
Emulation Emulation -- Binary TranslationBinary Translation

2
Microprocessor Architecture & System Software Lab

OutlineOutline
Binary Translation
Code Discovery and Dynamic Binary Translation
Control Transfer Optimization
Some Instruction Set Issues
Summary

3
Microprocessor Architecture & System Software Lab

Binary TranslationBinary Translation
Converting a source binary program into a target binary

program
• No interpretation
• Performance enhanced by mapping each individual source

machine code to its customized target machine code

Executable
Binary

Source
Binary

File

Binary
Translator

4
Microprocessor Architecture & System Software Lab

Comparison to Comparison to PredecodingPredecoding

Pre-
decoder

Binary
Translator

Similarities
• Source machine code is converted into another form

Differences
- Translated code is directly executed in binary translation
- Interpreter routines are removed

Threaded Interpretation using Intermediate code and Binary Translation

5
Microprocessor Architecture & System Software Lab

A Binary Translation ExampleA Binary Translation Example
X86 -> PPC binary translation
X86 register context block
• Architected register values for the x86 CPU are kept in a

register context block in PPC’s memory
• Fetched into PowerPC register on demand
• A pointer is maintained in r1 of PPC

X86 memory
• A pointer is maintained in r2 of PPC

X86 PC
• Is kept in r3 of PPC

6
Microprocessor Architecture & System Software Lab

A Binary Translation ExampleA Binary Translation Example

7
Microprocessor Architecture & System Software Lab

State MappingState Mapping
Mapping of more registers leads to better code
• E.g., mapping r4 to %eax and r7 to %edx for the example

8
Microprocessor Architecture & System Software Lab

A StateA State--Mapped ExampleMapped Example

9
Microprocessor Architecture & System Software Lab

Code Discovery ProblemCode Discovery Problem
Static binary translation
•

Can we perform binary translation ahead-of-runtime?

•

Impossible in many cases due to code discovery problem
– How to translate indirect jump based on register value?
– Are there always valid instructions right after jumps?

How to handle data intermixed with code?
How to handle variable-length instructions?
How to handle code padding?

10
Microprocessor Architecture & System Software Lab

ExamplesExamples
Indirect jump based on register value
• Occurs due to return, switch, dynamic linking, virtual call
• The target register is not assigned until runtime
• Impossible to determine the register content statically

Interspersing data in code section
• Compiler and linker do not always keep instructions and data

neatly separated

Variable length Instruction
• CISC instruction can starts on any single byte boundary

11
Microprocessor Architecture & System Software Lab

ExamplesExamples
Pad for alignment
• Compiler may “pad” the instruction stream with unused bytes

- In order to align branch or jump targets on word boundary
- Align cache line boundaries for performance reasons

A compound example of code discovery problem

Inst. 1 Inst 2.

Inst. 3 jump

Reg. data

Inst. 5 Inst. 6

Uncond. branch Pad

Inst. 8

Indirect Jump

Pad for
instruction alignment

Data in
Instruction stream

12
Microprocessor Architecture & System Software Lab

Code Location ProblemCode Location Problem
Translated program counter (TPC) is different from architected source program counter (SPC)
In translated code, the register content of an indirect jump would be an SPC, and only with this it is impossible to decide the next TPC
We should map SPC and TPC addresses

13
Microprocessor Architecture & System Software Lab

Dynamic TranslationDynamic Translation
Incrementally translate while program is running

• Translate a source code block at runtime on an as-needed basis
when the block gets executed

– Works with an interpreter who provides dynamic information needed
for translation (e.g., indirect jump target address)

• Place translated code into a reserved region incrementally
– To reduce the size of memory region, typically organized as a

translated code cache – holds recently used blocks only
• When a source block is to be executed, check if its translated

block is in code cache, if so executes it directly
– Use a map table from SPC to TPC when checking for code cache

• Since translation (w/interpretation) and execution are done
simultaneously, so someone should coordinate them

– Emulation manager provides a high-level control

14
Microprocessor Architecture & System Software Lab

Overview of the SystemOverview of the System

15
Microprocessor Architecture & System Software Lab

Unit of TranslationUnit of Translation
Dynamic basic block (DBB)
• Static basic block (SBB)

– A single-entry and a single-exit block
• DBB begins just after a branch, ends with next branch
• Usually bigger then SBB
• Translate one block at a time

16
Microprocessor Architecture & System Software Lab

Translation ProcessTranslation Process
EM begins interpreting the
source DBB with the target DBB
being newly generated
The target DBB is placed in
code cache with the
corresponding SPC-TPC map
included in map table
EM now has the SPC for the
next source DBB
• Check if it is in the map table

– Hit: execute the DBB of TPC, Miss:
translate the DBB of SPC

17
Microprocessor Architecture & System Software Lab

Management of DBBManagement of DBB
What would happen if a
branch goes to the middle of
an already-translated source
DBB?
•

Dividing the translated target
block? Need to check ranges

•

Simply start a new translation,
even if it causes duplications

source target

18
Microprocessor Architecture & System Software Lab

Tracking the Source Program CodeTracking the Source Program Code
Must keep track of SPC all the time
while moving between EM,
interpreter, translated code DBB
• Interpreter -> EM

– Pass SPC to EM

• Translated code -> EM
– How to pass SPC to EM?

Map SPC to a target register
Save SPC at the end of DBB and use
JAL (jump-and-link) instruction; EM can
get SPC via link register

Let’s see an example

19
Microprocessor Architecture & System Software Lab

1. Translated basic
block executed

2. Branch is taken to
stub code

3. Stub does branch
and link to EM

4. EM loads, SPC from
stub code

5. EM does lookup in
map table

6. EM loads SPC value
from Map Table
(Hit)

7. Branch to code that
will transfer code
back

8. Load TPC from map
table

9. Jump indirect to
next translated basic
block

10. Continue execution

20
Microprocessor Architecture & System Software Lab

Control Transfer OptimizationsControl Transfer Optimizations
Every time a translated DBB finishes, EM must be
invoked which causes a serious overhead

Translation Chaining
• Equivalent to threading in interpreter
• At the end of every translation block,

blocks are directly linked together
using a jump instruction

• Dynamically done as the blocks are
constructed

• Replace the initial JAL to EM with a
jump to the next translated block

• Address of successor block is
determined by mapping the SPC value
to find the correct TPC

21
Microprocessor Architecture & System Software Lab

Translation ChainingTranslation Chaining
Creating Translation Chain
• If successor block has not been translated, the normal “stub”

code (JAL to EM) is inserted
• If it is translated, find the TPC and overwrite the previous stub

with a direct jump

22
Microprocessor Architecture & System Software Lab

One Problem of Translation ChainingOne Problem of Translation Chaining
Chaining works in situation where the destination of a
branch or jump never changes

Does not work for register indirect jumps
• Just returning to the EM works but this is expensive
• A single SPC cannot be associated (e.g., function return)

One solution is predicting indirect jumps
• Based on an observation that even for indirect jumps, the

actual targets seldom changes (one or two targets)

23
Microprocessor Architecture & System Software Lab

Software Indirect Jump PredictionSoftware Indirect Jump Prediction
In many cases, Jump target never or seldom
changes
Inline caching is useful in this case
• Generate the following code at the end of DBB

• More probable addresses obtained wirh
profiling are placed at the beginning

• Developed originally for Smalltalk
• In our x86-> PPC example:

If (Rx == addr_1) goto target_1;
else if (Rx == addr_2) goto target_2;
else if (Rx == addr_3) goto target_3;
else table_lookup(Rx); do it the slow way

9AC0: lwz r16, 0(r4)

add r7,r7, r16

stw r7, 0(r4)

addic r5, r5, -1

beq cr0, pc+12

bl F000

4FDC

9AE4: b 9C08

51C8

9c08: stw r7, 0(r6)

xor r7,r7,r7

bl F000

6200

24
Microprocessor Architecture & System Software Lab

Some Complicated IssuesSome Complicated Issues
Self-modifying code
• A program performs store into the code area

– E.g., modify an immediate field of an instruction in the inner loop just
before entering the loop when registers are scarce

• Translated code in the code cash no longer correspond

Self-referencing code
• A program performs load from the code area
• Data read must correspond to the original source code, not

translated version

Precise trap
• The translated code may generate an exception condition (Interrupt

or trap)
• The correct state corresponding to the original code, including SPC

of the trapping instruction

25
Microprocessor Architecture & System Software Lab

SameSame--ISA EmulationISA Emulation
Emulating an ISA on a CPU with the same ISA
• Binary Translation is greatly simplified
• Emulation Manager is always in control of execution
• Execution can be monitored at any desired level of detail

Applications
• Simulation : collecting dynamic program properties
• OS System call emulation : different operating systems
• Discovery and management of sensitive privileged

instructions
• Program shepherding : watching a program execute to ensure

no security holes are exploited
• Optimize a binary program at runtime (e.g., Dynamo)

26
Microprocessor Architecture & System Software Lab

Instruction Set IssuesInstruction Set Issues
Register architecture
• Almost every ISA contains register of some kind
• Register handling is key performance issue for emulation

General-purpose register of target ISA
• Holding general-purpose registers of the source ISA
• Holding special-purpose registers of the source ISA
• Pointing to the source register context block and the memory

image
• Holding intermediate values used by emulator

27
Microprocessor Architecture & System Software Lab

Register handlingRegister handling
Case 1: # of target registers >> # of source registers
• All source register can be mapped onto target register

Case 2: # of target register is not enough
• Register must be carefully handled
• 2 registers for context block and memory image
• 1 registers for SPC
• 1 registers for TPC
• Provide target registers for frequently used source register

(stack pointer, condition code register, etc.)
※ 3 to 10 target registers are used for the above

28
Microprocessor Architecture & System Software Lab

Condition CodesCondition Codes
Special architected bits
• Characterize the instruction execution results
• Tested by conditional branch instruction

Condition codes vary across various ISAs
• X86 ISA condition codes are implicitly set as a side effect of

instruction execution
• SPARC contains explicitly set codes
• PPC has a number of condition code registers set
• MIPS does not use any condition codes

Emulation complexity varies depending on the use of
condition codes on source and target machine

29
Microprocessor Architecture & System Software Lab

Condition Codes EmulationCondition Codes Emulation
Easiest Case
• Neither target nor source ISA use condition codes

Almost as easy case
• Source ISA has no condition codes, target does

- No need to maintain any source condition state

Difficult case
• Target ISA has no condition codes, the source condition

codes must be emulated
- Emulation can be quite time comsuming

30
Microprocessor Architecture & System Software Lab

Most Difficult CC Emulation Most Difficult CC Emulation
Source ISA has implicit set condition codes and target
ISA does not have.

- x86 ISA condition codes are a set of flags in EFLAGS

x86 integer add instruction always sets six of condition
flags whenever it is executed

31
Microprocessor Architecture & System Software Lab

Condition Codes Emulation Condition Codes Emulation –– x86x86
Straightforward emulation
• Every time an x86 add is emulated, each condition is evaluated

- The SF can be determined by a simple shift
- AF and PF requires more complex operations
- Computing the condition code often takes more time than emulation the
instruction itself!

Condition codes are set frequently, but used rarely
• Lazy evaluation is a good solution

- Only operand and operation are saved (not condition code itself)
- This allows for generation of condition codes only if they are

really needed

32
Microprocessor Architecture & System Software Lab

Lazy Evaluation for x86Lazy Evaluation for x86
Maintain a CC table that has an entry for each CC bit
• Contains the most recent instruction who modify the bit
• CC is evaluated when it is really used later by a branch
• For example,

Another way of x86 CC emulation
• Use a set of reserved registers instead of a table

33
Microprocessor Architecture & System Software Lab

addl

%ebx,0(%eax)
add

%ecx,%ebx
jmp

label1
.
.

label1:
jz

target

r4 <-> %eax

IA-32 to
r5 <-> %ebx

PowerPC
r6 <-> %ecx

register mappings
…
r16 <-> scratch register used by emulation code
r25 <-> condition code operand 1

;registers
r26 <-> condition code operand 2

; used for
r27 <-> condition code operation

; lazy condition code emulation
r28 <-> jump table base operation

lwz

r16, 0(r4)

; perform memory load for addl
mr

r25,r16

; save operands
mr

r26,r5

; and opcode

for
li

r27,“addl” ; lazy condition code emulation
add

r5,r5,r16

; finish addl
mr

r25,r6

; save operands
mr

r26,r5

; and opcode

for
li

r27,“add” ; lazy condition code emulation
add

r6,r6,r5

; translation of add
b label1
…
bl

genZF

;branch and link to evaluate genZF

code
beq

cr0,target

;branch on condition flag
….
add

r29,r28,r27

;add “opcode” to jump table base address
mtctr

r29

;copy to counter register
bctr

;branch via jump table
…
…
add

r24,r25,2r6

;perform PowerPC add, set cr0
blr

;return

label1:

genZF:

“sub”:
“add”:

condition codes set
by first add are not
used

34
Microprocessor Architecture & System Software Lab

Condition Condition CodesCodes Emulation Emulation –– x86x86

There are still problems with condition codes

35
Microprocessor Architecture & System Software Lab

Data Formats and ArithmeticData Formats and Arithmetic
Data Format Emulation
• Most data format and arithmetic standardized

- Integer support 2’s complement
- Floating point format uses IEEE (754) standard

• Floating point processing may differ
- x86 use 80 bit intermediate results, other CPU only 64

• Emulation is possible but though it takes a longer time

Functionality needed by source ISA not supported by
target ISA
• In all case, a simpler target ISA can build the more complex

behavior from primitive operations

36
Microprocessor Architecture & System Software Lab

Memory Address ResolutionMemory Address Resolution
Different ISAs can access data items of different sizes
• One ISA supports bytes, halfword (16bit), full word (32bit)
• Another ISA may only supports bytes, full word (32bit)
• Multiple Instructions in the less powerful ISA can be used to

emulate a single memory access instruction in a more powerful
ISA

• Most ISAs today address memory to the granularity of single
bytes

– If a target ISA does not support, many shift/and operations are
required

37
Microprocessor Architecture & System Software Lab

Memory Data AlignmentMemory Data Alignment
Some ISAs align memory data on “natural” boundaries
• Word access by 00 low address bits, half word access by 0

If an ISA does not require “natural” boundary, it is said to
support unaligned data
• One way is breaking up word accesses by byte accesses
• Runtime analysis can reduce code expansion by finding out

aligned accesses

38
Microprocessor Architecture & System Software Lab

Byte OrderByte Order
Little endian vs. big endian
• Order bytes within a word such that the most significant byte is byte 0

(big endian) or byte 3 (little endian)
• X86 support little endian while PPC support big endian

It is common to maintain the guest data image in the same byte
order as assumed by the source ISA, but this is not easy

• E.g., Guest ISA’s storeword performed in host ISA will save bytes in a different order
– Problematic if there is an access to each byte which will be done in different order

• Emulation code has to modify addresses when emulating a little-endian
ISA on a big-endian machine (or vice versa)

– A loadword should be implemented by a sequence of loadbytes

• Some ISA support both endian orders (via mode bit)

Byte order Issue and Operating System call
• Guest data accessed by the host operating system has to be converted to the proper byte

order

39
Microprocessor Architecture & System Software Lab

Summary Summary
Chapter Summary

• Reviewed Emulation and Translation method
• Performance tradeoff may be needed

Performance Tradeoffs

	Emulation - Binary Translation
	Outline
	Binary Translation
	Comparison to Predecoding
	A Binary Translation Example
	A Binary Translation Example
	State Mapping
	A State-Mapped Example
	Code Discovery Problem
	Examples
	Examples
	Code Location Problem
	Dynamic Translation
	Overview of the System
	Unit of Translation
	Translation Process
	Management of DBB
	Tracking the Source Program Code
	슬라이드 번호 19
	Control Transfer Optimizations
	Translation Chaining
	One Problem of Translation Chaining
	Software Indirect Jump Prediction
	Some Complicated Issues
	Same-ISA Emulation
	Instruction Set Issues
	Register handling
	Condition Codes
	Condition Codes Emulation
	Most Difficult CC Emulation
	Condition Codes Emulation – x86
	Lazy Evaluation for x86
	슬라이드 번호 33
	Condition Codes Emulation – x86
	Data Formats and Arithmetic
	Memory Address Resolution
	Memory Data Alignment
	Byte Order
	Summary

