Lecture Note of Topics in Ship Design Automation

Optimum Design

Fall 2015

Myung-Il Roh

Department of Naval Architecture and Ocean Engineering
Seoul National University

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ dl“b !

Contents

M Ch. 1 Introduction to Optimum Design

M Ch. 2 Unconstrained Optimization Method: Gradient Method

M Ch. 3 Unconstrained Optimization Method: Enumerative Method
M Ch. 4 Constrained Optimization Method: Penalty Function Method
M Ch. 5 Constrained Optimization Method: LP (Linear Programming)

M Ch. 6 Constrained Optimization Method: SQP (Sequential
Quadratic Programming)

M Ch. 7 Metaheuristic Optimization Method: Genetic Algorithms
M Ch. 8 Case Study of Optimal Dimension Design

M Ch. 9 Case Study of Optimal Route Design

M Ch. 10 Case Study of Optimal Layout Design

ydlab -
opics in Ship Design ion, Fall 2015 _Myung: 1l Roh s Q

2016-08-29



2016-08-29

Ch. 2 Unconstrained Optimization
Method: Gradient Method

2.1 Steepest Descent Method

2.2 Conjugate Gradient Method

2.3 Newton’s Method

2.4 Davidon-Fletcher-Powell (DFP) Method

2.5 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

opics in Ship Design i Fall 2015, Myvung:Il Roh ’ dl“b S

Classes of Search Techniques

N-dimensional Search Techniques

. . 2 Enumerative
Numerical techniques Random search techniques :
techniques
I_I_I .
[ |

Direct Indirect Guided random ion-guided Hooke & Nelder &
methods methods search techniques techniques Jeeves method | Mead method
Gradient Optimality Evolutionary Simulated Monte Carlo Golden section Dynamic
methods conditions algorithms annealing search method programming

I

Penalty Genetic

function A

T algorithms

LP (Linear

Programming)
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Quadratic
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Iterative Search for Optimum in Direct Methods

To find optimum is to improve the starting point continuously
by determining the search direction and step size.

X(k+1) — X(k) + akd(k)'\
Search direction
Ex) Minimize the objective function Improved Starting

point point Step size

Contour lines

X - .
2 of objective function

or x*=x®4g®

f

Improved Starting Design change
point point
How long should we do?
Until no improvement is made.

Stopping criteria  Convergence

tolerance
> ‘x(“” — x‘“‘ <e or

\ZZe
Search direction : ‘d(kﬂ) B d(k)‘ <& or

X(OS)tarting point ‘f(x(k”)) - f(X(k))‘ <€
opics in Ship Design ion, Fall 2015, Myung-Il Roh ’lﬂmn_dl"‘b 5

Iterative Search for Optimum in Indirect Methods

To find optimum is to solve some equations,
called optimality conditions, which should be satisfied at the optimum.

Necessary condition for x =x* to be a maximum or minimum

f'(x)=0

This method does not need any iterative search.
Thus, it does not need the starting point.
The necessary is to construct equations for optimality conditions

from the problem, and then to solve the equations with
a suitable method.
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1. Steepest Descent Method (1/6)

= Step 1: The search direction (d) is taken as the negative of the gradient of the objective
function (f) at current iteration since the objective function decreases mostly rapidly
toward that direction.
The direction of gradient vector of f, V/(x), is the direction of maximum increase of f at x.
i Search direction d=-c=-Vf(x) i

= Step 2: Iterate successively to find the optimum design point.

Ex) Minimize the objective function
X2

1. Steepest Descent Method (2/6): Example

M By using the steepest descent method, find the minimum design
point for the following function of 2-variables.

Given: Starting design point x® = (0, 0), convergence tolerance &=0.001

Find: x®, x®
. e . _ 2 > = Optimization problem with
Minimize f(xl 2 X)) =X — X, +2x] +2x,x, +X; two unknown variables

X,

IS

N

17 NN

o

\

2  A: True minimum design point
0 X, =-1.0,x,"= 15, f (x;, x,") =-1.25

AR NN\
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1. Steepest Descent Method (3/6): Example

e e e 2 2 : . .
Minimize f(x,,x,) =X, —X, +2X; +2Xx,x, + Xx; Starting design point x = (0, 0)

1+ 4x, +2x, ETo minimize /(x"),
Vi(x)=Vf(x,x,)= : -
7o) =Vf (3, %,) —1+2x, +2x, A 220 > a=10 -'-X‘”=[ 1j
H da 1
H 1st [teration: Find x® '\/’ How can we differentiate 1 with respect to o ?
0) (1+4x +2x 1)
Vi(x)=V - ! 2= : X2
JED=VA —1+2x,+2x,) \-1)i 2 \

XV =x© —gOVF(x©) : 15 %
: 0
= 0 —a 1 — - Replacing o to a forE 1 X
0 -1 a convenience :

0.5

Substituting x" = (-a,«) into the objective

function : 0 (0)
M =—a-a+2a* -2 +a’ : X
=a’-2a 08 \
-1
-2 -15 -1 -0.5 0 0.5 xl 1

1. Steepest Descent Method (4/6): Example

Minimize f(x,,x,) =X, — X, + 2x] +2X,X, + X, Starting design point x© = (0, 0)

m 2nd |teration: Find x®
v (x) = vf -1 1+4x, +2x, -1
X = = =
1 —1+2x +2x, -1
x@ = xV _ g Oy F(x)

— -1 —a -1 — ~l+a Replacing aVto a for
1 -1 1+ convenience

Substituting x® =(-1+a,1+«) into the objective
function
fx?)=5a"-2a-1

/

To minimize /(x?),

(2)
YT 100-220 = a=02

da
Cx® = -0.8
1.2
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1. Steepest Descent Method (5/6): Example

e e e 2 2 : . .
Minimize f(x,,x,) =X, —X, +2X; +2Xx,x, + Xx; Starting design point x = (0, 0)

m 3rd |teration: Find x®
2 -0.8 1+4x, +2x, 0.2
VI(x7)=Vf = =
’ 1.2 —1+2x +2x, -0.2

X(3) — X(Z) _a(2)vf(x(2))

X
-0.8 0.2 -0.8-0.2a 2
= - = Replacing o"
1.2 -0.2 1.2+02a Jto a for

convenience 15

Substituting x'¥ =(-0.8-0.2¢,1.2+0.2a) into the ’
objective function

F(x¥)=0.04a” —0.08cc —1.2 05
To minimize /(x?), 0

3)
YT 00820080 — a=1.0
da -05

xP = -
1.4 -1

1. Steepest Descent Method (6/6): Example

Minimize f(x,,x,) =X, — X, + 2x] +2X,X, + X, Starting design point x© = (0, 0)

B 4t [teration: Find the minimum design point.
To obtain the minimum design point, we have to iterate.

If [x*"-x"|<e, then stop the iterative process because x¢*) can be
assumed as the minimum design point.

2016-08-29



2. Conjugate Gradient Method (1/5)

M This method requires only a simple modification to the
steepest descent method and dramatically improves the
convergence rate of the optimization process.

M The current steepest descent direction is modified by
adding a scaled direction used in the previous iteration.

B Step 1: Estimate a starting design point as x©. Set the iteration
counter k = 0. Also, specify a tolerance ¢ for stopping criterion.
Calculate

d(O) — _c(O) = —Vf(X(O))

Check stopping criterion. If |¢”|<z, then stop. Otherwise, go
to Step 4.

It is noted that Step 1 of the conjugate gradient method and
steepest descent method is the same.

Computer Aided Ship Design, 1.3 L i Qptimization Method, Fall 2013, Myung:| ILRoh

2. Conjugate Gradient Method (2/5)

B Step 2: Compute the gradient of the objective function as ¢ =v/(x*).
If |¢*|<, then stop; otherwise continue.

B Step 3: Calculate the new search direction as

id® = —® +ﬂ,‘;d(k71):§% Previous search direction

PRSrS

The current search direction is calculated by adding a scaled direction used in the previous iteration.

B Step 4: Compute a step size a = ¢, to minimize f(x®+ad®).

B Step 5: Change the design point as follows, then set k = k+I and go
to Step 2. x50 = x®) 4 g g®

Computer Aided Ship Design, 1:3 L ined Optimization Method, Fall 2013, Myung: Il Roh
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2. Conjugate Gradient Method (3/5): Example

. e . 2 2 . . .
Minimize f(x,X,) =X, —X, +2x; +2X,X, + X, Starting design point x* = (0, 0)

........................................................... " N R NN N EEEEEEEEAEEEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEEEE

. . 1+4x, +2x To minimize f(x"),
Vf(x)zvf(xlaxz):[_l+2; +2;J i ar (x
o L Y _24-2-0 - a=10
M 1st Iteration: Find x® i da _1
0 E ote: Ste of the conjugate gradient method - - o =
d(O) = _C(O) = _Vf (X(O)) = _Vf( j E :‘n; ;tzzp']esl dz::ent mjet?wtd iEs,t:e s;me. thod X (l J
0 E xz )
L (le4axe2x ) (1) (-1) \
C o Al2x+2x, ) -1) L1 15 %
X =x9 +q,d?” 1 x4,

Replacing &%, to @ for=

0 —1 —q | convenience :
= +a = E 0.5
o7 -]

Substituting x" =(-a,a) into the objective 0 (0
function : X
& =—a-a+2a’ -2a> +a’ : -05
=a’-2a : . \
: -2 -15 -1 05 0 05 x; 1

2. Conjugate Gradient Method (4/5): Example

o e e 2 2
Minimize f(x,,X,) =X, — X, +2x; +2x,X, + X,

B 20 |teration: Find x® x® :ClJ
Compute the gradient of the objective function as {
m _ (1 0) _ _ O\ _|
c —Vf(x ) d =-vf(x )_[lj
~ Vf[—l] ~ ( 1+4x, +2x, j B (—1) d® =—c® 1 g.d*"
1 —1+2x, +2x, -1 B, = (HcmH /Hctk—nH)z
(k+1) _ (k) %)
Calculate the new search direction as T =xTrad
2
M _ _ 0) _ _ () "Vf (X(l))" (0)
d’/=—c"+4d" =-c +ﬁd
Jvr (x)]

(3400
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2. Conjugate Gradient Method (5/5): Example

. e . 2 2
Minimize f(x,,X,) =X, — X, +2x; +2x,X, + X,

(k+1) _ (K) (*)
x?@ =x® 4 ald(l) X =x"+ad

by (1 by (0
= [_IJ +a (Oj — [ -1 j Replacing @, to o for convenience Ul :( 1 ] ao - (zj

1 2 1+ 2«
1+4x, +2x,
Substituting x® =(-1,1+2a) into the objective function VI () :Vf(x,,xz):[_“_zx] +2xz]
x
Fx?) =4 —2a-1 ?2
| \
To minimize f(x"), 15
df (x? 0
FET) gy 220 - a=025 1 X
@ -1
x® =
a 1.5 05

) . —Minimum design point
Check stopping criterion.

c® = Vf(X(Z)) _ vf(;;} _ (gj 0 x

e|=0<c —Stop! JaN
-1

-2 -15 -1 -0.5 0 05 x, 1
Computer Aided Ship Design, |-3 | ined Optimization Method, Fall 2013, Myvung-Il Roh 1

3. Newton’s Method (1/9)

Assume that f{x) has minimum at x **D = x® + Ax®,

Given: f(x) Consider the quadratic approximation of the
) function f{x) at x = x® using the second-order Taylor
Find: x* which minimizes f'(x) expansion.
RAC) 1) 2 3
GO+ A= )+ LA o EE S et ofpad)

) v

In this equation, x® is a constant and Ax® is a variable.
So, the following equation is a quadratic function in

B terms of Ax®. “ s
: : g (x") 1d°f(x") 2
(k) (k)Y — () . % (k) 4 y (k)
FP + AP = £(x )+ W A+ e (ax®)
Differentiate this equation with respect to Ax®.
YO+ M) D) D) p 1 _ o> tormmmammonarie
dx function

f(x(k*'l)) ______________________ ' dAx® dx

¥

AED T A
< i 2! Calculate the small change Ax® in design.

o (k+1) (k)
0 X X X X ® 2 ®

x(k+2) Ax® = IN/ACE) / af(x")

dx dx’
NO
k=k+1
YES
Set x" =x&*) and stop the iteration. 18
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3. Newton’s Method (2/9): Example_, Assume that f{x) has minimum at x® =x©® + Ax©,

A 4

Given: f(x)=x"—2x+2
Starting design point x© =3

Find: x* which minimizes f'(x)

Consider the quadratic approximation of the
function f{x) at x =x©® using the second-order Taylor
expansion. S )

O 4 AX9) = £ )4 X A9 4 X (Ax©
f@ )=/ )+ S ()

2

¥

In this equation, x® is a constant and Ax(©® is a variable.
So, the following equation is a quadratic function in
terms of Ax©. ) o
df (x* 1d°f(x 2
f(x(0)+Ax‘°))=f(x(0’) ; fibc )Ax“’) ; > /diz )(M“”)
Differentiate this equation with respect to Ax©.
df(x(ﬂ) +Ax10)) B df(x(O)) N de(x(O))

e necessary condition
Th diti
Ax'?) = () —> for minimization of this

dAx(O) dx dxz function
Ax®) ¥
Calculate the small change Ax® in design.
. A = (_ df(xto))j/[dzf()f«m)J
dx dx*
=(-2x+ 2)x:3 /(Z)X:J =-2
k=k+1 NO
=0+1=1
SYstem
Design 19

Computer Aided Ship Design, -3 U i Qptimizati

Method, Fall 2013, Myung:Il Roh

3. Newton’s Method (3/9): Example

Assume that f{x) has minimum at x@ =x® + Ax®,

Given: f(x)=x"—2x+2
Starting design point x© =3

Find: x* which minimizes f (x)

Consider the quadratic approximation of the
function f{x) at x =x® using the second-order Taylor
expansion.

P& 0, 1AL oy
(l)+AX“) — My ; Ax“) ; {Ax(”
S )= S+ S ()

L 2

£ k=1

S0

In this equation, x( is a constant and Ax®" is a variable.
So, the following equation is a quadratic function in

terms of Ax().
ol 2 0D
f(x“’+Axm):f(xm)+dfg )Ax(l) +%d 25;‘ )(Ax(”)z

Differentiate this equation with respect to Ax(\.

(D () (D 2 20D The necessary condition
df (x” + Ax) _ af (x )+ af(x )A\”“) — () —> for minimization of this
dAxlU dx XZ function

)

Py

cubic function at once?

y
Calculate the small change Ax® in design.

AxD = (_ df‘(x(l))] / [dzf(xm)]

dx dx’
=(-2x+2) _,/(2),, =0

x=1

Is it possible to find the x* which minimizes a

YES

Set x*=x(® and stop the iteration. o

2016-08-29
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3. Newton's Method (4/9): Example_.f assume that f{x) has minimum at x® = x® + Ax©,

o

A 4

i Is it possible to find the x* which
minimizes a cubic function at once?

Given: f(x) = x*=3x*+2x

Consider the quadratic approximation of the
function f{x) at x =x©® using the second-order Taylor
expansion.

a0 1 & P 3
0= e 0 LT o)

Starting design point x© =3

L 2

Find: x* which minimizes /'(x)

fix) k=0

Sx®)

In this equation, x is a constant and Ax©® is a variable.
So, the following equation is a quadratic function in
terms of Ax®. S L I®)

O 4 Ay Oy — py 0y G (0) WACS )2
SO0+ M) = f) == A +57(Ax )
Differentiate this equation with respect to Ax©.

(. (0) (0) © 2 40 (0) The necessary condition
df (x + Ax'™) _ df (x™) o d f(x )Ax‘o’ — () —>for minimization of this
dAx"” dx dx?

function
L 2

Calculate the small change Ax® in design.

) o
4 A — [jf()c‘“’)] /[d'fq‘ ‘)j
x dx dx”
) 11
=(-3x*+6x-2) /(6x-6) = -5
k=k+1 NO
=0+1=1

opics in Ship Design Fall 2015, Myvung:Il Roh

I!dlﬂb 21

3. Newton’s Method (5/9): Exampl

Assume that f{x) has minimum at x ® =x(® + Ax(®,

T

ii’) Is it possible to find the x* which
minimizes a cubic function at once?

Given: f(x) = X =3x*+2x

Consider the quadratic approximation of the
function f{x) at x = x( using the second-order Taylor
expansion.

(1 1 an L ED) o 1) n)? ’
SO+ A = faO)+ a0 4o 2o (A +0M

Starting design point x© =3

¥

Find: x* which minimizes /'(x)

In this equation, x® is a constant and Ax(" is a variable.
So, the following equation is a quadratic function in

,{(1) =72.0%3

e N
x®=1.70

0

7

) k — terms of Ax(™, o o
(D) o) oo (1) dfx”) o, 1df(x7) m\?
SO0+ A = f()+ 5 A +57(Ax )
Differentiate this equation with respect to Ax®.
fx®) YO+ A A GD) )1 et
dAX(l) lix dxl function
v

Calculate the small change Ax® in design.
A = _dx") / AACD)
dx dx’

=(-3x7+6x-2) »/(6x-6) _25=-0388
|

2
12

k=k+1
=1+1=2

€,
Why is it not possible to
find the x* which minimizes
a cubic function at once?

NO

> Since the second-order Taylor expansion is just an approximation for f(x) at the point x© or x(,
x(U or x® will probably not be the precise minimum design point of f{x). 2

2016-08-29
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3. Newton's Method (6/9): Example of Function of
Two Variables

e e . 2 2 : . .
Minimize f(xX) = f(x,,X,) = X, — X, + 2x; +2x,x, + X, Starting design point x = (0, 0)

ar s
v v ~ fm B 1+4x +2x, Hix)= axf 0Ox,0x, B 4 2
O ) i IR TSP (O e ar [Tl 2

ox,0x,  0x;
B 1st |[teration: Find x®

Assume that f(x) has minimum at x® = x©® + Ax©®,

Consider the quadratic approximation of the function f(x) at x = x® using the
second-order Taylor expansion. | .
f(X(U) + AX(O)) — f(X(U)) + vf(x(()))TAX(O) + E(AX(O))TH(X(O))AX(O)

‘:f} How?
3

In this equation, x© is a constant and Ax® is a variable. So, the following
equation is a quadratic function in terms of Ax©®.

SO +Ax) = fx )+ V(D) Ax? + %(Ax(‘)))TH(xm)Ax(O)

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ !dmlnﬁnbm 23

3. Newton's Method (7/9): Example of Function of
Two Variables

Minimize f(x) = f(x,,X,) = X, — X, + 2x] +2x,x, + Xx;, Starting design point x* = (0, 0

W 15t lteration: Find x® I (") x4 Y B
. . . . . How? ) =5 () = o | 12
Differentiate this equation with respect to Ax©. L‘.f? [»] [’] [*‘”-‘l”-‘:}

(©) O]
o (x"+Ax) _ Vf(x(m) + H(X(O))AX“)) =0 > The necessary condition for
o(Ax'") minimization of function f(x,, x,)
X2
Calculate the small change Ax® in design. 2 \
(0) 0) _ o o (0) 1)
HE")AX" =-Vf(x™) 15

A = HEO)TV/ )

or oy 1
| i 5y
L oxox, ol )
[AX(]())J [4 zjl (_1] [AX(IO)] [_IJ |
(0) = _> (0) =

Ax, 2 2 1 Ax, 1.5 0 O

SxP=x9 4 AxO = 0 + - = -l 05

0) \15) (1.5 \

-2 -15 -1 -0.5 0 0.5 X; 1

2016-08-29
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3. Newton's Method (8/9): Example of Function of
Two Variables

e e . 2 2 : . .
Minimize f(xX) = f(x,,X,) = X, — X, + 2x; +2x,x, + X, Starting design point x = (0, 0)

. . -1
m 2nd Jteration: Find x® x‘”:[ J
In the same way as 15t Iteration,

Assume that f{x) has minimum at x® = x® + Ax(®,

Consider the quadratic approximation of the function f{x) at x = x® using the
second-order Taylor expansion.

SO+ Ax") = £(x D)+ V(D) Ax D + %(Ax‘”)TH(x”))Ax(”

In this equation, x is a constant and Ax" is a variable. So, the following
equation is a quadratic function in terms of Ax®.

SO+ Ax") = £(x D)+ VA (x D) Ax D + %(AX“))TH(X(U)AX(])

Differentiate this equation with respect to Ax®.

of (xV + Ax™® The necessary condition
i ) )_ V") +H(x")Ax" =0 — for minimization of
o(Ax™") function f(x,, x,)
opics in Ship Design jon, Fall 2015, Myung:ll Roh ’!dlﬂb 25

3. Newton's Method (9/9): Example of Function of
Two Variables

Minimize f(x) = f(x,,X,) = X, — X, + 2x] +2x,x, + Xx;, Starting design point x* = (0, 0

. . -1
m 2 |teration: Find x® x‘”:[l Sj
Calculate the small change Ax" in design. £ [ Ledno2e

Hx M)A =~V (x?) Vf("):W"“‘"*z):[fﬁj:[_l+2x, +2,;»2]

A = HE )] V()

) = _) (1) =
AXZ 2 2 0 AXZ 0
xP = x4 A = - + 0 = -l

1.5 0 1.5 05

—Optimal design point

X
22

2) @ \

o

Check stopping criterion. 0 (0)
|Ax‘”| =0<¢

—Stop! \
-1

-2 -15 -1 -0.5 0 0.5 X; 1

2016-08-29
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3. Modified Newton’'s Method (1/3)

M In this method, we treat Ax* = [H(x")]"'v/(x*) of the Newton’s
method as the search direction and use any of the one
dimensional search methods to calculate the step size in the
search direction.

B Step 1: Estimate a starting design point x©.
Set iteration counter k = 0. Specify a tolerance ¢ for the stopping
criterion.

W Step 2: Calculate ¢ =9 (x'")/ox, fori=1to n. If |c|<¢, then
stop the iterative process. Otherwise, continue.

B Step 3: Calculate the Hessian matrix H® at current design point

x®, ?
H(x") = s , i=1l-,n j=L--,n
Ox,0;

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ !dmlnﬁnbm 27

3. Modified Newton’'s Method (2/3)

B Step 4: Calculate the search direction as follows:

éd(k) =Ax® = —H'¢®i When,/'(x‘+Ax):,/(x‘)+cTAx+%AxTH(x*)Ax,

: the necessary condition for minimization of this function is as follows:
df (Ax)/ dAx =c+H(x )Ax =0 :
=SHGE)Ax=-c= Ax=-H(x")"c

B Step 5: Update the design point as x*™) = x® + ad®), where « is
calculated to minimize f{x® + ad®). Any one dimensional search
method may be used to calculate a.

W Step 6: Set k=k+1 and go to Step 2.

ydlab
‘opics in Ship Design is Fall 2015, Myung:| 1L Roh. ’ n
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3. Modified Newton’s Method (3/3)
- Disadvantages of the Newton's Method

The Newton’s method is not very useful in practice, due to
following features of the method:

1. It requires the storing of the nxn matrix H(x®).

2. It becomes very difficult and sometimes, impossible
to compute the elements of the matrix H(x®).

3. It requires the inversion of the matrix H(x®) at each
iteration.

4. It requires the evaluation of the quantity H(x®)1Vf{(x®)
at each iteration.

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ !dmlnﬁnbm 2

4. Davidon-Fletcher-Powell (DFP) Method (1/6)

M This method builds an approximation for the inverse of
the Hessian matrix of f{(x) using only the first derivatives.

B Step 1: Estimate a starting design point x©®.

Choose a symmetric positive definite nxn matrix A® as an
approximation for the inverse of the Hessian matrix of the
objective function. In the absence of more information, A® =1
may be chosen. Also, specify a tolerance ¢ for the stopping
criterion. Set k=0 and compute the gradient vector
as d” =—” =-vF(x").

B Step 2: Calculate the norm of the gradient vector as HC(’C)H.

If c© ‘ < ¢, then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest
descent method are the same.

ydlab «
‘opics in Ship Design is Fall 2015, Myung:| 1L Roh. ’ n
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4. Davidon-Fletcher-Powell (DFP) Method (2/6)

B Step 3: Calculate the search direction as follows:

H Newton’s method

k) _ (GRGH X o

d =oAL AxY = {HE) V()
2 d® =—(H") "™

Here, the matrix A is used as an estimate for the inverse of
the Hessian matrix H' of the objective function.

B Step 4: Compute optimum step size a= ¢, to minimize f(x® + ad®).

B Step 5: Update the design point as x**) = x® + g, d®,

oD

cs in Ship Design i Fall 2015, Myung:| 1l Roh ’ !dmlnﬁnbm 3

4. Davidon-Fletcher-Powell (DFP) Method (3/6)

B Step 6: Update the matrix A® - approximation for the inverse of
the Hessian matrix of the objective function - as follows:

A = A® L B® 1 C® x5 matrix

where, the correction matrices B® and C® are calculated as
below.

T T
sFgd) —z 07 )

k . k .
B% = CERT) ; NXN matrix ch = & 0 ; MXN  matrix
S y y z
k k
s = akd( ) i nx1 matrix _
d® : search direction
y(k) = C(kH) — c(k) nx1 matrix a® : optimum step size
cH = v : nx1 matrix
7 = AWy® . [nxn][nx1]=[nx1] matrix
B Step 7: Set k=k+1 and go to Step 2.
opics in Ship Design i Fall 2015, Myung:| 1L Roh ’!dw lunn b“ 2
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4. Davidon-Fletcher-Powell (DFP) Method (4/6): Example

Lo 2 2 ) N .
Minimize f(xX) = f(x,,X,) = X, — X, + 2x; +2x,x, + X, Starting design point x = (0, 0)
. Substitute x"’ =(-a.a) into the objective
: function
P ) =a’ -2a

: To minimize 7 (x?),

f(x) =Vf(x,x,) = : : ’
VI (x) =Vf(x,
b —1+2x +2x,

B 1st |teration: Find x®

x© = 0 A0
0

o) _,

( a-2=0 - a=1.0
da

2
c((,):Vf(x(o)):1+4.0+2.0 _ x \\
-1+2:-0+2-0 -1 15 %
o . . 1)
Check stopping criterion. ; X
€@ =17 =425
d? = A — _Je©® — O (_ j : o
1 H
X0 =x 4 g, d? 0 O
0 -1 —& | Replacing @, to & ; —05
= ta = for convenience H
0 1 a :
: -1
: -2 -5 -1 05 0 05x,
4. Davidon-Fletcher-Powell (DFP) Method (5/6)° Examj 1;;:2;;)

Minimize f(x) = f(x,,X,) = X, — X, + 2x] +2x,x, + Xx;, Starting design point x* = (0, 0

m 2nd |teration: Find x®

Update the matrix A® - approximation
for the inverse of the Hessian matrix of

the objective function - as follows:
A(l) — A(O) +B(0) +C(0)

(0)(0)
B _s(0>fy<o>
© _ g0 _ (-1
s =ad 7(1 )
1 -1
cw):(_l} e = _1)
© _ 0 _ 0 _ (=2
y @ =c ¢ 7(0
.07 _ (1 =1
s's —(_1 1)
S(O)’y«n -2
_ (0.5 -0.5
~1-0.5 05

_z© 07

("

Yy 'z

ao_g (10
01

O _ A0 _[—2
z’ =A% —(0)

:
yO'z0 =4

Il 2070 :(3 8)
_(-10
oo
AD Z AO L BO 4 C©
1 0 05 -05 -1
= + +
01 -0.5 0.5 0

(05 -05
=05 15

(0)

y

34
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1+4x, +2x, j

4. Davidon-Fletcher-Powell (DFP) Method (6/6)° Example 2:+2«

e e . 2 2 : . .
Minimize f(xX) = f(x,,X,) = X, — X, + 2x; +2x,x, + X, Starting design point x = (0, 0)

m 2nd teration: Find x® . oy [1+4-(-D+2-15 0
o eriteri PP =vr(x®) = -
Check stopping criterion. : ‘ —1+2-(=1)+2-15 0
||c‘”|| =\2>¢ i Check stopping criterion.
dD = —ADD — 0 : ||c(2)|| =0<¢
N —Stop!
x@ =x" 4 ¢,d? 25

= - +a 0 = -1 Replacing & toag
1 1 l+a for convenience i

Substitute ¥ =(-11+a) into the objective
function

f(x(Z)):az_a_l ; 05
To minimize f(x?),

(2) H
%zza—lzo > =05 s
(24 H

o1 P
’ 1.5 | ~Optimal design point :

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (1/6)

M This method updates the Hessian matrix rather than its
inverse at every iteration.

B Step 1: Estimate a starting design point x©. ~
Choose a symmetric positive definite nxn matrix H”as
an approximation for the Hessian matrix of the objective function.
In the absence of more information, let H” =1 . Specify

a tolerance & for the stopping criterion. Set k =0, and compute
the gradient vector as ¢© = Vf(x(o))-

B Step 2: Calculate the norm of the gradient vector as c(k)H.

If [c® ‘ < &, then stop the iterative process. Otherwise, continue.

It is noted that Step 1 and 2 of this method and the steepest
descent method are the same.

QDiC;

in Ship Design i Fall 2015, Myung:| 1l Roh
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (2/6)

B Step 3: Solve the linear system of the following equation to

obtain the search direction. Newton's method
enaarasaaans messsssasannas . Ax(k) — 7[H(x(k))]*lvf(x(k))
Ed(k) — _(H(k))—lc(k)E e =—(H“‘))’]c(“

This equation looks like d“’ = —(H"")"'¢”’ of the Newton’s method,
but H" is an approximated Hessian matrix H") comprised of the
first order derivatives.

B Step 4: Compute optimum step size a= ¢, to minimize f(x® + ad®).

B Step 5: Update the design point as x**) = x® + g, d®,

opics in Ship Design i Fall 2015, Myung:| 1l Roh ’ !dmlnﬁnbm 37

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (3/6)

m Step 6: Update the matrix H*'- approximation for the Hessian
matrix of the objective function - as follows:
H*Y =HD +DP +E®  © pxp matrix
where, the correction matrices D® and E® are given as below.

ko (k) GRGE

ph-Y Y . gh_¢ ¢ .
y<k)Ts<k> ’ ROFON
S(/c) — akd(k) : change in design
(k) (k+1) ) d® : search direction
K . . .
y =¢ -¢ - change in gradient a® : optimum step size

c(k+l) — vf(x(k+l))

B Step 7: Set k =k+1 and go to Step 2.

ydlab s
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (4/6): Example

e e . 2 2 : . .
Minimize f(xX) = f(x,,X,) = X, — X, + 2x; +2x,x, + X, Starting design point x = (0, 0)

1+ 4x, +2x,
Vf(x):Vf(x,,xz):[ J

—1+2x +2x,

m 1st |teration: Find x®

. Substitute x"’ =(-2.2) into the objective

: function

P fxMY=a’ -2a

;To mir(\li)mize M), 1
Pogr C 0

P A 5y 220 5 g=10 "X ‘(1]

- d
x© = 0 LAY =1 “
0 X2 \
¢ = VF(x®) = 1+4-0+2-0 _ 1 15 %
-1+2-0+2-0 -1 xV
1
Check stopping criterion.
€=+ 17 =3 > 6
A =—(H") e =1 = = [1 j ° ©
i X
x(l) — X(O) + Olod(o) : s
0 -1 —U | Replacing &, to § \
= 0 +a | = for convenience : 4
a -2 -15 -1 -05 0 05x; 1
[ 1+4x+2x,

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (Vé(sz)vfég()éﬁ le2x+2x

)

Minimize f(x) = f(x,,X,) = X, — X, + 2x] +2x,x, + Xx;, Starting design point x* = (0, 0

m 2nd |teration: Find x@
Update the matrix H - approximation
for the Hessian matrix of the objective
function - as follows:
I:I(l) — ﬁ(o) + D(O) + E(O)
DO yOy©
- y<0)’s(0>

§© = d©® = 1—

1

© _ ) _ 0 _ 2
(0

y<0>y<0>’: 40
0 0

T
00— 9

(s o

(0) ()T
0 _—C°C

- T
c(O) d(O)

c(ﬂ)’d(m -2

(05 05

105 -05

I:l(” — ﬁ(i)) +D(0> +E(0)

: 1 0) (2 0 (-05 05

= + +
0 1 00 05 -0.5
25 05

0.5 05

40
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (Vé(i‘ziz)vffxé}ﬁ le2x +2x

1+4x, +2x, j

m 2nd Jteration: Find x@
Check stopping criterion.

||c‘”|| =2>¢

I:I(l)d(l) — _c(l) d(l) :_(H(l))*lc(l)

say (2.5 05 d(l):(o) o _ (-1
H '(0.5 0.5]‘ 2) ¢ _(")

x? =xM 4+ ald(l)

Substitute x® =(-1,1+2a) into the objective
function

fx?)=4a®> -2a-1
To minimize /(x?),

2)
YT 80220 - a=025
do

x® =

=£_1J+a(0j:(_l ]Replacing a, toai
1 2 14 2 |for convenience i

-1 :
(1_5) —Optimal design point

o e . 2 2 . - .
Minimize f(xX) = f(x,,X,) = X, — X, + 2x; +2x,x, + X, Starting design point x = (0, 0)

o :Vf(x<2>):[1+4'(_1)+2'1'5 J:[o

: ‘ —1+2-(-1)+2-1.5

i Check stopping criterion.
[e]=0<2

—Stop!

0
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