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Worked example of transient C-D using QUICK

** Example 8.3

Consider convection and diffusion in the one-dimensional domain sketched
in Figure 8.7. Calculate the transient temperature field if the initial temper-
ature 1s zero everywhere and the boundary conditions are ¢ =0 at x = 0 and
dp/dx =0atx=L. The dataare L=1.5m, u =2 m/s, p=1.0 kg/m?’ and
I' =0.03 kg/m.s. The source distribution defined by Figure 8.8 applies at
times 7 > () with 2 = =200, » = 100, x; =0.6 m, x, = 0.2 m. Write a computer
program to calculate the transient temperature distribution until it reaches a
steady state using the implicit method for time integration and the Hayase
et al. variant of the QUICK scheme for the convective and diffusive terms,
and compare this result with the analytical steady state solution.
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Worked example of transient C-D using QUICK

** Example 8.3

® Transient C-D equation 6 3 |

B, = =Py +—0p— =Py
Ape)  dpug) I [ _ ¢ 3 3 8
+ = I +.5
ot ox ov| Oox ¢_6¢ +3¢ IQ)
e = oVp T SVE— Pw
3 3 3
® 45 point grid
® |Initial and boundary conditions
1
u=2.0m/s F=gg=21) O = P+ §(3¢P — 20y — Opwy)
1
Ax =0.0333 D=1/Ax=0.9 O = Pp+ §(3¢E —2¢0p — dp)

® Implicit discretization

P(Pp — Qp)Ax
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+ 1| Op+ §(3 Or—20p— ¢Ilf):| - F m{ Oy + §(3 Op— 201 — Oypy)
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Worked example of transient C-D using QUICK

** Example 8.3

_—

® Modification for the boundary cells 9

94
= For the first cell = mirror node approach

do
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Worked example of transient C-D using QUICK

** Example 8.3

® Modification for the boundary cells

= For the last cell = zero gradient boundary condition Op = Op

P(9p— $P)Ax
Al
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+ Fp@p—F,| Oy + g(g Op— 20y — ¢U”')j| =0-D,(¢p— dp)
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Worked example of transient C-D using QUICK

** Example 8.3

® General form

apQp=ayOy+apdp+apdp+.S,

ap=ay+ag+ap+(F,—F)—Sp

Node

D,+ F,

D + F

D + F

w w

Iterative method (Hayase et al.)
Deferred correction

8 1
(—D’f as F{J ¢4+ gﬂ(ﬁbp — 30p)

1
—F,(30p — )|+ gF (O + 20p — 30)

1 1
EF o(30p — 20w — Oyy) + gF Oy + 2¢0p — 30;)

1
EF o(30p — 20y — Oywy)



Worked example of transient C-D using QUICK

** Example 8.3

® Numerical calculation

= With timestep: Ar=10.01
— Well within the stability limit for explicit schemes

— Stable and reasonably accurate (3™ order accuracy in space) solutions

= Numerical values of coefficients

= |terative solution procedure is required. (because of the deferred correction)

Node ay ap ap Total source Sp ap
1 0 1.2 333 4.4¢,+0.25(¢p— 30;) + 3.330p -44 8.93
g 29 09 333 0.25(5¢0p—3¢y) + 3.330p 0 7.13

344 2.9 09 333 02550p— 0y — Oyy—30,) +3.3305 0 7.13
45 29 0 333 0.25(30p— 20y — Oyu) + 3.3304 0 623



Worked example of transient C-D using QUICK

** Example 8.3

® Calculation results

= Steady state solution: numerical results vs. analytical results
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Solution procedures for unsteady flow calculations

® Transient SIMPLE
o



Solution procedures for unsteady flow calculations

*¢* Transient SIMPLE

® Continuity equation

Jp s d(pu) s d(pv)
ot oy dy

)

(Pr— Pp)
At

AV +1(puA), = (puA),| +1(pud), — (pud)] =0

= The pressure correction equation is derived from the continuity equation and should therefore
contain terms representing its transient behavior.

= For example, the equivalent of pressure correction equation (6.32) for a two-dimensional transient
flow will take the form

/7
argPr.g= 611+1,_7Pf'+1,] + d]—l,j/p;—l,] + flf,~7+1]’f,~7+1 £ flf,j—ll?f,_y—l + 17;,.7

Cl_[’j = él[_H’} + Cl]_I’} + Cl[,]_H + él[,]_l

4 0 __ A V
b]’] = (pu*A),.J — (pu*/j)t.ﬂj + (PU*A)L‘,' _ (pU*A)LjH n (PP A[ZP)




Solution procedures for unsteady flow calculations

*¢* Transient SIMPLE
( START )

Y

Initialise u, v, p and ¢

A |

Set time step At

u, v, pand ¢

ojE=

A |

Let t=t+ At
u=uv=v,p’=p, ¢°=9¢

SIMPLE or SIMPLER or SIMPLEC
(section 6.4) (section 6.6) (section 6.7) ﬁ :
Iteration process until convergence Ite rat|Ve m eth Od
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Pseudo-transient approach

“* Pseudo-transient approach for steady state calculations

® Under-relaxed form of the momentum equation

a; a;

1.7 —_— ,_7 7 '—1

_(;c w; 1= 2yt + (Pr 7= 1A 7+ b; 5+ {(1 = a”)—(’x :|ll(f i.;z)
U

U

Analogy

® Transient momentum equation

piAY pPLAY
[ﬂf,] + At U; 9= 2ty + Pr17— b1 pA; 7+ b; 5+ A Ui g

(l‘;,] _ pf,yA V
At

(1 _ au)

u

® Alternatively steady state calculations may be interpreted as pseudo-transient solutions with
spatially varying time steps.

® The pseudo-transient approach is useful for situations in which governing equations give rise
to stability problems, e.g. buoyant flows, highly swirling flows and compressible flows with
shocks.
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Other transient schemes

** Other transient flow calculation procedures

® MAC

@ SMAC Central feature of the algorithm:
® ICE Poisson equation for the pressure
® ICED-ALE

® Kim and Benson (1992) compared the PISO method with the SMAC algorithms for the
prediction of unsteady flows and reported that SMAC was more efficient, faster and more
accurate than PISO.

® The MAC/ICE class of methods are, however, mathematically complex and not widely used in
general-purpose CFD procedures.



