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CHAPTER2.
CONSERVATION LAWS OF FLUID MOTION AND
BOUNDARY CONDITIONS




2.1 Governing Equations of Fluid Flow and Heat Transfer

** The governing equations of fluid flow represent mathematical statements of the
conservation laws of physics.

® The mass of fluid is conserved.

® The rate of change of momentum equals the sum of the forces on a fluid particle
= Newton’s second law
® The rate of change of energy is equal to the sum of the rate of heat addition to and the rate
of work done on a fluid particle
= First law of thermodynamics

® Continuum assumption
* Fluid flows at macroscopic length scales > 1 um
= The molecular structure and motions may be ignored.
= Macroscopic properties

— Velocity, pressure, density, temperature
— Averaged over suitably large numbers of molecules

= Fluid particle

— The smallest possible element of fluid whose macroscopic properties
are not influenced by individual molecules.




2.1 Governing Equations of Fluid Flow and Heat Transfer

** Control volume
® Sixfaces:N,S,E, W, T,B
® The center of the element: (x, vy, z) L N

|
I
|
“* Properties at the volume center |
|
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¢ Fluid properties at faces are approximated

by means of the two terms of the Taylor series.
® The pressure at the W and E faces
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2.1 Governing Equations of Fluid Flow and Heat Transfer

+» 2.1.1 Mass Conservation in Three Dimensions

Rate of increase Net rate of flow
of mass in =| of mass into
fluid element fluid element

® Rate of increase of mass
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Mass conservation/ Continuity Eq.




2.1 Governing Equations of Fluid Flow and Heat Transfer

+» 2.1.1 Mass Conservation in Three Dimensions

Jd

P 1 div(pu) =0
ol

® For an incompressible fluid, the density pis constant.




2.1 Governing Equations of Fluid Flow and Heat Transfer

*+ 2.1.2 Rates of change following a fluid particle and for a fluid element
® Lagrangian approach/ changes of properties of a fluid particle
® Total or substantial derivative of ¢
® ¢ Function of the position (X,y,z), property per unit mass

D¢
Dt

® A fluid particle follows the flow, so

dax/dt =u
dy/dt=v
dz/dt=w

® Hence, the substantive derivative of @is given by




2.1 Governing Equations of Fluid Flow and Heat Transfer

*+ 2.1.2 Rates of change following a fluid particle and for a fluid element

D¢
® D1 defines the rate of change of property ¢ per unit mass.

D
p_$

D¢ The rate of change of property ¢ per unit volume

+v— +w—=—+u. grad p——p —+u.grad ¢
Do Mo TV T T g e o o

D¢:a¢+ua¢ P P I Do [8(1) J

® Eulerian approach/ changes of properties in a fluid element
= Far more common than Lagrangian approach
= Develop equations for collections of fluid elements making up a region fixed in space



2.1 Governing Equations of Fluid Flow and Heat Transfer

*+ 2.1.2 Rates of change following a fluid particle and for a fluid element
® LHS of the mass conservation equation

P, div(pu)
ot

® The generalization of these terms for an arbitrary conserved property

, Net rate of flow of ¢
é’( p(;?)) . Rate of increase ‘
+ le( p ngl) (of 4 per unit volumeJ+ out of .ﬂuld element
ol per unit volume
J , d J .
(p9) + div(pgu) = p 99 +u.grad ¢| + ¢ P + div(pu)
f ot or
Do (o o
p—=p|—+u.grad ¢ — + div(pu) =0
D1 { ol ot
Rate of increase Net rate of flow Rate of increase
of ¢ of fluid + of ¢ out of = of ¢fora
element fluid element fluid particle




2.1 Governing Equations of Fluid Flow and Heat Transfer

*+ 2.1.2 Rates of change following a fluid particle and for a fluid element

® Relevant entries of ¢ for momentum and energy equations

D d
r-momentum u p—u (pu) + div(pun)
Dt
Do d(pv
y-momentum v p—z (o) + div(pou)
Dt
Dr d(pr
Z-momentum w pl (pm) + div(pmwu)
Dt
DE Jd(pE
cenergy E p? (p ) + dl\(pEll)
I




2.1 Governing Equations of Fluid Flow and Heat Transfer

% 2.1.3 Momentum equation in three dimensions

® Newton’s second law

Rate of increase of
momentum of
fluid particle

Sum of forces
on
fluid particle

/ Surface forces

Du Do Dw .

Por Por P )

Pressure = normal stress = p

Viscous stress = 7

Tij . stress component acts in the j-direction
on a surface normal to i-direction

Pressure force ( p)

Viscous force (7)

Body forces

e Centrifugal force

e Coriolis force

e Electromagnetic force
e Gravity force




2.1 Governing Equations of Fluid Flow and Heat Transfer

% 2.1.3 Momentum equation in three dimensions

® Xx-component of the forces due to pressure and viscous stress

= On the pair of faces (E,W)

ar.. 1
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= On the pair of faces (N,S)
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2.1 Governing Equations of Fluid Flow and Heat Transfer

% 2.1.3 Momentum equation in three dimensions
® Xx-component of the forces due to pressure and viscous stress

= Total surface force per unit volume

a(_j) + 7'._1'_1') + ary.\.‘ + ar:t
ox dy oz

® X-component of the momentum equation

Rate of increase of Sum of forces
momentum of = on
fluid particle fluid particle




2.1 Governing Equations of Fluid Flow and Heat Transfer

% 2.1.3 Momentum equation in three dimensions

Rate of increase of Sum of forces
momentum of = on
fluid particle fluid particle

® X-component of the momentum equation

— oT.,.
Du _otptr) 00w  0fa g
Dt Ox oy 0z '

® y-component of the momentum equation

Dv 9dt, d-p+71,) OJ1., Body force
P R VY (2+7)) + 248,
Dt ov dy 0z | Sy, =0
® z-component of the momentum equation Sy, =0
Dw Jdt. dr, d-p+1. — e
p _ Tl Tz, (—p .W) —|—S_”:_ S_li,—:._ pg
Di  ov dy oz




2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions

® The first law of thermodynamics

DE
P Dt

—

Rate of increase
of energy of
fluid particle

Net rate of

heat added to

fluid particle

Net rate of work
done on
fluid particle

® Rate of work done by surface forces

® |n X-direction,

8(—{) + 7'-_1'_1') + 87'_-}*.1‘ + Jat

X

ox dy oz

® Inyand z-directions,
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X

dy

} 0x 0y 0z

a(vrt‘_]') + c9(2’1(_10 + 1’_-]'_]!))
ox dy

+

A T]):| ox 0y 0z

A~




2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions
® Total rate of work done on the fluid particle by surface stresses
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2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions

Rate of increase
of energy of
fluid particle

Net rate of
heat added to
fluid particle

Net rate of work
+ done on
fluid particle

® Net rate of heat transfer to the fluid particle

= |n X-direction,

q, — %l o |— q,+ %l
© ox 2 )

= Iny and z-directions,

g5 ey
Py oz
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2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions

Rate of increase Net rate of Net rate of work
of energy of =| heat added to | + done on
fluid particle fluid particle fluid particle

® Total rate of heat added to the fluid particle per unit volume

dqg, dq, 9.
dv dy Iz

® Fourier’s law of heat conduction

q=—kgrad T in vector form

—div q = div(k grad 7))




2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions

Rate of increase Net rate of Net rate of work
of energy of = heatadded to + done on
fluid particle fluid particle fluid particle

+ Energy Source

ANut,,) . ut,,) N A(ut,,) N (vT,,) N A(vt,,)

DE . -
p_Dz div(k grad T) vl = T Y T T o Y
Loety) | At | It | a(mr:;)}
oz dx dy oz
® Energy equation
E=i+3?+ 0+ n?)

= E:Sum of internal energy and kinetic energy
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Dt a.l" (}_})) az al"
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dy 0z ox dy 0z

+ div(k grad T) + .5,




2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions
® Kinetic energy equation

— oT..
Du _ozp+7.) +—=+ o, +38,4 X U
Dt OX oy 0z '
Dv Jdt, d-p+71,) It
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2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions
® Total energy equation — kinetic energy equation

) DE — _divipw) + Nut,) . Aut,,) . Nur.,) . A(vt,,) pDL 3 + 72+ 0?)] . grad pu| Ty It It
Di ox dy oz ox Dr dv  dy ok
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® Internal energy equation
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2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions
® For the special case of an incompressible fluid, temperature equation

i=cl

DT . du du du dv
pc—=div(kgrad )+ 7, —+ 7, — + T,,— + T, —
D1 " ox dy e o

v dv dw dw dw
+7,—+T,—+T,—+T,—+T,—+S

"oy Yoz ox " dy “0x




2.1 Governing Equations of Fluid Flow and Heat Transfer

*» 2.1.4 Energy equation in three dimensions
® Enthalpy equation

h = hy = Total enthalpy

hy=i+p/p+3W*+ P+ w?)=E+p/p

® Total enthalpy equation

) | ) At 26 A(ph)

DE
22 - div(pu) +
P T Y e T o

+ div(phyu) = div(k grad T') + %
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2.2 Equations of State

Thermodynamic variables
p,p,iand T

® Assumption of thermodynamic equilibrium

Equations of the state
® Relate two state variables to the other variables

p=pp, T) 1=up, T)

Compressible fluids
® EOS provides the linkage between the energy equation and other governing equations.

Incompressible fluids
® No linkage between the energy equation and the others.
® The flow field can be solved by considering mass and momentum equations.



2.3 Navier-Stokes Equations for a Newtonian Fluid

** Viscous stresses T,-j in momentum and energy equations
® Viscous stresses can be expressed as functions of the local deformation rate (or strain rate).

® In 3D flows the local rate of deformation is composed of
= the linear deformation rate
= the volumetric deformation rate.

® All gases and many liquids are isotropic.

** The rate of linear deformation of a fluid element
® Nine components in 3D

. . . | :._..,
® Linear elongating deformation |
® Shearing linear deformation components e
Lt
Jﬂ—

*¢* The rate of volume deformation of a fluid element




2.3 Navier-Stokes Equations for a Newtonian Fluid

< Viscous stresses T;; in momentum and energy equations

% dX %
tana = axau = agu
dx+—*dx 1+ —*
OX OX T
uy_{’x. y+dy)
ou, ou,
tan g = ayau ag’u ¢
dy+—'dy 1+ 2 Ay
oy oy
éuy ou - -
fanag ~ —= tan f ~ — e
OX X
y
Yy =a+p The rate at which
two sides close toward each other
1
Syy = _7/xy

u (x+dx, y)




2.3 Navier-Stokes Equations for a Newtonian Fluid

** Newtonian fluid
® Viscous stresses are proportional to the rates of deformation.
® Two constants of proportionality

= Dynamic viscosity (u): to relate stresses to linear deformations
= Second viscosity (4): to relate stresses to volumetric deformation

(S . exx+eyy+ezz= @4—@-{—3”):(11\“
** Viscous stress com ponents dv dy 0=z
du dv dmw 1(du v 1(du Jw - 1fdv ow
Sy =— Sl')’ =— 5 _=— Spy =8 =—| — + — $Spa=8., =—| — 4+ — .\.),,:I = .\_::], = E a— + a—
Cood T dy T 0oz S 2ldy ov 2l dz ok 2 dy
T, = 2;1@ + Adivu T, = 2yi + Adivu T..=2U Iw + A divu
: dv - dy dz

___ (u dv S @+(91)? B i*_@
T_\;]' - r]'.r - JLI a_)r + E vz FAY ou (9: &‘_ Yz 2y {3’; (7)!

® Second viscosity




2.3 Navier-Stokes Equations for a Newtonian Fluid

“* Momentum equations

— i O
Du — a( p + z-x.\') + az_-‘“‘ + a Z-Z-T + S ‘ T = 2}1? + A divu Ty =T,=U {— + —J T = Ton = H(% + (9_}1}

o Dt ox oy Oz h v

Do dp 0 ou v d dv . Dw dp 0 du Jw % dv dw
p—=—"—+ 7 + +—| 2u—+ Adivu p—=——+—|U|l—+— || +—| | —+—
Dt dy Oox dy Ox dy dy Dt dx O dz  ox dy dz  dy

% dv  Jdw P P |
+ g [ﬂ [g + a_),rJ] + S_...ﬂ_r + E|:2‘LL8—I: + A div u:| + S,-H,-:



2.3 Navier-Stokes Equations for a Newtonian Fluid

** Rearrangement

? Zu@-l—ﬂ.dnu — @-i—@

EN ox 8 )y ox 3,\ o

~d uazt N d .Uau d alt 0 33,; N d| dv . dJd|( ow N 0 (2 div )

— - v
x| ox | dyl| Jdy 0z (9:3 ox éh‘ dy H dv | 0Oz K dv | Ox

** N.-S. equations can be written as follows with modified source terms; S, =5, + [s,]

Du ap
=——+ div(u grad u) +.5,,,
P Dt o (Hgrad )+ S
Dv d :
o, Dr = — &i + le(u gl“cld U) + ;9__.1,-1‘],
Dn 0
p A + div(u grad w) +.5,,.

Dt 0z



2.3 Navier-Stokes Equations for a Newtonian Fluid

“* For incompressible fluids with constant u

d( du Jd( v d( ow) 2
Sl = + + +—(A div
e [ oy {,U (9.1"] dy (H &\:J dz (H &VJ 8.17’( : u)]
[a (&MJ 0 (Ov) 0 (awﬂ {a [6@/} 0 (av) 0 [awﬂ
= u + - = u - +
ox\ ox ) ov\ox) 0z\ oOx ox\ ox ) ox\oy) ox\ oz

O(ou ov ow
= U +—+ =0
ox\Ox 0y 0Oz




2.3 Navier-Stokes Equations for a Newtonian Fluid

** Internal energy equation

Di

dv dv dv
+ Ty + Ty + Tpy—
“ov T dy " 0z

dw c?n;* o
+T,.—+ T —_— -
© Ox " d ]r 0z

d
—=—pdiva+div(k grad T) + 7,
PDI 7 (kg ) N

‘.h_ ‘+‘ S"

—+ T,
8)!

f}’u
)z

dv
1‘_1._\:7;1—+/1duu Ty —7,Ua—+/1dl\u T..=2U
V

® Dissipation function ®
= Always positive

(]I {

5

()H

dz

= Source of internal energy due to deformation work on the fluid particle.

= Mechanical energy is converted into internal energy or heat.
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2.4 Conservative form of the governing equations of fluid flow

Mass

X-momentum

y-momentum

Z-momentum

Internal energy

+ EOS

op .

—— +div(pu)=0

> (pu)

Apu) div(puu) = P, div(pgradu)+S,,.
ot X )

o(pv) +div(pva) = _ +div(ugradv)+S,,
ot oy :

o(pw) +div( pwu) = 4 +div(u grad w)+S,,.
8{ 52 )

a(éo D+ divipin) = —p diva +div(k grad T) +® + 5

[
U,V,W, p’ i’p’T

This system is mathematically closed!




2.5 Differential and integral forms of the general transport equations

** General form of fluid flow equations

d(py)

+ div(pgu) = div(T grad ¢) + S,

Rate of increase Net rate of flow  Rate of increase Rate of increase

of ¢ of fluid + of ¢ out of = of ¢ due to + of ¢ due to
element fluid element diffusion sources
Temporal term  Convective term  Diffusive term Source term

® Bysetting ¢ 1, S,

¢=1u,v,w,i op .
=0,k o +div(pu)=0
S; =0,(S,, —op/0x),..., |

Differential form




2.5 Differential and integral forms of the general transport equations

¢+ Starting point for computational procedures in FVM
® Integration of the general form over a 3D control volume (CV)

J—a(g Dav+ J div(pou)d ) = Jdiv(l‘ grad ¢)dV/ + j SydV
/

CV CV CV CV

® Gauss’s divergence theorem
= Volume integral < surface integral

Jdiv(a)dl/— Jn .adA

Cv A

= n-a: component of vector a in the direction of the vector n normal to surface element dA

&EU'PQMV] + Jn-(Pﬁﬁu)dA = Jn . (I'grad ¢)dA + jS@dV
,

CV A A CV

A special case of the Reynold’ transport theorem




2.5 Differential and integral forms of the general transport equations

¢+ Starting point for computational procedures in FVM

g[J'PQMV] + Jn-(Pﬁﬁu)dA = Jn . (I'grad ¢)dA + fS@dV
,

CV A A CV

® Intime-dependent problems
= Integrate with respect to time t over a small interval At

J;{Jpgdesz + J Jn (ppu)dAdr = J Jn (I grad ¢)dAdr + J qudedf
[

At Cv At A Ar A Al C\



2.10 Auxiliary conditions for viscous fluid flow equations

¢ Initial and boundary conditions for compressible viscous flow
® Initial conditions for unsteady flows
= Everywhere in the solution region, p, U and T must be given at time t=0.

® Boundary conditions
= On solid Walls

— No-slip condition: U= UW
— Fixed temperature &T
— Fixed heat flux T = TW k % — _qW
= On fluid boundaries
— Inlet p, u and T
— Outlet a a
u u
—pru—"=F L_F,

n /,l -
on on
= Qutflow boundaries

— Far from solid objects in an external flow
— Commonly, no change in any of the velocity components in the direction across the boundary

-p=F 0=F

— Open boundary



2.10 Auxiliary conditions for viscous fluid flow equations

¢ Initial and boundary conditions for compressible viscous flow

® Symmetry boundary condition

Ao/ dn =0
® Cyclic (periodic boundary condition)

0= 0,

Velocity = 0, temperature or

heat flux given
Solid wall —_— \ —_—
o // // /,f-,’/ / // ,-"'/{'/ /ﬁ/ //':/// /’Z/ /’l v LT:,-:; o Open boundary :;;EE:W
— =
Inflow Outflow
boundary boundary Density, Flow Velocity = 0, temperature or
velocity and - heat flux given
il temperature
W .
Density, . gven ™~
velocity and
temperature
given
T Solid object
ki llliiciiiizzizidddzldzzclislsrnszz /rmen boundary

Solid wall Velocity = 0, temperature or
heat flux given / "\
As inflow bc where flow into Or as outflow bc where

domain through open boundary flow out of domain



2.10 Auxiliary conditions for viscous fluid flow equations

¢ Initial and boundary conditions for compressible viscous flow
® Symmetry boundary condition

Ao/ dn =0
® Cyclic (periodic boundary condition)

0= 0,

I, A, Lz AIIIIIY

Inlet be \ Wall be Outlet be
~ Solution region Symmetry be /
—_— - - /_ -
— 7 Inflow Cyclic bc

- %22\
YL X oo
I bc
Cyclic b A// %

Wall be

7] U
’///// ////%7//
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