Emulation - Binary Translation
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Binary Translation

Converting a source binary program into a target binary

program
* No interpretation

« Performance enhanced by mapping each individual source
machine code to its customized target machine code

Source
Architecture

-

\_

Binary
Translator

\

Executable

Binary

Target
Architecture

/
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Comparison to Predecoding

= Similarities
e Source machine code is converted into another form

= Differences

- Translated code is directly executed in binary translation
- Interpreter routines are removed

Interpreter source machine binary translated
. routines code target code
source machine e
code intermediate code- .

A

oo W =

Pre- || Binary
decoder ¥ Translator

..................... >

Threaded Interpretation using Intermediate code and Binary Translation
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A Binary Translation Example

X86 -> PPC binary translation

X86 register context block
» Architected register values for the x86 CPU are keptin a
register context block in PPC’s memory
* Fetched into PowerPC register on demand
* A pointer is maintained in r1 of PPC
X86 memory
« A pointer is maintained in r2 of PPC

X386 PC
e Iskeptinr3of PPC

Microprocessor Architecture & System Software Lab



A Binary Translation Example

x86 program

add| %edx, 4(%eax)

movl 4(%eax), %edx

add %eax, 4

r1 points to x86-32 register context block
r2 points to x86-32 memory image
r3 contains x86-32 PC value

wz r4, 0(r1) ; load %eax from register block
addi r5,r4, 4 : add 4 to %eax

wzx r5, r2, r5 ; load operand from memory
lwz r4, 12(r1) : load %edx from register block
add r4,r5,r4 ; perform add

stw r4, 12(r1) ; put result into %edx

addi r3,r3,3 : update PC (+3 bytes)

lwz r4, 0(r1) ; load %eax again

addi r5,r4, 4 : add 4 to %eax

lwz r4, 12(r1) : load %edx from register block
stwx r4, r2, r5 ; store %edx value into memory
addi r3,r3, 3 ; update PC

lwz r4, 0(r1) ; load %eax again

addi r4,r4. 4 : add 4 to %eax

stw r4, 0(r1) ; place result back into %eax
addi r3,r3, 3 ; update PC

Microprocessor Architecture & System Software Lab



State Mapping

= Mapping of more registers leads to better code
 E.g., mapping r4 to %eax and r7 to %edx for the example

-

Source
register block .
- r
P
Source
memory img 2
b A
Program ctr [¢ » r3
Regl ¢ » 4
Reg2 ¢ » o
Regn [ ¥ 1(n+4)

T —— 7
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A State-Mapped Example

1 points to x86-32 register context block r1 points to x86-32 register context block
r2 points to x86-32 memory image r2 points to x86-32 memory image
r3 contains x86-32 PC value r3 contains x86-32 PC value
r4 holds x86-32 register %eax
lwz r4,0(r1) ; load %eax from register block (7 holds x86-32 register %edx
addi 15,4, 4 ; add 4 to %eax
Iwzx 15, 12, 5 : load operand from memory
lwz r4, 12(r1) ; load %edx from register block
add rd,r5, 14 ; perform add
addl %edx, 4(%eax) stw r4, 12(r1) ; put result into %edx _
addi 13,13, 3 : update PC (+3 bytes) B LEL e Ly
wzx r17, 12, r16 : load operand from memory
movl 4(%eax), %edx wz r4, 0(r1) ; load %eax again add r7,r17,17  perform add of %edx
addi r5, 4, 4 ; add 4 to %eax addi r16,r4, 4 - add 4 to %eax
wz 4, 12(r1) ; load %edx from register block stwx 17,12, r16 - store %edx value into memory
add %eax. 4 stwx r4, r2, 15 ; store %edx value into memory addi 4,14, 4 - add 4 to %eax
R addi 3, 13,3 ; Update PC addi 13,13, 9  update PC (9 bytes)
lwz r4,0(r1) ; load %eax again
addi r4,r4, 4 :add 4 to %eax
stw r4,0(r1) ; place result back into %eax
addi r3,r3, 3 ; update PC
x86 program PPC program PPC program
Binary translated Binary translated
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Code Discovery Problem

= Static binary translation
 Can we perform binary translation ahead—of-runtime?

* Impossible in many cases due to code discovery problem
— How to translate indirect jump based on register value?
— Are there always valid instructions right after jumps?
v' How to handle data intermixed with code?

v How to handle variable—-length instructions?
v How to handle code padding?

]
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Examples

* |ndirect jJump based on register value
« Occurs due to return, switch, dynamic linking, virtual call
» The target register is not assigned until runtime
* Impossible to determine the register content statically

* Interspersing data in code section

« Compiler and linker do not always keep instructions and data
neatly separated

= Variable length Instruction
« CISC instruction can starts on any single byte boundary

| mov %ch, 0777
31c0|8b|b5000003088bbd00000300
| movl %esi, 0x08030000(%ebp)??7?

————— 1.0
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Examples

= Pad for alignment

« Compiler may “pad” the instruction stream with unused bytes
- In order to align branch or jump targets on word boundary
- Align cache line boundaries for performance reasons

= A compound example of code discovery problem

Inst. 1 Inst 2. _
Inst. 3 : Data in
nst Jump / Instruction stream

Indirect Jump «— Reg. data
Inst. 5 Inst. 6
Uncond. branch Pad ¢ !Dad for. .
instruction alignment
Inst. 8

————— 1. ]
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Code Location Problem

= Translated program counter (TPC) is different from
architected source program counter (SPC)

= |n translated code, the register content of an
indirect jump would be an SPC, and only with this it
IS Impossible to decide the next TPC

= We should map SPC and TPC addresses

x86 program

movl %eax, 4(%esp) ; load jump address from memory
jmp  %eax ; jump indirect through %eax

PPC program

Binary translated

addi r16,r11, 4 ; compute x86-32 address

wzx rd, r2, r16 ; get x86-32 jump address from x86-32 memory image
mtctr rd : move to count register (ctr)

betr ; jump indirect through ctr
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Dynamic Translation

Incrementally translate while program is running
e Translate a source code block at runtime on an as-needed basis
when the block gets executed

— Works with an interpreter who provides dynamic information needed
for translation (e.g., indirect jump target address)

* Place translated code into a reserved region incrementally

— To reduce the size of memory region, typically organized as a
translated code cache — holds recently used blocks only

» When a source block is to be executed, check if its translated
block is in code cache, if so executes it directly

— Use a map table from SPC to TPC when checking for code cache

e Since translation (w/interpretation) and execution are done
simultaneously, so someone should coordinate them

— Emulation manager provides a high-level control

13
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Overview of the System

Source

SPC to TPC p
Map table
H 5 L
| Mics Interpreter translator
Emulation ™ .
Manager &

iy
IT

14
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« Static basic block (SBB)

» Usually bigger then SBB

Unit of Translation
= Dynamic basic block (DBB)

— A single-entry and a single-exit block
 DBB begins just after a branch, ends with next branch

Translate one block at a time

static

loop:

skip:

add...
load. .. Block 1
store._.

load. ..

Add._. Block 2
store._.

Brecond skip

load. .. Block 3
Sub...

add. ..
Store._. Block 4
brcond loop

add. ..

Load...

Store. .. Block 5
jump indirect

dynamic

loop:

skip:

loop:

skip:

add. .

load... Block 1
store...

load...

Add. .

store. ..

Brecond skip

load. .. Block 2
Sub...

add. .

Store. .

Brcond loop

load...
Add...
store...
Brecond skip

add. .
Store._.
Brcond loop

]
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Translation Process

= EM begins interpreting the

source DBB with the target DBB

being newly generated

* The target DBB is placed In
code cache with the

corresponding SPC-TPC map

iIncluded in map table

= EM now has the SPC for the
next source DBB

e Check ifitis inthe map table

— Hit: execute the DBB of TPC, Miss: e

translate the DBB of SPC

. S—
Look Up

| SPC«TPC
in Map Table

Hit in Table?

No

| Branch to TRPC
and Execute

Translated Block

!

Use SPC to
Read Instructions
from Source
Memory Image

Interprat, Translate,
and Place into

Code Cache

¥

Write New
SPCoTPC
Mapping inta
Map Table

]

i
I
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Management of DBB

= \What would happen if a source target
branch goes to the middle of
an already—translated source
DBB?

* Dividing the translated target
block? Need to check ranges

 Simply start a new translation,
even if it causes duplications

]
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Tracking the Source Program Code

= Must keep track of SPC all the time
while moving between EM,
Interpreter, translated code DBB

* Interpreter -> EM
— Pass SPC to EM Code Block
 Translated code -> EM
Jump and Link to EM
Emulation 4———'__—___—4__—4 Next Source PC
— How to pass SPC to EM? uston |+
v' Map SPC to a target register

v' Save SPC at the end of DBB and use
JAL (jJump-and-link) instruction; EM ca
get SPC via link register

Map Table 1-. .

= Let's see an example T e
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1A-32 Binary

4F D00 @il Sl [ Vel O &N BOCIETIEEN BuIm |
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FOC A s sl b o | sec | TRC | Wk | 1. Translated basic
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mp AFDO g 40 oo op | 1 !

' block executed
: . L ‘ 2. Branch is taken to

T md eschess o b . 51C8_|_9c08 | i stub code

- - { 3. Stub does branch
and link to EM

4. EM loads, SPC from

d L | stub code

) F .
PowerPC Transiation S 5. EM does lookup in
D e mone syl [ @& map table
Shw ) sione 10 msmcs : ]
wckdic 'Fl:l:;'ﬁ,-1 e ramaent |'=":?;'.{.'ﬁ‘-"'|'. sl ord :: r_.: 6. EM Ioads SPC Value
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SOMIRN Du iagaris] e e will transfer code
Sy T back
o e r2s ompane lor hd
_beq. oDy e target acdiess 8. Load TPC from map
14 Tt ?" srarslals else lolow hash chasn table
we @A@Y sesdtargo asross hum atie 9. Jumpindirectto
ol beanch 10 next ransiata block | next translated basic
Jonkup,_1ransiate: lolow hash cham, il hit, branch 1o TPC block

M miss, branch 10 ranslale

10. Continue execution
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Control Transfer Optimizations

= Every time a translated DBB finishes, EM must be

Invoked which causes a serious overhead

= Translation Chaining

Equivalent to threading in interpreter
At the end of every translation block,
blocks are directly linked together

using a jump instruction
Dynamically done as the blocks are
constructed
Replace the initial JAL to EM with a
jump to the next translated block
Address of successor block is

determined by mapping the SPC value

to find the correct TPC

Translated
Block

Translated
Emulation Block

Manager

Translated
Block

Translated
Block

]
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Translation Chaining

= Creating Translation Chain

» |f successor block has not been translated, the normal “stub”

code (JAL to EM) is inserted

o Ifitis translated, find the TPC and overwrite the previous stub

with a direct jump

Get next SPC
l 7,

Look up
.-
Successor

Predecessor

JAL EM

Jump TPC

Next SPC

Microprocessor Architecture & System Software Lab
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One Problem of Translation Chaining

= Chaining works in situation where the destination of a
branch or jump never changes

= Does not work for register indirect jumps
« Just returning to the EM works but this is expensive
* A single SPC cannot be associated (e.g., function return)

*= One solution is predicting indirect jumps

 Based on an observation that even for indirect jumps, the
actual targets seldom changes (one or two targets)

22
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Software Indirect Jump Prediction

* |[n many cases, Jump target never or seldom
changes

= |nline caching is useful in this case
 (Generate the following code at the end of DBB
O

IT (Rx == addr_1) go target 1;
else 1T (Rx == addr_2) goto target 2; 9ACO: Iwz ri6, 0(rd)
else if (Rx == addr_3) goto target_ 3; add r7.r7, rié

else table_lookup(Rx); do it the slow way stw r7, 0(ra)

addic r5, r5, -1

« More probable addresses obtained wirh beq cr0, pc+12
HH : : bl FO000
profiling are plgced at the beginning -
» Developed originally for Smalltalk OAE4: b 9C08
 In our x86-> PPC example: e

9c08: stw r7, 0(ré6)
xor r7,r7,r7
bl FO00
6200
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Some Complicated Issues

= Self-modifying code
* A program performs store into the code area

— E.g., modify an immediate field of an instruction in the inner loop just
before entering the loop when registers are scarce

* Translated code in the code cash no longer correspond

= Self-referencing code
* A program performs load from the code area

« Data read must correspond to the original source code, not
translated version

= Precise trap

» The translated code may generate an exception condition (Interrupt
or trap)

» The correct state corresponding to the original code, including SPC
of the trapping instruction

24

Microprocessor Architecture & System Software Lab



Same-ISA Emulation

= Emulating an ISA on a CPU with the same ISA
e Binary Translation is greatly simplified
« Emulation Manager is always in control of execution
e EXxecution can be monitored at any desired level of detall

= Applications

Simulation : collecting dynamic program properties
OS System call emulation : different operating systems

Discovery and management of sensitive privileged
Instructions

Program shepherding : watching a program execute to ensure
no security holes are exploited

Optimize a binary program at runtime (e.g., Dynamo)

25
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Instruction Set Issues

» Register architecture
* Almost every ISA contains register of some kind
* Register handling is key performance issue for emulation

= General-purpose register of target ISA
« Holding general-purpose registers of the source ISA
» Holding special-purpose registers of the source ISA
* Pointing to the source register context block and the memory
image
* Holding intermediate values used by emulator
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Register handling

» Case 1: # of target registers >> # of source registers
» All source register can be mapped onto target register

= Case 2: # of target register is not enough
* Register must be carefully handled
2 registers for context block and memory image
1 registers for SPC
1 reqisters for TPC

Provide target registers for frequently used source register
(stack pointer, condition code register, etc.)

* 3 to 10 target registers are used for the above
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Condition Codes

Special architected bits
« Characterize the instruction execution results
e Tested by conditional branch instruction
Condition codes vary across various ISAs

o X86 ISA condition codes are implicitly set as a side effect of
Instruction execution

« SPARC contains explicitly set codes
 PPC has a number of condition code registers set
« MIPS does not use any condition codes

Emulation complexity varies depending on the use of
condition codes on source and target machine
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Condition Codes Emulation

= Easiest Case
* Neither target nor source ISA use condition codes

= Almost as easy case

« Source ISA has no condition codes, target does
- No need to maintain any source condition state

= Difficult case

« Target ISA has no condition codes, the source condition
codes must be emulated

- Emulation can be quite time comsuming
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Most Difficult CC Emulation

= Source ISA has implicit set condition codes and target
ISA does not have.
- X86 ISA condition codes are a set of flags in EFLAGS

= X86 integer add instruction always sets six of condition
flags whenever it is executed

— OF: indicates whether an integer overflow occured

— SF: indicates sign of result

— ZF: indicates a zero result

— AF: indicates carry/borrow out of bit 3 of the result (for BCD)
— CF: indicates carry/borrow out of most significant bit of result
— PF: indicates parity of the |least significant byte of the result

30

Microprocessor Architecture & System Software Lab



Condition Codes Emulation — x86

= Straightforward emulation

« Every time an x86 add is emulated, each condition is evaluated
- The SF can be determined by a simple shift
- AF and PF requires more complex operations

- Computing the condition code often takes more time than emulation the
instruction itself!

= Condition codes are set frequently, but used rarely

e Lazy evaluation is a good solution
- Only operand and operation are saved (not condition code itself)
- This allows for generation of condition codes only if they are
really needed

————————————— 3 |
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Lazy Evaluation for x86

= Maintain a CC table that has an entry for each CC bit
» Contains the most recent instruction who modify the bit
 CC is evaluated when it is really used later by a branch
 For example,

— X86 add instruction modifies all condition code bits

— If an add operates on two registers containing the values 2 and 3,
all entries in the table will contain: add : 2:3:5

— If a later instrution needs to test the sign bit (SF), the corresponding
entry in the table is consulted, and the result field (3) is used to
generate the sign bit (0)

= Another way of x86 CC emulation
» Use a set of reserved registers instead of a table

————————————— 3 {
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r4 <-> %eax [A-32 to
r5 <=> %ebx PowerPC
r6 <=> %ecx register mappings
%ebx,0(%eax)
add %ecx, %ebx r16 <-> scratch register used by emulation code
imp labell r25 <-> condition code operand 1 ;registers
r26 <-> condition code operand 2 ; used for
: r27 <-> condition code operation ; lazy condition code emulation
labell: r28 <—> jump table base operation
jz target
lwz r16, 0(r4) ; perform memory load for addl
condition codes set mr r2b,r16 ; save operands
by first add are not mr r26,r5 ; and opcode for
used li r27,“addl” ; lazy condition code emulation
add r5,r5,r16 ; finish addl
mr r25,r6 ; save operands
mr r26,r5 ; and opcode for
li r27,“add” ; lazy condition code emulation
add r6,re,rs ; translation of add
b labell
beq crO,target  bra it ag
genZF: 444 r29,r28,r27 ;add “opcode” to jump table base address
mtctr r29 ;copy to counter register
bctr ;branch via jump table
“sub™
add”: add r24,r25,2r6  ;perform PowerPC add, set cr0
blr sreturn

e ———————— O3
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Condition Codes Emulation — x86

= There are still problems with condition codes

— As already mentioned, it is possible for a trap to occur during
emulation

— In this case, the precise (source) state, including the condition code
bits, must be available at the point of the trap

» More work may be required to handle this

— Target and source condition codes may not be entirely compatible
« SPARC has N, C, Z, V - equivalent to x86 SF, CF, ZF, OF
+ SPARC does not have equivalents to AF and PF

« Emulation can here only be simplified for some condition codes

34
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Data Formats and Arithmetic

= Data Format Emulation
 Most data format and arithmetic standardized

- Integer support 2's complement
- Floating point format uses IEEE (754) standard

* Floating point processing may differ
- X86 use 80 bit intermediate results, other CPU only 64

 Emulation is possible but though it takes a longer time

* Functionality needed by source ISA not supported by

target ISA
* In all case, a simpler target ISA can build the more complex
behavior from primitive operations

35
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Memory Address Resolution

= Different ISAs can access data items of different sizes

One ISA supports bytes, halfword (16bit), full word (32bit)
Another ISA may only supports bytes, full word (32bit)

Multiple Instructions in the less powerful ISA can be used to

emulate a single memory access instruction in a more powerful
ISA

Most ISAs today address memory to the granularity of single
bytes

— If atarget ISA does not support, many shift/and operations are
required
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Memory Data Alignment

= Some ISAs align memory data on “natural” boundaries
 Word access by 00 low address bits, half word access by O

* |f an ISA does not require “natural” boundary, it is said to
support unaligned data
 One way is breaking up word accesses by byte accesses

* Runtime analysis can reduce code expansion by finding out
aligned accesses

37
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Byte Order

Little endian vs. big endian

 Order bytes within a word such that the most significant byte is byte O
(big endian) or byte 3 (little endian)
e X86 support little endian while PPC support big endian

It is common to maintain the guest data image in the same byte

order as assumed by the source ISA, but this is not easy
 E.g., Guest ISA’s storeword performed in host ISA will save bytes in a different order
— Problematic if there is an access to each byte which will be done in different order
 Emulation code has to modify addresses when emulating a little-endian
ISA on a big-endian machine (or vice versa)
— A loadword should be implemented by a sequence of loadbytes

 Some ISA support both endian orders (via mode bit)

Byte order Issue and Operating System call

. GléeS'[ data accessed by the host operating system has to be converted to the proper byte
order

e —————————————— 3 O
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Summary

» Chapter Summary
 Reviewed Emulation and Translation method
» Performance tradeoff may be needed

= Performance Tradeoffs

Memory Start-up Steady-state -
Requirement Performance Performance >or sy
DnD Interpreter Low Fast Slow Good
Indirect Threaded Low e el Good
Interpreter (higher then DpD) (slightly better then
Dnk)
Direct Threaded
Int t ith . . .
n&w High Slow Medium Medium
Binary Translation High Slow Fast Poor

e ————————— 3 )
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