

http://artlab.re.kr

Advanced Oxidation Process

Changha Lee

School of Chemical and Biological Engineering Seoul National University

OXTHINE

Advanced Oxidation Process

2. Ozonation

3. Fenton Process

4. Photochemical Process

http://artlab.re.kr

1. Advanced Oxidation Process

What is "Advanced Oxidation Process" ?

AOP (or AOT): Water treatment process (or technology) utilizing hydroxyl radical (•OH), a nonselective oxidizing radical species

Oxidants for water treatment

 $O_3 (E^0(O_3/O_2) = +2.08 V_{NHE}; 2e red.)$

 H_2O_2 ($E^0(H_2O_2/2H_2O) = +1.776 V_{NHE}$; 2e red.)

Cl₂ (*E*⁰(Cl₂/2Cl⁻)+1.48

Fe(VI) (E⁰(Fe(VI)/Fe(I

 $CIO_2 (E^0(CIO_2/CIO_2) = +1.04 V_{NHE}; 1e red.)$

 $O_2 (E^0(O_2/2H_2O) = +0.695 V_{NHE}: 2e red.)$

(III)) = +2	20 – 0.7	v _{NHE} ;	se rea.)
8 – 0.84	V _{NHE} ; 2e	red.)		

Key Parameters in AOP

Classification of AOTs

Application of AOTs

- 1. Drinking water treatment (e.g., ozonation, UV/H₂O₂)
- 2. Wastewater treatment (e.g., Fenton processes, ozonation)
- 3. Groundwater remediation (e.g., Fenton process, ozonation, inorganic oxidants w/ or w/o catalysts)
- 4. Disinfection and biofilm control (e.g., ozonation, photocatalysts)
- 5. Production of ultrapure water (e.g., VUV)
- 6. Sludge pretreatment

http://artlab.re.kr

3. Ozonation

Ozonation for drinking water treatment

Ozonation process schematic diagram

Ozone generator

Ozone generation

Firstly, ozone was synthetically discovered through the electrolysis of sulfuric acid. Ozone can be produced Several ways, although one method, Corona discharge, predominates in Ozone generation industry

Corona discharge

Corona discharge consists of passing an oxygen-containing gas through two electrodes separated by dielectric and a discharge gap. These electrons provide the energy to disassociate the oxygen molecules, leading to the formation of ozone

Ozone generator & ozone contactor

Duksan water treatment plant, Busan, Korea

1. Ozone generator

2. Ozone contactor

Chemistry of ozonation process

Oxidation of organic pollutants by ozonation

> Second-Order rate constant for the reaction of ozone and 'OH

Compound	<i>k_{o3}</i> (M⁻¹s⁻¹)	<i>k_{`он}</i> (М⁻¹s⁻¹)
Atrazine	6	3×10 ⁹
Geosmin	<10	8.2×10 ⁹
Carbofuran	620	7×10 ⁹
Dinoseb	1.5×10⁵	4×10 ⁹

Modified ozonation processes

O₃/H₂O₂ Process

 $H_2O_2 \Leftrightarrow HO_2- + H^+ \quad pK_a = 11.8$ $O_3 + HO_2- \rightarrow \bullet OH + O_2\bullet^- + O_2$

Source: Applied Process Technology, Inc.

UV/O₃ Process

 $\begin{aligned} & \mathsf{O}_3 + \mathsf{H}_2\mathsf{O} + hv \to \mathsf{H}_2\mathsf{O}_2 + \mathsf{O}_2 \\ & \mathsf{H}_2\mathsf{O}_2 \iff \mathsf{H}\mathsf{O}_2\text{-} + \mathsf{H}^+ \quad \mathsf{pK}_{\mathsf{a}} = 11.8 \\ & \mathsf{O}_3 + \mathsf{H}\mathsf{O}_2\text{-} \to {}^{\bullet}\mathsf{O}\mathsf{H} + \mathsf{O}_2{}^{\bullet^-} + \mathsf{O}_2 \end{aligned}$

Source: Spartan Co.

Conventional ozonation vs. O_3/H_2O_2

Atrazine

$k_{O3} = 6 \text{ M}^{-1} \text{s}^{-1}$

Bisphenol-A

 $k_{O3} = 2.7 \times 10^{6} \text{ M}^{-1} \text{s}^{-1}$ at pH 7

Desired and undesired effects of ozonation

http://artlab.re.kr

3. Fenton Process

Fenton reaction

Fe(II) + H₂O₂
$$\rightarrow$$
 Fe(III) + •OH + OH⁻
(fast)
Fe(III) + H₂O₂ \rightarrow Fe(II) + HO₂• + H⁺
(slow)

Fe(III) + H₂O + $h\nu \rightarrow$ Fe(II) + •OH + H⁺ "Photo-Fenton"

Traditional Fenton process

Heterogeneous Fenton process using FBR

Full-scale Fenton process using FBR

處理水量: 50CMD 進流水質: phenol:1.5mg/L 放流水質: phenol<0.1mg/L

處理水量: 1200CMD 尺寸: 0.6 m § x 5.85mWH x 6mTH 尺寸: 1.9 m § x 9mWH x 9.15mTH 進流水質: COD<300 mg/L 放流水質: COD<100 mg/L

處理水量: 12500CMD 尺寸: 3.1 m ∮ x 13mWH x 13.15mTH 数量:2槽 進流水質: COD<180 mg/L 放流水質: COD<70 mg/L

真理水量: 30000CMD 尺寸: 3.35 m∮ x 12.5mWH x 12.9mTH 數量: 4座 進流水質: COD<350 mg/L 放流水質: COD<100 mg/L

眞理水量: 86000CMD 尺寸: 3.6 m ∮ x 12.5mWH x 12.9mTH 數量: 12座 進流水質: COD<800 mg/L 放流水質: COD<100 mg/L

Unseeded FBR Fenton process

▲ Capacity: 1,000 CMD COD: 200 → 80 mg/L

Electro-Fenton process

Schematic diagram for reactions in the electro-Fenton process

Electro-Fenton Process

Applications of the electro-Fenton process (Taiwan)

Type of wastewater	Influent COD, mg/l	Effluent COD, mg/l	COD removal efficiency (%)
Oil/ink wastewater in a chemical plant	74,600	2,390	97
Hexamine wastewater in a chemical plant	29,600	40	>99
Electroless nickel wastewater in a electro-plating plant	27,900	1,940	93
Black liquor in a pulp/paper plant	30,900	350	99
Acrylonitrile wastewater in a latex plant	5,800	560	90
Resin processing wastewater in a chemical plant	2,500	350	86
Catalyst regenerate wastewater in a manmade fiber plant	24,900	620	97
Waste liquor of laboratory in a college	23,900	4,780	80

Reactive oxidants produced by the Fenton reaction

OH vs Fe(IV)

One-electron transfer

Two-electron transfer

Nonradical mechanism and Fe(IV)

Haber-Weiss Mechanism

Non-Radical Mechanism

(Neutral pH)

Neutral-pH active Fenton catalysts

Homework

Kinetics of iron-catalyzed decomposition of hydrogen peroxide

When Fe³⁺ is added into the solution containing H₂O₂, the decomposition of H₂O₂ is accelerated by the catalytic reactions as follows. Also, the decomposition rate of H₂O₂ follows the pseudo-first order kinetics (i.e., $d[H_2O_2]/dt = -k_{H2O2}[H_2O_2]$). Derive the pseudo-first order rate constant for the decomposition of H₂O₂ (k_{H2O2}) using the second-order rate constants of the elementary reactions below ($k_1 \sim k_5$) and the concentration of Fe³⁺ ([Fe³⁺])

$$\begin{aligned} \operatorname{Fe}^{3+} &+ \operatorname{H}_2\operatorname{O}_2 \rightarrow \operatorname{Fe}^{2+} &+ \operatorname{HO}_2^{\bullet} &+ \operatorname{H}^+ & k_1 \\ \operatorname{Fe}^{2+} &+ \operatorname{H}_2\operatorname{O}_2 \rightarrow \operatorname{Fe}^{3+} &+ \operatorname{OH} &+ \operatorname{OH}^- & k_2 \\ \operatorname{HO}_2^{\bullet} &+ \operatorname{Fe}^{3+} \rightarrow \operatorname{Fe}^{2+} &+ \operatorname{O}_2 &+ \operatorname{H}^+ & k_3 \\ \operatorname{HO}_2^{\bullet} &+ \operatorname{Fe}^{2+} \rightarrow \operatorname{Fe}^{3+} &+ \operatorname{HO}_2^- &(\leftrightarrow \operatorname{H}_2\operatorname{O}_2) & k_4 \\ \operatorname{HO}_2^{\bullet} &+ \operatorname{OH} &\to \operatorname{HO}_2^{\bullet} &+ \operatorname{H}_2\operatorname{O} & k_5 \end{aligned}$$

(Tip: Use steady-state approximations for the intermediates)

http://artlab.re.kr

4. Photochemical Process

Electromagnetic Spectrum

Photo-Excitation and Subsequent Processes

 $A + h\nu \rightarrow A^*$ (photo-excitation)

 $A^* \rightarrow A + heat$ (thermal decay)

 $A^* \rightarrow A + h\nu'$ (fluorescence)

 $A^* \rightarrow A + hv''$ (phosphorescence)

 $A^* \rightarrow B$ (photochemical reaction)

Fluorescence and Phosphorescence

UV Energy and Bond Dissociation Energy

Radiation energy

Range	Wavelength Range (nm)	Energy Range (kJ/Einstein)
Near Infrared	700 ~1000	120 ~ 171
Visible	400 ~ 700	171 ~ 299
UVA	315 ~ 400	299 ~ 380
UVB	280 ~ 315	380 ~ 427
UVC	200 ~ 280	427 ~ 598
νυν	100 ~ 200	598 ~ 1196

Average Bond Enthalpies (kJ/mol)

Single Bonds										
С—Н	413	N—H	391		О—Н	463		F—F	155	
C-C	348	N—N	163		0-0	146				
C-N	293	N—O	201		O-F	190		Cl—F	253	
с—о	358	N—F	272		O-Cl	203		CI-CI	242	
C-F	485	N—Cl	200		O-I	234				
C-Cl	328	N—Br	243					Br-F	237	
C—Br	276				S-H	339		Br—Cl	218	
C—I	240	H—H	436		S-F	327		Br—Br	193	
C—S	259	H—F	567		S-Cl	253				
		H—Cl	431		S-Br	218		I—Cl	208	
Si-H	323	H—Br	366		s—s	266		I—Br	175	
Si-Si	226	H—I	299					I—I	151	
Si-C	301									
Si—O	368									
Multip	le Bonds									
C=C	614	N=N	418		O ₂	495				
C≡C	839	N≡N	941		-					
C=N	615				S=O	523				
C≡N	891				s=s	418				
C=0	799									
C≡O	1072									

오염물질의 광분해(Photolysis)

- ▶ 직접 광분해(Direct photolysis)
 - $T + hv \rightarrow P$
 - T: Target compound P: Product
- ▶ 간접 광분해(Indirect photolysis)
 - $\begin{array}{c} \mathsf{A} + h\nu \to \mathsf{R} \\ \mathsf{R} + \mathsf{T} \to \mathsf{P} \end{array}$

A: Light absorbing compound R: Reactive compound

▶ 광촉매(photo-catalytic) 반응

$$\begin{array}{ccc} C + hv \rightarrow R \\ R + T \rightarrow C + P \end{array}$$

C: Photo-catalyst

e.g. UV/H₂O₂ system

 $H_2O_2 + h\nu \rightarrow 2^{\bullet}OH$ Compounds + $^{\bullet}OH \rightarrow Products$

e.g. TiO₂ photo-catalysis

 $TiO_2 + h\nu \rightarrow TiO_2(h^+ \& e^-)$ Compounds + TiO_2(h^+ \& e^-) \rightarrow Products + TiO_2

UV Lamps

Mercury vapor lamps (수은방전램프)

- Low pressure Hg lamps: monochromatic emission at 254 and 185 nm(표준형, 고출력 저압수은 램프)
- Medium and High pressure Hg lamps: polychromatic emission from 200~800 nm(수은 중압, 고압 램프)

Wavelength (nm)	Color
184.5	VUV
253.7	UVC
365.4	UVA
404.7	Violet
435.8	Blue
546.1	Green
578.2	Yellow-orange

UV Lamps

Black light blue (BLB) lamps

Xenon arc lamps (solar simulator)

Wavelength (nm)

Phosphor	Peak, nm	Width, nm	Philips Suffix.	Osram Suffix.	U.S. Type	Uses
Mixture	450	50	-	/71	-	hyperbilirubinaemia, polymerization
SrP ₂ O ₇ , Eu	420	30	/03	/72	-	polymerization
SrB ₄ O ₇ , Eu	370	20	/08	/73	("BLB")	forensics, night clubs
SrB ₄ O ₇ , Eu	370	20	-	/78	("BL")	insect attraction, polymerization, psoriasis, suntanning
BaSi ₂ O ₅ , Pb	350	40	/09	/79	"BL"	insect attraction, suntanning lounges
BaSi ₂ O ₅ , Pb	350	40	/08	-	"BLB"	dermatology, forensics, night clubs
SrAI ₁₁ O ₁₈ , Ce	340	30	-	-	-	photochemical uses
MgSrAl ₁₀ O ₁₇ , Ce	310	40	-	-	-	medical applications, polymerization

Quantum Yield (ϕ)

$$A + h\nu \rightarrow B$$

 $\phi_{B} = \frac{\text{Molecules of B formed per unit volume per unit time}}{\text{Quanta of light absorbed by A per unit volume per unit time}}$

- Primary quantum yield: quantum yield for the primary photochemical reaction
- overall quantum yield: quantum yield considering the primary photochemical reaction and subsequent thermal reactions

Ex) A +
$$h\nu \rightarrow$$
 B + C (primary quantum yield = 0.5)
A + C \rightarrow B

Overall quantum yield for the photochemical production of $B = 0.5 \times 2 = 1.0$

Kinetics for Photochemical Reactions

Beer-Lambert absorption law

- $I / I_0 = 10^{-εbC}$ ε: molar aborption coefficient (M⁻¹ cm⁻¹) b: optical pathlength (cm) C: molar concentration of photon absorber (M)
- > Kinetic raw of photochemical reactions

$$A + h\nu \rightarrow B$$

$$I_0 : \text{incident photon flow (Einstein I^{-1} s^{-1})}$$

$$\phi : \text{ quantum yield}$$

Absorbed photon flow by compound, A

Kinetics for Photochemical Reactions

At a low concentration ($\varepsilon bc < < 0.1$)

 $d[A]/dt = -I_0(1-10^{-\epsilon b[A]}) \times \phi \approx -2.303 I_0\epsilon b\phi[A]$

First order kinetics (일차반응)

At a high concentration ($\varepsilon bc > 1$)

 $d[A]/dt = -I_0(1-10^{-\epsilon b[A]}) \times \phi \approx -I_0\phi$

Zero order kinetics (영차반응)

Photochemical Water Treatment

Drinking Water Treatment (UV/H₂O₂ system) Wastewater Treatment (Photo-Fenton, UV/TiO₂???)

UV/H₂O₂ System

$$H_2O_2 + hv \rightarrow 2 \circ OH$$

(<300 nm)

$$H_2O_2 + hv \leftrightarrow [HO^{\bullet} + {}^{\bullet}OH] \rightarrow 2^{\bullet}OH$$

Solvent cage

Primary quantum yield: 0.5 Overall quantum yield for $^{\circ}OH$: 0.5 x 2 = 1

Subsequent reactions

$$\begin{array}{l} \bullet OH + H_2O_2 \rightarrow HO_2 \bullet + H_2O \\ \\ 2HO_2 \bullet \rightarrow H_2O_2 + O_2 \\ \\ 2\bullet OH \rightarrow H_2O_2 \end{array}$$

UV/H₂O₂ Reactor

Main components:

- UV lamp
- Quartz sleeve
- Wiper for mechanical cleaning of quartz
 - sleeves to protect against fouling
- UV sensor to control UV output
- Power supply

Source: Ozonia Co. (Aquaray[®] H_2O)

▲ Longitudinal flow system

▲ Cross flow system

Principles of semiconductor photocatalysis

Modification of photocatalytic process

