, probability that the posterior
event X: becomes a- can be defined based on prior events as follows
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P(X,=a,)=P(X,=a,|X_ =a)xP(X,=a,|X_ =a,)xP(X,=a)] X, =a,)
=1, xt,, xt,, =0.5x0.1x0.4=0.02

For more convenient interpretation of the model, transition matrix can be defined as

0 05 05
'=103 0.1 0.6
02 04 04

It can be noticed that sum of the probability of all posterior events given one prior
event is 1.

Example 3.4 (Gambler’s ruin)

Suppose that a gambler having $20 is going to gamble at roulette in a Casino. The
gambler bets $10 on odd number, and makes $10 when it occurs. If even number occurs,
he loses the money betting the roulette.

He has to leave the Casino if he loses his entire money or make $20 to have $40 in his
pocket. What is likelihood that the gambler lose his entire money from ten times of the
roulette game given that probability of winning at each game is 50%?

-’q‘ [l ll'l CHEITY 4] @ e @ F SN ] REFRESH

Solution
First, we have to develop Markov chain to solve the example. 1% Markov chain is used in
this example. Graphical model can be illustrated as
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0.5 0.5 0.5
1
1
0.5 0.5 0.5

Figure 3.6 Markov chain for the Example 3.4

And the corresponding transition matrix is

1 O o0 0 0

05 0 05 0 O
r'=f 0 05 0 05 0
0 0 05 0 05

O o0 o0 0 1

After ten times of roulette games, multiplication of the transition matrix gives

1 0 0 0 0

0.734 0016 0 0.016 0.234
10 <l0484 0 0031 0 0484
0234 0016 0 0016 0.734

0 0 0 0 1

What this result is saying is that probability of losing all initial pocket money ($20) as a
result of 10 times of roulette games is about 48.4% under the given condition.

The idea of Markov Chain Monte Carlo (MCMC) is basically the same as the Markov
model in that it defines posterior position of the sampling point based on the prior
information of the sampled points. Two most important techniques can be employed
in MCMC, the Metropolis-Hastings algorithm and Gibbs sampling.

Metropolis algorithm, which is the most simplified MCMC method can be performed
by the following steps
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Step 1. Set a sample index i to 0 and initial sampling point x,

Step 2. Pick a random value u~U(0,1), where u follows the uniform distribution

Step 3. Define a candidate of the next sampling point x*~P(x*|x;), where P is
‘proposal distribution’ - generate ‘random walk’ using a proposal density

: p(x)
Step 4. If u < min {1, p(xi)}
x*1 =x* - accept a proposal
else
xt = xt - reject a proposal
end

In step 4, decision criterion is defined based on the ratio of probability of the
candidate position and probability of the prior sampling point. Thus, the next
position of the sampling point is defined in most likely direction.

For example, it is possible to design the sampling position for the Gaussian
distribution with mean of zero and standard deviation of one using the Metropolis
algorithm, where ‘proposal function’ P follows Gaussian distribution (norm(x‘, 0.05)).

>> Nn=1000000;

>> x=zeros(n,1);

>> X0=0.5; % Step 1
>> x(1)=x0;

>> for i=1:n-1

>> x_star=normrnd(x(i),0.05); % Step 2
>> u=rand; % Step 3
>>  if u<min(1,normpdf(x_star)/normpdf(x(i))) % Step 4
>> x(i+1)=x_star;

>> else

>> x(i+1)=x(1);

>> end

>> end

>>

>> figure;

>> hist(x,100);
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x 10

3.5

Others include particle filtering, (extended) Karman filtering, etc. An in-depth
theoretical discussion of these techniques is beyond the scope of this book. Readers
are recommended to refer to some Bayesian statistics books for detailed information.

3.2.4 How to Model Prior Distribution?

¢ Informative Prior Distribution
Generally we have two ways to handle known information (x):
1. Histogram
2. Select a prior density function with unknown parameters firstly, and then
estimate the unknown parameters for the data.

¢ Non-informative Prior Distribution
Non-informative prior distribution means determining the prior distribution

when no other information about the parameter @ is available except its feasible

field © .

References for Bayesian statistics:
1. http://en.wikipedia.org/wiki/Bayesian
2. Singpurwalla, N.D., 2006, Reliability and Risk: A Bayesian Perspective, Wiley.
2. Andrew Gelman, John B. Carlin, Hal S. Stern and Donald B. Rubin, 2004,
Bayesian Data Analysis, Second Edition, Chapman & Hall/CRC.
3. Bernardo, J.M., and Smith A.F.M., 1994, Bayesian Theory, John Wiley & Son Ltd..
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CHAPTER 4. PROBABILISTIC ENGINEERING ANALYSIS — TIME-
INDEPENDENT PERFORMANCE

4.1 Motivation

Many system failures can be traced back to various difficulties in evaluating and
designing complex systems under highly uncertain manufacturing and operational
conditions and our limited understanding of physics-of-failures (PoFs). One of the
greatest challenges in engineered systems design is how to evaluate the probability of
an engineering event accurately before prototyping or actual testing. One way to
evaluate the probability of an engineering event is known as Monte Carlo simulation,
based on random sampling. Due to inefficiency of Monte Carlo when data is not
given sufficiently, many “efficient” methods have been devised to alleviate the need
for Monte Carlo simulation. These methods included the first and second-order
reliability method (FORM and SORM), the response surface method (RSM), and the
Bayesian inference.

4.2 Probabilistic Description of System Performance

Uncertainty affects the entire lifecycle of engineered systems from the impurity of
the resources to the assembly of the finished goods. No matter manufacturer design
the product perfectly, there is always errors or imperfection in manufacturing and
operation. It is extremely difficult to predict engineering performances precisely due
to substantial uncertainty in engineering design, manufacturing and operation. For
example, engineers cannot predict how much engine mount bushing transmits
engine noise and vibration to drivers and passengers; how much
head/neck/chest/femur injury occurs during a car crash; what is a critical height for
a drop test that breaks the display of a smartphone. Thus, we should define
engineering performances as a function of uncertainty as shown below.

Probabilistic performance
= Y(X); Xis a vector of uncertainty that affects system performance

Engineering systems have specifications in terms of systems’ performances. The
specification can set a threshold in a quantitative scale. Therefore we can set a
probability of safety which is under the pre-determined threshold, say Yu.

Probability (Y(X) < Yu) = Probability of safety (=success)
= Reliability
= 1 — Probability of failure

On the other hand, our system is now reliable—it meets our design goals or
specifications—but it may not be robust. Operation of the system is affected by
variabilities of the inputs. To be robust, a system performance must be insensitive
to input variabilities. In other words, the performance thus possesses a narrow
distribution subject to input variabilities as shown below
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Probability (YL < Y(X) < Yu) = Robustness

Reliable, Robust
Solution
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= Reliable, U
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2 Solution i, ~ /!

Professor Youn, Byeng Dong
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Probability of
Failure
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v

Figure 4.1: Fundamentals of Probabilistic Performance Analysis

4.3 Probabilistic Description of System Performance — Reliability

A system performance is defined in many different ways as practiced in different
applications; say the electronics, civil structures, nuclear/chemical plants, and aero-
space industries. In some instances, system performances can be treated time-
independently due to their characteristics. Other instances situate the performances

time-dependently.

4.3.1 Time-Independent Performance:

The probability that the actual performance of a particular system will meet the
required or specified design performance without considering the degradation of
system performances over time. It is often found in mechanical and civil

structural systems.

R(X)=P(Y(X)>Y)=1-P(Y(X)<Y) for larger-the-better performances

where the safety of the system is defined as Y > Yc and Y. is the critical value for Y.
Ye can be either deterministic or random. Examples include natural frequency,

engine power, energy efficiency, etc.

R(X)=PY(X)<Y)=1-P(Y(X)>Y ) for smaller-the-better performances
¢ c p

where the safety of the system is defined as Y < Yc. Examples include stress,

strain, crack size, etc.

4.3.2 Time-Dependent Performance:
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The probability that the actual life of a particular system will exceed the required
or specified design life.

R.(1)=P[T(X)>1]=1-P[T(X)<t]=1-F,(r)

where the time-to-failure (TTF) of a system is defined as a time that a system
health condition, G(X), is worse than its critical value, G¢, and X is the random
vector representing engineering uncertain factors.

4.3.3 Challenges:

1. Modeling random variables (X) for future loading, material property, and
manufacturing tolerances (section 3).

2. Analyzing how input uncertainties propagate to those of system performances
(section 4.4-4.7)

3. Extending the ideas of probabilistic analysis to the case with a lack of data
(section 4.8)

4. Identification of the probability distribution for a reliability function (sections
5).

5. Predicting the failure time or performance failure when designing a system or
component (section 5).

6. A long-time failure or lack of failure in test-based reliability assessment
(section 5).

7. Consideration of performance degradation in time-dependent reliability
(sections 5).

4.4 Probabilistic Description of Time-Independent Performance

o Structural reliability is defined in many different ways as practiced in different
applications; say the electronics, civil structures, nuclear/chemical plants, and
aero-space industries.

e Most electrical, electronic and mechanical components and systems deteriorate
during use as a result of elevated operating temperatures, chemical changes,
mechanical wear, fatigue, overloading, and for a number of other reasons.
Failure of a particular component may eventually occur for one of these reasons,
or it may be caused indirectly as a result of the deterioration of some other parts
of the system. However, it is very difficult to estimate TTF distribution precisely.

o In contrast to electronic/mechanical systems, structural systems tend not to
deteriorate, except by the mechanical corrosion and fatigue, and in some cases
may even get stronger, for example, the increase in the strength of concrete with
time, and the increase in the strength of soils as a result of consolidation.

o In other cases, engineers are interested in initial performances.

For a simple structural member, the strength R and load S of the structure can
describe the probability of failure or reliability. Suppose the strength R and load
S to be random with the known distributions, Fr(r) and Fs(s). The probability of
failure is defined as
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P, =P(R-S<0)=[ Fy(s)f;(s)ds (30)
Then, the reliability can be defined as
R=1-P, =1=[" Fy(s)f;(s)ds (31)
Fo(s) Fr(n)
0
i >
Fr(s") | fs(s® SR
1 |
TL:U
©
L
[a]
o
R-S

Figure 4.2: A Simple Case of Reliability (= 1—Pf): Strength-Load

4.5 General Description of Time-Independent Performance

The reliability is defined as the probability that the performance of a system
exceeds the required or specified design limit over operating time t.

R(1)=PY(X,)2Y)=1-P(Y(X,r)<Y,) for Larger-the-better type
R(1)=PY(X,))<Y)=1-P(Y(X,r)>Y,) for Smaller-the-better type

where the failure of the system is defined as Y > Y. for L-Type (or Y < Y¢) and Yc s
the required design limit for Y. Y. can be either deterministic or random.

4.6 Probabilistic Engineering Analysis Using Simulation Models

For probabilistic engineering analysis, uncertainty in engineered system
performances (or outputs) must be understood by taking into account various
uncertainties in engineered system inputs. As shown Fig. 4.3, input uncertainties are
propagated through the system to those in outputs (e.g., natural frequency, fuel
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consumption, energy conversion efficiency, vibration, transmission error,
temperature distribution, head injury).

Model

Uncertainty J\L

Input Physical «’\ Finite element, Output
Uncertainty \ Mathem modeling,  Uncertainty
Etc.

X- Physical Y(X)
System - ‘

Y”(X)+C(X)Y'(X)+K(X)Y(X)=F(X)

Input
Statistical /f\

Uncertainty q' L

Figure 4.3: Uncertainty Propagation through Physical System

Then, the probability of safety (L-Type) can be estimated by integrating the PDFs of
the system performances over the safety region.

R=P{Y(X.n2Y}=[ fimdy=] ... [f(x)dx (32)

Y(X)2Y,
4.7 Methods for Probabilistic Performance Analysis (Frequentist)

4.7.1 General Model of Design under Uncertainty
The design under uncertainty can generally be defined as:

Minimize Cost(d)
subject to P{G[{X;d(X)} >0}<Pﬁ, i=1,---,nc (33)
d, <d<d,, deR"™andXeR"

where nc is the number of probabilistic constraints; nd is the number of design
parameters; nr is the number of random variables; d :[d,.]T = u(X) is the design
vector; X=[X l.]T is the random vector; and the probabilistic constraints are
described by the performance function G, {X;d(X)} , their probabilistic models, and
the probability of failure. The probability of failure is defined as P, = ®(-f,) with a
target reliability index f, where the failure is defined as G, {X;d(X)} =Y, - Y,(X;d(X))
> (0 for L-type. The design procedure under uncertainty is graphically illustrated in
Fig. 4.9.
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Saf Fail

Infeasible Region G{X)>0 Deterministic Optimum

Joint PDF

Fatigue Failure fx(x) Contour

G(X)=0 .
S Reliable Optimum

N,
i Design
A‘L Fail

Feasible Region Wear Failure

Figure 4.4: Design under Uncertainty

The probability of failure is defined as
P(G(X) > 0) =1—P(G(X) < 0)
=1-F,(0) (34)

= ---Ifx(x)dx, XeR™

G(X)>0
The reliability (or the probability of safety) is inversely defined as
P(G(X)<0)=F;(0)
— . J fX (X)dX, X = Rnr (35)

G(X)<0

Figure 4.5 explains both the probability of failure and reliability.
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Infeasible Region
G(X)=TY.-¥(X)>0

f,
Fatigue F ailu.reSurfa\ e 1(y1)
S Fail/Saf¢
s

(S
G,(X)=0 SN

ch Yl

fy2(y2)
Fa

YZC YZ

Feasible Region
GX)=Y.-¥(X)<0
Wear Failure Surface
G,(X)=0

Figure 4.5: Reliability or Probability of Safety

The statistical description of the safety (or failure) of the constraint function ¢,x)

requires a reliability analysis and is expressed by the CDF £ (0) of the constraint as

P(G(X)<0)=F;(0)2®(5,) or R,
Time-dependent: G,(X,T)=T,-T,<0 where 7, is a designed life. (36)
Time-independent: G,(X)=F.—P, <0 where P, is a critical buckling load.

where the probability of the safety constraint G;(X) < 0 is described as

Fo =" fs(g)dg; = |

G,(X)go"'.[ fx(X)dx, i=1,---,ncandxeR" (37)
In Eq. (37), fx(X) is the joint PDF of all random parameters and the evaluation of Eq.

(37) involves multiple integration. Neither analytical multi-dimensional integration
nor direct numerical integration is possible for large-scale engineering applications.
Existing approximate methods for probability analysis can be categorized into four
groups: 1) sampling method; 2) expansion method; 3) the most probable point
(MPP)-based method; and 4) stochastic response surface method.

4.7.2 Random sampling techniques (Monte Carlo simulation)

Let us recall the reliability or the probability of safety as
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P{G,(X;d) <0} = F (0) = IG,,(X)so"' [ fx(x)dx ~ Numberofsafe wals (38)
Or, inversely, the probability of failure can be obtained as
P{G,(X;d) >0} =1 F (0) = IGK(X)>O...IfX(x)dx B (39)
e Simple but extremely expensive
e Seldom used due to its computational intensiveness, but used for a
benchmark study
e To estimate a failure rate,
N, :
Dy = 7, N :Number of failed samples
N : Number of total samples
1 S
0.9+
0.8~
0.7
06!
& % 05/
0.4
0.3+
0.2~
0.1+
5 s % 45 d0 s 0 5 10 15
G
% generate random samples % calculate reliability
>>m=[2 3]; >> ns=0;
>> s=[10;0 3]; >> fori=1:1000
>> n=1000; g(i) = x(1,1)"2-x(1,2)-8;
>> x=mvnrnd(m,s,n); ifg(i) <=0
>> plot(x(:,1),x(:,2),'+") ns=ns+1
end
% plot a failure surface end
>> [x1,x2] = meshgrid(-1:.1:6,-4:.2:10); >>rel =ns/n
>> gg=x1."2-x2-8; >> cdfplot(g)
>>v=[0 0];
>> [C,h]=contour(x1,x2,gg,v)
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Homework 12: Monte Carlo Simulation

Consider the following simply supported beam subject to a uniform load, as
illustrated in Figure below. Suppose L = 5 m and w=10 kN/m.

w per unit length

bhbbosddibiadld

El
T SN

— L —

Figure 4.6: Simply Supported Beam

Random Vector:
El'= X, ~ N(uy, =3x10",0, =10°)
w=X, ~N(y =100, =10%)
The maximum deflection of the beam is shown as

5x,It
384X,

Y=g(X,X,)=-

Determine the PDF (or CDF) of the maximum deflection and estimate its reliability
using the MC simulation when the failure is defined as Y < yc = -3x10-3m.

4.7.3 Expansion methods

First-order method

Any nonlinear function (Y) can be linearized in terms of an input random vector
T .
X={X,.X,} ,ie,

o OY (py)

Y(X)=Y(py) + > —X2
(X)=Y(nyx) 2" ox

~a X, ++a, X, +b (40)

or Y~a'X+b

(Xi — My, )+ h.o.t.

where a ={q,,---,a,}" is a sensitivity vector of Y.

e MeanofY
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E[Y]= p, ~ E[a"X +b]
= E[a" X]+ E[b]
=a’ E[X]+b
=a’ u +b

e Variance of Y
Var[Y]=o? = E[(Y - pty)*]
= E[(Y — )Y = p1y)' ]
~ E[(a"X+b-a"py —b)(a'X+b-a"py —b)"]
=a’ E[(X—py)(X-py)' Ja
=a'Ya

¢ Generalization

Let Y € R” be a random response vector of interest, which is related to input
X e R". The linear system is given in the following equation.

Y~A"X+B
where A € R”" xR" and B e R" are coefficient matrix and vector, respectively.
Let py € R" and Xy € R" xR" be the mean vector and covariance matrix of
output Y. Then,

py ~A'py +B

(41)
X, ~ATE A

Exercise: Cantilever Beam

Py P>

L,

N\=— 10ft —=f=— 10t —]

R~ N[1000 Ib, 100> 1b* |, B, ~ N[ 500 Ib, 50> 1b> |, 7 = 10000 Ib-ft, deterministic

Given that:

Assume P: and P- are uncorrelated. Calculate mean, standard deviation, and
coefficient of variation (COV) of maximum moment at the fixed end. Estimate
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the reliability when an allowable bending moment (Ma) is 33,000 Ib-ft.

Solution: At fixed end, the maximum moment is expressed as

M, =10 +20P,+10000=a" X +b

where a’ ={10 20}, 5=10000 Ib-ft,
P 1000 100> 0
X=1""b, u, = b, = Ib?
1) 500 0 50°

Mean of Mmax

Variance of Mmax

Coefficient of Variation (COV) of Mmax

Reliability with an allowable moment M. = 33,000 1b-ft

Homework 13: Expansion method

Recall Homework 12. Estimate its reliability using the expansion method when the
failure is defined as Y < yc = -3x10-3m.
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Second-order method
Second-order approximation of any nonlinear function (Y) can be used for the
second-order method as

YOO = V) + 3 B (X, )¢ ZZ%?S}‘)( (X)) @2
, i=l j=1

e MeanofY

e Variance of Y
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3. B EFEH

EFSTEEE
(Pr(Zz<2)=0(2), Z~ N0, 1))
z | 000]001|002|003]004]005]006|007]|008] 009

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 05239 05279 0.5319 0.5359
0.1 05398 0.5438 0.5478 05517 05557 0.5596 05636 05675 0.5714 0.5753
0.2 05793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 06179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.680B 0.6844 0.6879
0.5 06915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 07257 0.7201 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 07794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 08159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8564 0.8577 0.8599 0.8621

1 0.8643 0.8665 0.8686 0.8708 08729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
13 0.9032 09049 0.9066 0.9082 0.9099 0.81156 0.9131 0.9147 0.9162 0.9177|
1.4 09192 09207 0.9222 0.9236 0.9251 09265 0.9279 0.9292 0.9306 0.9319
1.5 0.8332 0.9346 09357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
16 0.8452 0.9463 0.8474 0.9484 0.9495 0.9505  0.9515 0.9526 0.8535 0.9545
1.7 0.9554 0.9564 09573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9684 0.9671 09678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 09719 0.9726 0.9732 0.9738 0.9744( __09750 20.9756 0.8761 0.9767|
2.0 09772 09778 09783 0.9788 0.9793 09798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.89834 0.9838 09842 0.9846 0.9850 0.9854 0.9857,
2.2 09861 0.9864 009868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
23 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
24 0.9918 0.9920 09922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
25 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9956 0.9956 0.9957 0.9950 0.9960 0.9961 0.9962 0.9963 0.9964
er 0.9965 0.9966 09967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
28 0.9974 0.9975 0.9976 09977 0.9977 0.9978 0.8979 0.9979 09980 0.9981
29 0.9981 0.9982 09982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

4.7.4 Most Probable Point (MPP) based methods
Most probable point (MPP) based methods include the first order reliability method
(FORM) and second order reliability method (SORM). Instead of approximating a
response Y at the mean of X, it approximates the function at the most probable point
in either a linear or quadratic manner. This is illustrated in Figure 4.6. The MPP is a
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pointwise representation of the failure surface and normally computed in a
transformed space (or standard Gaussian space). In the MPP based methods, the
reliability analysis requires a transformation T from the original random parameter
X to the independent and standard normal parameter U. The constraint function
G(X) in X-space can then be mapped onto G(T(X)) = G(U) in U-space. Rosenblatt

transformation is most widely used for transforming any non-normally distributed
random vector to standard normal random vector.

Joint PDF

Failure Region

U,
Safe Regio Failure Surface Failure Region
2(X)>0 g(X)=0 g(U)<0
- E MPP u*
Safe Region
D g(U)>0
: Reliability Most Probable
Joint PDF Mapping T Index B Region to Fail
fx(x) Contour
- FORM .
0 | !
SORM
Failure Surface
fu(u) Contour g(u)=0

(a) Nonlinear Transformation of Non-normal Distributions

('b) First-Order Reliability Method

Figure 4.6: Nonlinear Transformation of Non-normal Distributions
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Table 4.1: Nonlinear Transformation, T: X > U

Parameters PDF Transformation
M = mean, . 1 os[a-w)of
Normal (x)= e ", —ee < x Koo X=u+olU
B o = standard deviation J 2ZOo : ' H
4 = mean, o = standard deviation
5 2 1 ~0.5[mx-m)/& —
Lognormal | ¢° = ln[l +(6//1)“1 f)= T AT | 1% 0 X =
2mx
H=In(u)-0.56"
k>0, u=1+1/k) s ;
Weibull 5 5 5 )= —] — I x>0 = _UNlE
o? =+ 2m) -2+ ye) |7 v(v] ‘ . X =v[-In(@0))f
) I '
Gumbel | u=v+(0577/a). o = x/6a F(xX)=ae ™™ —co < x<ooy/2 X =v——In[-In(®W))]
- o
. ) 1 )
Uniform ,u:(a—l—b)/2,0'=(b—(1)/\/12 f(.\')=[—.as,\'§b X=a+b-a)@WU)
D —ill
where ®(U) —LJ‘U Py

P(G(X)<0)=F;(0)2D(B, ) or R,
Time-dependent: G.(X,T)=T,-7,<0 where T, is a designed life. (43)
Time-independent: G;(X)=F.—P. <0 where P, is a critical buckling load.

The probabilistic constraint in Eq. (36) can be further expressed in two different
ways through inverse transformations as (see Fig. 4.7):

RIA: g =o' {F, (0)}= 5, (44)
PMA: G, = Fg' {o(B,)} <0 (45)

where ,Bs[ and Gp[ are respectively called the safety reliability index and the

probabilistic performance measure for the ith probabilistic constraint. Equation (44)
is employed to prescribe the probabilistic constraint in Eq. (33) using the reliability
measure, i.e. the so-called Reliability Index Approach (RIA). Similarly, Eq. (45) can
replace the same probabilistic constraint in Eq. (33) with the performance measure,
which is referred to as the Performance Measure Approach (PMA).
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7

3

7

(a) MPP Search Space in RIA (b) MPP Search Space in PMA
Figure 4.7: Random Search Space in RIA and PMA

Formulation for Reliability Index Approach (RIA)

In RIA, the first-order safety reliability index f; rory is obtained using FORM

by formulating as an optimization problem with one equality constraint in U-
space, which is defined as a limit state function:

where the optimum point on the failure surface is called the Most Probable
Failure Point (MPFP) ug_,, and thus g . .. =

u*G(U)=OH .

Either MPFP search algorithms specifically developed for the first-order
reliability analysis, or general optimization algorithms can be used to solve Eq.
(46). The HL-RF method is employed to perform reliability analyses in RIA due
to its simplicity and efficiency.

HL-RF Method
The HL-RF method is formulated as follows

(47)

where the normalized steepest ascent direction of G(U) at u”
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and the second term in Eq. (47) is introduced to account for the fact that G(U)
may be other than zero.

function [beta,dbeta]=HL RF (x,kc)
u=zeros (l,nd); iter=0; Dif=1;
while Dif >= 1d-5 & iter < 20
iter=iter + 1;
[ceq,GCeqg]=cons (u, x, kc) ;
u= (GCeg*u'-ceq) /norm (GCeq) "2*GCeq;
U(iter, :)=u/norm(u) ;
if iter>1
Dif=abs(U(iter-1,:)*U(iter,:)"' - 1);
end
end
beta = norm(u);
dbeta = -u./ (beta*stdx) ;
end

Formulation for Performance Measure Approach (PMA)
Reliability analysis in PMA can be formulated as the inverse of reliability analysis

in RIA. The first-order probabilistic performance measure G, rory is obtained

from a nonlinear optimization problem in U-space defined as

where the optimum point on a target reliability surface is identified as the Most
Probable Point (MPP) u*ﬂ: 5 with a prescribed reliability g, = , which will be

Us=p,

referred to as MPP. Unlike RIA, only the direction vector u,_, / ‘ ‘ needs to

[wls-s
be determined by exploring the explicit sphere constraint ||U|| = B,.

General optimization algorithms can be employed to solve the optimization
problem in Eq. (48). However, the Advanced Mean Value (AMV) method is well
suited for PMA due to its simplicity and efficiency.

AMYV method
Thus, the AMV method can be formulated as

ol =i Wi =A@ 49)

where
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(50)

function [G,DG]=AMV (x, kc)

while Dif>1d-5 & iter<20
iter=iter+1;
if iter>1

u=DG*bt/norm (DG) ;

end
[G,DG]=cons (u, x, kc) ;
U(iter, :)=u/bt;
if iter>1

end
end
end

u=zeros (l,nd); iter = 0; Dif=1;

Dif=abs (U(iter, :)*U(iter-1,:)"'-1);

Table 4.2: Properties of the RIA and PMA

Properties

RIA 1. Good for reliability analysis

reliability is high.

2. Expensive with sampling method and MPP-based method when

3. MPP-based method could be unstable when reliability is high or a
performance function is highly nonlinear.

PMA

=

Good for design optimization.

N

. Not suitable for assessing reliability.
3. Efficient and stable for design optimization.
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Homework 14: First-Order Reliability Method

Consider the following simply supported beam subject to a uniform load, as
illustrated in Fig. 4.13. Suppose L = 5 m and w=10 kN/m.

w per unit length

pbadliililyd

El

- L -]

Figure 4.8: Simply Supported Beam
Random Vector:
El'= X, ~ N(uy, =3x10",0, =10°)
w=X, ~N(iy, =10*,6, =10°)
The maximum deflection of the beam is shown as

sxr
384X,

Y=g(X,,X,)=

Estimate its reliability using the MPP-based method (HL-RF) when the failure is
defined as Y < yc = -3x10-3m. Make your own discussion and conclusion.

4.7.5 Stochastic response surface method
Dimension reduction family:
Dimension reduction (DR) method simplifies a single multi-dimensional
integration to multiple one-dimensional integration or multiple one- and two-
dimensional integration using additive decomposition. This section introduces
univariate dimension reduction (UDR) method.

For the approximation of the multi-dimensional integration, consider an
integration of two dimensional function which can be expressed by the Taylor
series expansion by
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(Y(xl,x2)) (Y(O O))
+Z—(o 0)1[x,]

11x,'

1 &Y oY
2—2 (0,01 x|+ a)68)62(0,0)1[%%]

1

63Y 3 63Y ) 1 aSY
5,-:15,3(0’0)1[’“” |+= o (0.0)1 xx, |+ Nanar —— (0,01 xx,” |
20'Y .
+Z!i:1§f‘(o’0)l[xi ]
1 &Y s 7,1 oY 1 oY ;
+§8xl38x2 (O’O)I[x' x2}+§axfax 7 (0, O)II:XI X ]"' 31 xox, (O,O)I[xlx2 ]+

where integration term can be defined as

[[Y(x1 ,X, ):' = J:j jj: Y(x,,x,)dxdx,

Because integrations of the odd functions are zero, the integration of Taylor
series expansion of the target function (Y) can be expressed as:

1[Y(x)]=1[r(O)]+ 22—(0)1[ 2]

11
lN

) a—A(O)I[xi“]

1 & o'y
+2|2lza 26 z(O)II:X x; ]+

ti<j

where I(*) calculates integration over the given space.
This is also computationally expensive because of the terms including multi-
dimensional integration such as I[xizx jz] To effectively remove the terms with

multi-dimensional integration, additive decomposition, Yq, is defined as:
Y(Xn X)) 2Y,(X,,.. X )

N
= ZY(/JI’""/Jj—lan’ﬂjJrl""’ﬂN)_(N_I)Y(,ulr"a:uN)

Jj=1
Integration of Taylor series expansion of the additive decomposition (Ya) can be
expressed as:

N 2
1Y, (x)]=1[r(0)]+ %ng—?(on[xf]

4'1'21 0 i4
+o i(O)I[Xﬂ
6!5 Gx
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This results the largest error at the fourth even-order term, producing negligible
€rTor.

1)1 ()= 53 =2 o]

= 2, 2
2121575 ox;"ox;

For probabilistic engineering analysis, the mt" statistical moments for the
responses are considered as

E[Y"(x)|=E[1,"(X)]

N m
~E {ZY(yl,...,ﬂj_l,Xj,uj+1,...,ﬂN)—(N—l)Y(ﬂl,...,uN)}

J=1

Applying the Binomial formula on the right-hand side of the equation above gives

1 (1 N "
m;EZ( )A{Z | (TIT T |5X:n#j-1-|s---”tb,-vl}
=1

i=0 \ I J

F

[—(N = Dy(r. oo )]’
One-dimensional integration will be performed with integration weights w;; and

points X;; as

N
E{Z Y (fseoes s X o s Hy )}

Jj=1

N n
= ZZWj,iYm (ﬂl""’:u_/—l’xj,i’1u_/+17""/uN)

j=1 i=l

where N is the number of input random parameters and n is the number
integration point along each random variable. An empirical sample point
distribution for the UDR when m = 3 is shown in the Fig. 4-DR1. We can see that,
compared to the full factorial sample points, the UDR achieves a significant
reduction in the number of sample points.
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c & ©

(,uX, _36)(,5#)(2 +3O_X2) (/lx,s,uxz +3GX3) (/u/\’. +30—/"1"uxz +3O—Xz)

4.

(Iqu _30-)(1 ”uxz ) (/uxl r#xz ) (:u)(, +3O-X, ’lqu )

O O

(luX, =30y, iy, =30y, ) (:ux, My, =30y, ) (:uX, +30y,, by, =30y, )

(O Full factorial
@ UDR
Fig. 4-DR1. Empirical sample point distribution for UDR (m=3)

e Refer to http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4M-
4H74MBo-
1&_user=961305&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C00
0049425&_version=1&_urlVersion=0&_userid=961305&md5=6e56b71561720cf
e918f32c3eaa2cf86

e Refer to http://www.springerlink.com/content/416179447313n8q1

Polynomial Chaos Expansion (PCE) method
Tensor-Product (or Stochastic Collocation) Method

4.8 Bayesian Description of Time-Independent Performance
When modeling uncertainties with insufficient data, the probability of safety (or
satisfying a specification), referred to as reliability, must be uncertain and subjective.
Because the Bayes theory provides a systematic framework of aggregating and
updating uncertain information, reliability analysis based on the Bayes theory,
referred to as Bayesian reliability, is employed to deal with subjective and
insufficient data sets.

4.8.1 Bayesian binomial inference - reliability
« Bayesian binomial inference
If the probability of a safety event in each sample is r and the probability of failure is
(1-r), then the probability of x safety occurrences out of a total of N samples can be
described by the probability mass function (PMF) of a Binomial distribution as

Pr(X =x,N|r) =(N

]rx(l—r)N_x, x=0,1,2,..,N (51)
X

Mechanical and Aerospace Engineering, Seoul National University 71



446.779: Probabilistic Engineering Analysis and Design Professor Youn, Byeng Dong

When r is an uncertain parameter and a prior distribution is provided, a Bayesian
inference process can be employed to update r based on the outcomes of the sample
tests. It is possible to obtain a posterior distribution with any type of a prior
distribution. A Bayesian inference model is called a conjugate model if the conjugate
prior distribution is used. For conjugate Bayesian inference models, the updating
results are independent of the sequence of data sets.

« Conjugate prior reliability distribution

For Bayesian reliability analysis, both prior reliability distribution () and the
number (x) of safety occurrences out of the total number of test data set N must be
known. If prior reliability distribution () is unavailable, it will be simply modeled
with a uniform distribution, r ~U (a, b) where a<b and a, b<[o0, 1]. In all cases,
reliability will be modeled with Beta distribution, the conjugate distribution of the
Bayesian binomial inference, because the uniform distribution is a special case of the
Beta distribution.

1 a-1 b-1 ;
rx)=——r" (1-r B(a,b): Beta function

f( | ) B(a,b) ( ) ) ( ) ) (52)
where a = x + 1 and b = N — x +1. The larger the number of safety occurrences for a
given N samples, the greater the mean of reliability, as shown in Figure 4.9 (a). As
the total number of samples is increased, the variation of reliability is decreased, as
shown in Figure 4.9 (b).

In Bayesian inference model, the binomial distribution likelihood function is used
for test data, whereas the conjugate prior distribution of this likelihood function is
used for reliability (), which is a beta distribution. However, it is found that the
Bayesian updating results often depend on the selection of a prior distribution in the
conjugate models. Besides, the available conjugate Bayesian models are limited. To
eliminate the dependency and the limitation, a non-conjugate Bayesian updating
model can be developed using Markov chain Monte Carlo methods. This is, however,
more computationally intensive.
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(a) (b)
Figure 4.9: Dependence of the PDF of reliability on the number of safety

occurrences, x and the total number of samples, N

4.8.2 Definition of Bayesian reliability

Bayesian reliability must satisfy two requirements: (a) sufficiency and (b)
uniqueness. The sufficiency requirement means that the Bayesian reliability must be
no larger than an exact reliability, when it is realized with a sufficient amount of data
for input uncertainties. The uniqueness requirement means that the Bayesian
reliability must be uniquely defined for the purpose of design optimization. To meet
these two requirements, Bayesian reliability is generally defined with a confidence
level of reliability prediction where the confidence level Cr of Bayesian reliability is
defined as

C,=Pr(R>Ry)=| f(r|%)}dr=1-Fy(R,) (53)
With the predefined confidence level Ci, Bayesian reliability can be defined as
Ry =Fy'[1-C,] (54)

Therefore, Bayesian reliability can be formulated as a function of a predefined
confidence level. Bayesian reliability is desirable since it is defined from the
reliability distribution with a corresponding confidence level and accounts for
reliability modeling error due to the lack of data.

To guarantee the sufficiency requirement, extreme distribution theory for the
smallest reliability value is employed. Based on the extreme distribution theory, the
extreme distribution for the smallest reliability value is constructed from the
reliability distribution, beta distribution. For random reliability R, which follows the
beta distribution, Fr(r), let R: be the smallest value among N data points, the CDF of
the smallest reliability value, R1, can be expressed as

1= Fy (r)=Pr(R >r)=Pr(R >r,Ry>r,...Ry >r) (55)

Since the ith smallest reliability values, Ri(i=1, . . . ,N), are identically distributed and
statistically independent, the CDF of the smallest reliability value becomes

F (r)=1-[1-F (r)]" (56)

Then Bayesian reliability, Rs, is uniquely determined as the median value of the
extreme distribution. Based on this definition, Bayesian reliability and its confidence
level can be respectively obtained as the solution of the nonlinear equation, by
setting Fy (R;)=0.5

[1 Vi-F, RB} +[1-%05] (57)
C, =1-Fy (Ry) =1-Fy (F' [1-¥05 ) = Y05 (58)
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The Beta distribution for reliability, its extreme distribution for the smallest
reliability value, and the Bayesian reliability are graphically shown as below.
8
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Figure 4.10: Bayesian reliability

4.8.3 Numerical procedure of Bayesian reliability analysis
Bayesian reliability analysis can be conducted using a numerical procedure as
follows.

« Step 1: collect a limited data set for epistemic uncertainties where the data size is N.

« Step 2: calculate reliabilities (Rx) with consideration of aleatory uncertainties at all
epistemic data points.

e Step 3: build a distribution of reliability using the beta distribution with aleatory
and/or epistemic uncertainties.

« Step 4: select an appropriate confidence level, CL, of Bayesian reliability.

« Step 5: determine the Bayesian reliability.

Refer to http://www.springerlink.com/content/u1185070336p4116/fulltext.pdf.
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Homework 15: Bayesian Reliability Analysis

Consider the following simply supported beam subject to a uniform load, as
illustrated in Fig. 4.14. Suppose L = 5 m and w=10 kN/m.

w per unit length

pbadliililyd

El

- L -]

Figure 4.11: Simply Supported Beam

Random Vector:
EI = X, ~ N(uy, =3x10",0, =10%)
w= X, ~ epitemic
The maximum deflection of the beam is shown as
5x,Lt
384.X,

Y=g(X1,X2)=—

The X- is an epistemic uncertainty. For Xo, it is assumed that 10 data sets are
gradually obtained at different times. Using MPP-based method (HL-RF),
determine the reliability of the maximum deflection constraint, P(Y(X1) > yc = -
3x103m), at all individual X- points in the table. Predict the PDF of reliability in
a Bayesian sense using the first 10 data set and gradually update the PDFs of
reliability using the second and third data sets. Make your own discussion and
conclusion, and attach your code used for Bayesian reliability analysis.

Table 4.3 Three sets of 10 data for X (x104)

Seti  1.0000 0.8126 1.0731 1.0677 0.9623 0.9766 1.1444 1.0799 1.0212 0.9258
Set2  0.9682 1.0428 1.0578 1.0569 0.9704 1.0118 0.9649 1.0941 1.0238 1.1082
Set3 1.1095 1.0896 1.0040 0.9744 0.8525 1.0315 1.0623 0.9008 0.8992 0.9869
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CHAPTER 5. PROBABILISTIC ENGINEERING ANALYSIS — TIME-
DEPENDENT PERFORMANCE

In the previous chapter, methods were examined for obtaining the system’s reliability
function analytically or computationally. In the calculation of probability values, we
consider time independent safety events. However, in many practical cases, system’s
performance degrade over time. In this chapter, time dependency in the probability of
safety occurrence (or reliability) will be introduced. We will develop the reliability
models necessary to observe the reliability over the life of the system, instead of at just
one point in time. In addition, performance measure such as MTTF and failure rate are
presented and also its related distributions are introduced. An accelerated life test will
be discussed to acquire time dependent data in an efficient manner. Lastly, we take a
glance at overview of PHM in the end of the chapter.

5.1 Reliability Function (Time-Dependent)
5.1.1 Reliability Function

The Reliability Function R(t), also known as the Survival Function S(%), is
defined by:

R(t) = S(t) = the probability a unit survives beyond a designed life t.

Since a unit either fails or survives, one of these two mutually exclusive
alternatives must occur as

(59)

where F1(t) is the probability distribution function or CDF of an actual life and
f1(t) is the PDF of an actual life.

5.1.2Expected Life or Mean Time-To-Failure (MTTF):

(60)

5.1.3 Failure Rate (or Hazard Function):
Insight is normally gained into failure mechanisms by examining the behavior of
the failure rate. The failure rate, h(t), may be defined in terms of the reliability or
the PDF of the time-to-failure (TTF). Let h(t)At be the probability that the system
will fail at some time T < t + At given that it has not yet failed at T'= t. Thus, it is
the conditional probability as
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(61)

There are a handful of parametric models that have successfully served as
population models for failure times (TTF) arising from a wide range of products
and failure mechanisms. Sometimes there are probabilistic arguments based on
the physics of the failure mechanics that tend to justify the choice of model.
Other times the model is used solely because of its empirical success in fitting
actual failure data.

5.1.4 Bathtub Curve:
The bathtub curve is widely used in reliability engineering, although the general
concept is also applicable to humans. It describes a particular form of the hazard
function which comprises three parts:
o The first part is a decreasing failure rate, known as early failures or infant

mortality.

e The second part is a constant failure rate, known as random failures.
e The third p