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General

 Numerical modeling has become an indispensable tool in fracture analysis, 

since relatively few practical problems have closed-form analytical solutions. 

 Stress-intensity solutions for literally hundreds of configurations have been 

published, the majority of which were inferred from numerical models. 

 Elastic-plastic analyses to compute the J crack-tip-opening displacement 

(CTOD) are also becoming relatively common..

 More efficient numerical algorithms have greatly reduced solution times in 

fracture problems. For example, the domain integral approach enables one to 

generate K and J solutions from finite element models with surprisingly coarse 

meshes. 

 Commercial numerical analysis codes have become relatively user friendly, and 

many codes have incorporated fracture mechanics routines.

 This chapter will not turn the reader into an expert on computational fracture 

mechanics, but it should serve as an introduction to the subject.
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Stress and Displacement Matching

 Stress Matching Method

 On the crack plane (q = 0), KI is related to the stress normal to the crack plane 

as follows:

 The stress-intensity factor can be inferred by plotting the quantity in square 

brackets against distance from the crack tip, and extrapolating to r = 0

 Displacement Matching Method

 KI can be estimated from a similar extrapolation of crack-opening displacement 

uy.

 For plain strain

 For plain stress 
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2. Traditional methods in Computational Fracture Mechanics

Local coordinate system for stresses and 
displacements at the crack tip in a finite element 
or boundary element model.
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“Displacement Matching Method give more accurate 

estimates of KI than Stress Matching Method because 

stresses are singular as r  0 but displacements are 

proportional to 𝑟 near the crack tip”
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Theoretical Background

Similitude in Fatigue

 The generalized definition of J requires that the contour surrounding the crack tip be 

vanishingly small. 

 where T is the kinetic energy density. Various material behavior can be taken into 

account through the definition of w, the stress work.

 Consider an elastic-plastic material loaded under quasistatic conditions (T = 0). If 

thermal strains are present, the total strain is given by

 where a is the coefficient of thermal expansion and Θ is the temperature relative to a 

strain-free condition. The superscripts e, p, m, and t denote elastic, plastic, 

mechanical, and thermal strains, respectively. 

 The stress work is given by
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3. Energy Domain Integral
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Theoretical Background

 It is not feasible to evaluate stresses and strains along a vanishingly small 

contour. 

 Let us construct a closed contour by connecting inner and outer contours, 

Γ* = Γ1 + Γ + + Γ− − Γo.

 For quasistatic conditions, where T = 0,

 q = arbitrary but smooth function that is equal 

to unity on Γo and zero on Γ1.

 No crack-face tractions 

 the second term becomes zero.
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3. Energy Domain Integral

Inner and outer contours, which form a 
closed contour around the crack tip 
when connected by Γ+ and Γ−.

mi = − ni on Γo ,

m1 = 0 and m2 = ±1 on Γ− and Γ+.
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Theoretical Background

 Applying the divergence theorem

when there are no body forces and w exhibits the properties of an elastic potential 

and divide w into elastic and plastic components. 

Sij is the deviatoric component of the stress tensor

 For a linear or nonlinear elastic material under quasistatic conditions, in 

the absence of body forces, thermal strains, and crack-face tractions.

 The q function is merely a mathematical device that enables the generation of an 

area integral, which is better suited to numerical calculations.
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3. Energy Domain Integral

 2 1
1 2

R C

F F
dxdy F dx F dy

x y

  
   

  
 

From (3.2)



OPen INteractive Structural Lab

Finite Element Implementation

 The q function must be specified at all nodes within the area or volume of 

integration. The shape of the q function is arbitrary, as long as q has the 

correct values on the domain boundaries.

 In a plane stress or plane strain problem, for example, q = 1 at Γo, which is 

usually the crack tip, and q = 0 at the outer boundary.
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3. Energy Domain Integral

Examples of q functions in two dimensions, 
with the corresponding virtual nodal 
displacements: (a) the pyramid function and 
(b) the plateau function

Definition of q in terms of a virtual 
nodal displacement along a three-
dimensional crack front
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Finite Element Implementation

 The spatial derivatives of q are given by

where ξi are the parametric coordinates for the element.

 In the absence of thermal strains, path-dependent plastic strains, and body 

forces within the integration volume or area, the discretized form of the 

domain integral is :

 m is the number of Gaussian points per element, and wp and w are 

weighting factors. The quantities within { }p are evaluated at the Gaussian 

points.
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Arrangement of nodes

 When both crack faces are modeled, there are usually matching nodes along each 

crack face. If these matching node pairs have identical coordinates, a small gap is 

maintained between the crack faces not to merge the nodes. 

 At the crack tip, quadrilateral elements (in two-dimensional problems) are usually 

collapsed down to triangle, degeneration of a quadrilateral element into a triangle 

 exhibits a 1/r strain singularity, plastic singularity element.
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4. Mesh Design

Examples of nodes on the crack plane 
in two-dimensional finite element and 
boundary element models.

Degeneration of a quadrilateral element into 
a triangle at the crack tip.
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Arrangement of nodes

Elastic singularity element and  Plastic singularity element
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4. Mesh Design

1/ 𝑟 singularity, 

Elastic singularity element
1/𝑟 singularity, 

Plastic singularity element

Deformed shape of plastic 
singularity elements. The crack-tip 
elements model blunting, and it is 
possible to measure CTOD.

¼ point node mid-side nodes
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Spider-web design 

 For typical problems, the most efficient mesh design for the crack-tip region has 

proven to be the “spider-web” configuration, which consists of concentric rings of 

quadrilateral elements that are focused toward the crack tip. 

 The elements in the innermost ring are degenerated to triangles.

 Since the crack tip region contains steep stress and strain gradients, the mesh 

refinement should be greatest at the crack-tip.

 The spider-web design facilitates a smooth transition from a fine mesh at the tip to a 

coarser mesh remote from the tip.

 This configuration results in a series of smooth, concentric integration domains 

(contours) for evaluating the J integral
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4. Mesh Design

Half-symmetric two-dimensional 
model of an edge-cracked plate.

Quarter-symmetric three-dimensional model 
of a semielliptical surface crack in a flat plate.
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Spider-web design 

 Elastic analyses of stress intensity or energy release rate can be accomplished with 

relatively coarse meshes since modern methods, such as the domain integral 

approach, eliminate the need to resolve local cracktip fields accurately.

 The area and volume integrations in the newer approaches are relatively insensitive 

to mesh size for elastic problems. The mesh should include singularity elements at 

the crack tip, however, when the domain corresponds to the first ring of elements at 

the tip. 

 If the domain is defined over a larger portion of the mesh, singularity elements are 

unnecessary because the crack tip elements contribute little to J.

 In a large-strain, nonlinear-geometry analysis, it is customary to begin with a finite 

radius at the crack tip. Note that the crack-tip elements are not collapsed to 

triangles in this case. Provided the CTOD after deformation is at least five times the 

initial value, the results should not be affected by the initial blunt notch.
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4. Mesh Design

Crack-tip region of a mesh for large strain 
analysis. Note that the initial crack-tip radius 
is finite and the crack-tip elements are not 
degenerated.
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Application of force

 Many problems require forces to be applied at the boundaries of 

the body. 
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4. Mesh Design

Examples of improper (a) and proper (b and 
c) methods for applying a force to a 
boundary.
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Convergence study model

 These analyses were performed on a through-thickness crack in a flat plate 

subject to either a remote membrane stress or a uniform crack face 

pressure. The plate width was 20 times the crack length, so the model 

approximated the so-called Griffith plate, where the width is infinite.

15

5. Linear Elastic Convergence Study

Close-up of the crack tip region of the baseline 
quarter-symmetric two-dimensional plane strain model 
used in the convergence study
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Dimensionless stress-intensity factor 

 The J integral was converted to the Mode I stress intensity factor

 The 1/4-point node location in the collapsed elements in the first ring improves the J 
estimate in the first contour but has little effect on the second and higher contours.

 The stress-intensity factor computed from the J integral is within 0.3% of the 

theoretical solution despite the fact that the baseline mesh is not particularly refined 

at the crack tip.

16

5. Linear Elastic Convergence Study

Dimensionless stress-intensity factor 

inferred from a J-integral analysis

 J-integral method is an efficient way to 

compute KI, in that a high degree of mesh 

refinement is not required.

 1/4-point node location elastic singularity 

elements are not necessary, provided the 

integration domain includes more than just 

the first ring of elements.
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Stress-matching vs. Displacement-matching method

 Stress-Matching method vs. Displacement-matching method for Remote 

membrane stress and Uniform crack face pressure. 
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5. Linear Elastic Convergence Study

Dimensionless stress-intensity factor 

estimated from the displacements behind 

the crack tip.

Dimensionless stress-intensity factor 

estimated from the normal stresses in 

front of the crack tip
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Stress-matching vs. Displacement-matching method

 Stress-Matching method vs. Displacement-matching method for Remote 

membrane stress and Uniform crack face pressure. 
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5. Linear Elastic Convergence Study

Effect of mesh refinement at the crack tip on 

KI estimated from normal stresses in front of

the crack tip..

Effect of elastic singularity elements at the 

crack tip on KI estimated from opening

displacements behind the crack tip in the 

baseline model.
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Mesh refinement effect and Poisson ratio effect 19

5. Linear Elastic Convergence Study

Effect of mesh refinement at the crack tip on 

KI estimated from opening displacements 

behind crack tip.

Through-thickness variation of the Mode I 

stress-intensity factor inferred from a J-
integral analysis of the three-dimensional 

model

ν= 0.3 : a real three-dimensional effect

ν = 0 :  the three-dimensional model 

behaves like a two-dimensional plate
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Mesh refinement effect 20

5. Linear Elastic Convergence Study

Refinement along the crack front of the 
three-dimensional model 

3x crack-front refinement

9x crack-front refinement

Effect of crack-front refinement on the 
through-thickness variation of KJ 

The value on the free surface 

continually decreases with refinement 

along the crack front.

“The theoretical value of the J 
integral on the free surface of a 
three-dimensional body is zero.”



OPen INteractive Structural Lab

Summary

 In summary, the domain integral method is the most efficient 

means to infer stress-intensity factors solutions from finite element 

analysis. 

 If one’s finite element software does not include such capabilities, 

the displacement-matching technique is an acceptable alternative, 

provided the mesh refinement is sufficient for convergence. The 

stress-matching method requires a very high level of mesh 

refinement, so it is not recommended. 

 Finally, the level of mesh refinement required for convergence is 

problem-specific, since it depends on the geometry and loading. 

 The convergence results presented here are for purposes of 

illustration and should not be used as the sole basis for 

demonstrating convergence for a different problem.
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5. Linear Elastic Convergence Study
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Cell-type mesh

 Moving the crack tip in a focused mesh normally entails re-meshing.

 A new focused mesh with a slightly longer crack must be created. Re-

meshing is appropriate for elastic problems because stress and strain are 

not history dependent.

 Crack growth by re-meshing is possible in principle, provided the prior 

plastic strain history is properly mapped onto the various models created 

at each step. However, this approach is highly cumbersome.

 A better alternative is to create a single mesh that accommodates crack 

growth. One such mesh configuration is the cell mesh.
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6. Analysis of Growing Cracks

Cell-type mesh for analysis of 

crack growth in a semielliptical 

surface crack in a flat plate

 Three common methods to advance a 

crack in a cell mesh.

 Removing elements

 Release nodes

 Use cohesive elements
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Cell-type mesh

 Irrespective of the numerical crack growth strategy each increment 

of crack advance corresponds to the element size. 

 For this reason the crack growth response in a finite element 

simulation is mesh dependent. 

 In real materials, the crack growth response (e.g., the J resistance 

curve) depends on material length scales such as inclusion spacing. 

A finite element continuum model does not include microstructural 

features such as inclusions, so element size is the only available 

length scale to govern crack growth. 

 Crack growth simulations usually need to be tuned to match 

experimental data. One of the key tuning parameters is the element 

size in the cell zone on the crack plane.
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6. Analysis of Growing Cracks


