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Iterative Search for Optimum in Direct Methods

x1

x2

Ex) Minimize the objective function

Optimum

x(0)

Starting point

Search direction

x(1)

Step size

Contour lines
of objective function

Improved point
(Next starting point)

To find optimum is to improve the starting point continuously
by determining the search direction and step size.

)()()1( kkk dxx 

Starting
point

Design changeImproved 
point

)()()1( k
k

kk dxx 

Starting
point

Step sizeImproved 
point

Search direction

x*

How long should we do?

Stopping criteria

( 1) ( )k k   x x

( 1) ( )k k   d d

( 1) ( )( ) ( )k kf f   x x

Until no improvement is made.

or

or

or

Convergence
tolerance
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Iterative Search for Optimum in Indirect Methods

To find optimum is to solve some equations,
called optimality conditions, which should be satisfied at the optimum.

Necessary condition for x = x* to be a maximum or minimum

*( ) 0f  x

This method does not need any iterative search.

Thus, it does not need the starting point.

The necessary is to construct equations for optimality conditions
from the problem, and then to solve the equations with
a suitable method.



2016-08-29

4

7
Topics in Ship Design Automation, Fall 2015, Myung-Il Roh

 Step 2: Iterate successively to find the optimum design point.

1. Steepest Descent Method (1/6)
 Step 1: The search direction (d) is taken as the negative of the gradient of the objective 

function (f ) at current iteration since the objective function decreases mostly rapidly 
toward that direction.
The direction of gradient vector of f, f(x), is the direction of maximum increase of f at x.

f(x(1))

Search 
direction

Ex) Minimize the objective function

( )f   d c xSearch direction

x*

x(0)

x(2)

x(1)
x(3)

f(x(0))

Search 
direction

x1

x2
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1. Steepest Descent Method (2/6): Example

 By using the steepest descent method, find the minimum design 
point for the following function of 2-variables. 

Given: Starting design point x(0) = (0, 0), convergence tolerance  = 0.001

Find: x(1), x(2)

2
221

2
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 Optimization problem with 
two unknown variables
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1. Steepest Descent Method (3/6): Example

 1st Iteration: Find x(1)
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Starting design point x(0) = (0, 0)

How can we differentiate f with respect to     ?

Substituting                into the objective 
function

(1) ( , )  x

To minimize        ,(1)( )f x

Replacing       to     for 
convenience

(0) 
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Substituting                       into the objective 
function

(2) ( 1 ,1 )    x

1. Steepest Descent Method (4/6): Example

 2nd Iteration: Find x(2)
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 3rd Iteration: Find x(3)

2
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2
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Replacing       
to       for 
convenience

(1)


Substituting                                  into the 
objective function

(3) ( 0.8 0.2 ,1.2 0.2 )    x

(3)( )
 0.08 0.08 0 1.0
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d
 


    

x
To minimize        ,(3) ( )f x
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x

1. Steepest Descent Method (5/6): Example

Starting design point x(0) = (0, 0)
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 4th Iteration: Find the minimum design point.
To obtain the minimum design point, we have to iterate.

If                   , then stop the iterative process because x(k+1) can be 
assumed as the minimum design point.

( 1) ( )x xk k   

1. Steepest Descent Method (6/6): Example

Starting design point x(0) = (0, 0)
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2. Conjugate Gradient Method (1/5)

 This method requires only a simple modification to the 
steepest descent method and dramatically improves the 
convergence rate of the optimization process. 

 The current steepest descent direction is modified by 
adding a scaled direction used in the previous iteration.

 Step 1: Estimate a starting design point as x(0). Set the iteration 
counter k = 0. Also, specify a tolerance  for stopping criterion.
Calculate

Check stopping criterion. If            , then stop. Otherwise, go 
to Step 4.
It is noted that Step 1 of the conjugate gradient method and 
steepest descent method is the same.

)( )0()0()0( xcd f

)0(c
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2. Conjugate Gradient Method (2/5)

 Step 2: Compute the gradient of the objective function as               .
If          , then stop; otherwise continue.

 Step 3: Calculate the new search direction as

)( )()( kk f xc 

)(kc

2)1()(

)1()()(

)/( 






kk

k

k
k

kk

cc

dcd



 Previous search direction

The current search direction is calculated by adding a scaled direction used in the previous iteration.

 Step 4: Compute a step size  = k to minimize f(x(k)+d(k)).

 Step 5: Change the design point as follows, then set k = k+1 and go 
to Step 2. )()()1( k

k
kk dxx 
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2. Conjugate Gradient Method (3/5): Example

 1st Iteration: Find x(1)
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1 2

1 2

1 4 2 1 1

1 2 2 1 1

x x

x x
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Note: Step 1 of the conjugate gradient method 
and steepest descent method is the same.

Starting design point x(0) = (0, 0)
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2. Conjugate Gradient Method (4/5): Example
2
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12121 22),( xxxxxxxxf Minimize

 2nd Iteration: Find x(2)

Compute the gradient of the objective function as 
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2. Conjugate Gradient Method (5/5): Example
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3. Newton’s Method (1/9)

Consider the quadratic approximation of the 
function f(x) at x = x(k) using the second-order Taylor 
expansion.

   
( ) 2 ( )

2 3( ) ( ) ( ) ( ) ( ) ( )
2

( ) 1 ( )
( ) ( ) ( )

2

k k
k k k k k kdf x d f x

f x x f x x x O x
dx dx

       

x* which minimizes f (x)

Given:

Find:

NO
1k k 

YES

Set x* = x(k+1) and stop the iteration.

Calculate the small change x(k) in design.
( ) 2 ( )

( )
2

( ) ( )
/

k k
k df x d f x

x
dx dx

   
     

   

f(x)

x0 x(k)

f(x(k))

x(k+1)

f(x(k+1))

( )kx

x*

( 1)kx 

x(k+2)

Differentiate this equation with respect to x(k).
( ) ( ) 2 (( ) )

2
( )

( )

( ) ( ) ( )
0

kk
k

k

k kdf x x
x

x

df x d f x

d dx dx



 




The necessary condition 
for minimization of this 
function

In this equation, x(k) is a constant and x(k) is a variable.
So, the following equation is a quadratic function in
terms of x(k).

 (
( ) 2 ( )

2( ) ( )) ( )
2

( )( ) 1 ( )
( ) ( )

2
k kk k

k k
k df x d f x

f x f x
d

x
x

x x
dx

    

Assume that f(x) has minimum at x (k+1) = x(k) + x(k).

Is | x(k) | < ε?

( )f x
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Assume that f(x) has minimum at x (1) = x(0) + x(0). 3. Newton’s Method (2/9): Example

x* which minimizes f (x)

Given:

Find:

f(x)

x0 x(0)

f(x(0))

x(1)

f(x(1))
(0)x

2( ) 2 2f x x x   Consider the quadratic approximation of the 
function f(x) at x = x(0) using the second-order Taylor 
expansion.

 
(0) 2 (0)

2(0) (0) (0) (0) (0)
2

( ) 1 ( )
( ) ( )

2

df x d f x
f x x f x x x

dx dx
     

NO1

0 1 1

k k 
  

Calculate the small change x(0) in design.

   

(0) 2 (0)
(0)

2

3 3

( ) ( )
/

2 2 / 2 2
x x

df x d f x
x

dx dx

x
 

   
     

   
    

Is | x(0) | < ε?

1

0k 

3

2

Differentiate this equation with respect to x(0).
(0) (0) 2 (0)

2

(0)
(0)

(0)

( ) ( ) ( )
0

df x df x d f x

d d

x
x

x x dx








 

The necessary condition 
for minimization of this 
function

In this equation, x(0) is a constant and x(0) is a variable.
So, the following equation is a quadratic function in
terms of x(0).

 
(0) 2 (0)

(0) (0) 2(0) (0) 0
2

( )( ) 1 ( )
( ) ( )

2

df x d f x
f x f x

d
x x

x
x

dx
     

Starting design point x(0) = 3
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f(x)

x0

f(x(0))

f(x(1))

x*

Is it possible to find the x* which minimizes a 
cubic function at once?

Consider the quadratic approximation of the 
function f(x) at x = x(1) using the second-order Taylor 
expansion.

 
(1) 2 (1)

2(1) (1) (1) (1) (1)
2

( ) 1 ( )
( ) ( )

2

df x d f x
f x x f x x x

dx dx
     

YES

Set x* = x(1) and stop the iteration.

Calculate the small change x(1) in design.

   

(1) 2 (1)
(1)

2

1 1

( ) ( )
/

2 2 / 2 0
x x

df x d f x
x

dx dx

x
 

   
     

   
   

Assume that f(x) has minimum at x (2) = x(1) + x(1). 

Is | x(1) | < ε?

1k 

x(0)x(1)

(0)x

1 3

2

Differentiate this equation with respect to x(1).
(1) (1) 2 (1)

2

(1)
(1)

(1)

( ) ( ) ( )
0

df x df x d f x

d d

x
x

x x dx








 

The necessary condition 
for minimization of this 
function

In this equation, x(1) is a constant and x(1) is a variable.
So, the following equation is a quadratic function in
terms of x(1).

 
(1) 2 (1)

(1) (1) 2(1) (1) 1
2

( )( ) 1 ( )
( ) ( )

2

df x d f x
f x f x

d
x x

x
x

dx
     

x* which minimizes f (x)

Given:

Find:

2( ) 2 2f x x x  
Starting design point x(0) = 3

3. Newton’s Method (3/9): Example
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f(x)

x0

x(0)

f(x(0))

x(1)

f(x(1))
(0)x

Consider the quadratic approximation of the 
function f(x) at x = x(0) using the second-order Taylor 
expansion.

   
(0) 2 (0)

2 3(0) (0) (0) (0) (0) (0)
2

( ) 1 ( )
( ) ( ) ( )

2

df x d f x
f x x f x x x O x

dx dx
       

NO1

0 1 1

k k 
  

Calculate the small change x(0) in design.

   

(0) 2 (0)
(0)

2

2

33

( ) ( )
/

11
3 6 2 / 6 6

12xx

df x d f x
x

dx dx

x x x


   
     

   

      

Assume that f(x) has minimum at x (1) = x(0) + x(0). 

Is | x(0) | < ε?

0k 

3

1
2

12


x* which minimizes f (x)

Given:

Find:

3 2( ) 3 2f x x x x  

Is it possible to find the x* which 
minimizes a cubic function at once?

Differentiate this equation with respect to x(0).
(0) (0) 2 (0)

2

(0)
(0)

(0)

( ) ( ) ( )
0

df x df x d f x

d d

x
x

x x dx








 

The necessary condition 
for minimization of this 
function

In this equation, x(0) is a constant and x(0) is a variable.
So, the following equation is a quadratic function in
terms of x(0).

 
(0) 2 (0)

(0) (0) 2(0) (0) 0
2

( )( ) 1 ( )
( ) ( )

2

df x d f x
f x f x

d
x x

x
x

dx
     

Starting design point x(0) = 3

3. Newton’s Method (4/9): Example

22
Topics in Ship Design Automation, Fall 2015, Myung-Il Roh

f(x)

x

0

x(0)

f(x(0))

x(1)

f(x(1))
(1)x

Consider the quadratic approximation of the 
function f(x) at x = x(1) using the second-order Taylor 
expansion.

   
(1) 2 (1)

2 3(1) (1) (1) (1) (1) (1)
2

( ) 1 ( )
( ) ( ) ( )

2

df x d f x
f x x f x x x O x

dx dx
       

NO1

1 1 2

k k 
  

Calculate the small change x(1) in design.

   

(1) 2 (1)
(1)

2

2
2525
1212

( ) ( )
/

3 6 2 / 6 6 0.388
xx

df x d f x
x

dx dx

x x x


   
     

   

      

Assume that f(x) has minimum at x (2) = x(1) + x(1). 

Is | x(1) | < ε?

1k 

3
2.083f(x(2))

x(2) 1.70

Why is it not possible to 
find the x* which minimizes 
a cubic function at once?

Since the second-order Taylor expansion is just an approximation for f(x) at the point x(0) or x(1), 
x(1) or x(2) will probably not be the precise minimum design point of f(x).

Is it possible to find the x* which 
minimizes a cubic function at once?

Differentiate this equation with respect to x(1).
(1) (1) 2 (1)

2

(1)
(1)

(1)

( ) ( ) ( )
0

df x df x d f x

d d

x
x

x x dx








 

The necessary condition 
for minimization of this 
function

In this equation, x(1) is a constant and x(1) is a variable.
So, the following equation is a quadratic function in
terms of x(1).

 
(1) 2 (1)

(1) (1) 2(1) (1) 1
2

( )( ) 1 ( )
( ) ( )

2

df x d f x
f x f x

d
x x

x
x

dx
     

3. Newton’s Method (5/9): Example

x* which minimizes f (x)

Given:

Find:

3 2( ) 3 2f x x x x  
Starting design point x(0) = 3
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3. Newton’s Method (6/9): Example of Function of
Two Variables

 1st Iteration: Find x(1)
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),()(

2

1

xx

xx

f

f
xxff

x

x
x  

2 2

2
1 1 2

2 2

2
1 2 2

4 2
,

2 2

f f

x x x

f f

x x x

  
             
 
   

H x

Assume that f(x) has minimum at x(1) = x(0) + x(0).

In this equation, x(0) is a constant and x(0) is a variable. So, the following 
equation is a quadratic function in terms of x(0).

(0) (0) (0) (0(0) (0) (0) (0) )1
( ) ( ) ( ) ( ) ( )

2
T Tf f f      x x xx x xHx x

Consider the quadratic approximation of the function f(x) at x = x(0) using the 
second-order Taylor expansion.

(0) (0) (0) (0) (0) (0) (0) (0)1
( ) ( ) ( ) ( ) ( )

2
T Tf f f       x x x x x x H x x

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x

How?

Starting design point x(0) = (0, 0)
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 1st Iteration: Find x(1) (0) (0) (0) (0(0) (0) (0) (0) )1
( ) ( ) ( ) ( ) ( )

2
T Tf f f       x x xx x xHx x

(0)(0)
(0) (0 (0)

(0)
)( )

( ) ( ) 0
( )

f
f

 
 


 

 
x

xH
x

x
x x

Differentiate this equation with respect to x(0).

The necessary condition for 
minimization of function f(x1, x2)
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x
x

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x
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-1
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0

0.5

1

1.5

2

x1

x2

)0(x

)1(x(0)(0) (0)( ) ( )f H x xx

Calculate the small change x(0) in design.

 

2 2

2
1 1 2(0) (0)

2 2

2
1 2 2

1 4 2
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1 2 2

f f

x x x
f

f f

x x x

   
                            

x H x

1

(0)

(0) 1

2

4 2 1

2 2 1

     
         



  

x

x

1

( 0)

(0)

2

1

1.5

   
      



 

x

x

(1) 0) ( )(0 0 1 1

0 1.5 1.5
x x

      
          

    



x

How?

( )( )) 1 ([ ( )] ( )k kk f   H x xx

3. Newton’s Method (7/9): Example of Function of
Two Variables

Starting design point x(0) = (0, 0)
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3. Newton’s Method (8/9): Example of Function of
Two Variables

 2nd Iteration: Find x(2)

Assume that f(x) has minimum at x(2) = x(1) + x(1).

In this equation, x(1) is a constant and x(1) is a variable. So, the following 
equation is a quadratic function in terms of x(1).

(1) (1) (1) (1(1) (1) (1) (1) )1
( ) ( ) ( ) ( ) ( )

2
T Tf f f      x x xx x xHx x

Consider the quadratic approximation of the function f(x) at x = x(1) using the 
second-order Taylor expansion.

(1) (1) (1) (1) (1) (1) (1) (1)1
( ) ( ) ( ) ( ) ( )

2
T Tf f f       x x x x x x H x x

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x

(1) 1

1.5
x

 
  
 

(1)(1)
(1) (1 (1)

(1)
)( )

( ) ( ) 0
( )

f
f

 
 


 

 
x

xH
x

x
x x

Differentiate this equation with respect to x(1).
The necessary condition 
for minimization of 
function f(x1, x2)

In the same way as 1st Iteration,

Starting design point x(0) = (0, 0)
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3. Newton’s Method (9/9): Example of Function of
Two Variables

 2nd Iteration: Find x(2)

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x

(1) 1

1.5
x
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Calculate the small change x(1) in design.

 

2 2

2
1 1 2(1) (1)

2 2

2
1 2 2

0 4 2
( ) ,

0 2 2

f f

x x x
f

f f

x x x

   
                            

x H x

1

(1)

(1) 1

2

4 2 0

2 2 0

     



          

x

x

1

(1)

(1)

2

0

0

   
 




      

x

x

(2) (1) (1) 1 0 1

1.5 0 1.5
x x

      
          

    



x

Check stopping criterion.
(1) 0   x

→Stop!

→Optimal design point 

-2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

2

x1

x2

)0(x

)1()2( xx 

( )( )) 1 ([ ( )] ( )k kk f   H x xx

Starting design point x(0) = (0, 0)
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3. Modified Newton’s Method (1/3)

 In this method, we treat of the Newton’s 
method as the search direction and use any of the one 
dimensional search methods to calculate the step size in the 
search direction.

 Step 1: Estimate a starting design point x(0). 
Set iteration counter k = 0. Specify a tolerance  for the stopping  
criterion.

 Step 2: Calculate                         for i = 1 to n. If          , then 
stop the iterative process. Otherwise, continue.

 Step 3: Calculate the Hessian matrix H(k) at current design point 
x(k).

i
kk

i xfc  /)( )()( x ( )k c

2
( )( ) , 1, , ; 1, ,k

i j

f
i n j n

x x

 
      

H x  

( ) ( ) 1 ( )[ ( )] ( )k k kf   x H x x
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3. Modified Newton’s Method (2/3)

 Step 4: Calculate the search direction as follows:

( ) ( ) 1 ( )k k k   d x H c * * *1
( ) ( ) ( ) 

2
T Tf f       x x x c x x H x x

*

* * 1

( ) / ( ) 0

( )  ( )

df d


     

       

x x c H x x

H x x c x H x c

When                                                   ,

the necessary condition for minimization of this function is as follows:

 Step 5: Update the design point as x(k+1) = x(k) + d(k), where  is 
calculated to minimize f(x(k) + d(k)). Any one dimensional search 
method may be used to calculate .

 Step 6: Set k = k+1 and go to Step 2.
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1. It requires the storing of the nn matrix H(x(k)).

2. It becomes very difficult and sometimes, impossible 
to compute the elements of the matrix H(x(k)).

3. It requires the inversion of the matrix H(x(k)) at each 
iteration.

4. It requires the evaluation of the quantity H(x(k))-1f(x(k))
at each iteration.

The Newton’s method is not very useful in practice, due to
following features of the method:

3. Modified Newton’s Method (3/3)
- Disadvantages of the Newton’s Method
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4. Davidon-Fletcher-Powell (DFP) Method (1/6)

 This method builds an approximation for the inverse of 
the Hessian matrix of f(x) using only the first derivatives.

 Step 1: Estimate a starting design point x(0). 
Choose a symmetric positive definite nn matrix A(0) as an 
approximation for the inverse of the Hessian matrix of the
objective function. In the absence of more information, A(0) = I
may be chosen. Also, specify a tolerance   for the stopping  
criterion. Set k = 0 and compute the gradient vector 
as                              .

 Step 2: Calculate the norm of the gradient vector as       .
If            , then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest 
descent method are the same.



(0) (0) (0)( )f   d c x

)(kc
)(kc
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 Step 3: Calculate the search direction as follows:

Here, the matrix A is used as an estimate for the inverse of
the Hessian matrix H-1 of the objective function.

 Step 4: Compute optimum step size  = k to minimize f(x(k) + d(k)).

 Step 5: Update the design point as x(k+1) = x(k) + kd(k).

)()()( kkk cAd 

4. Davidon-Fletcher-Powell (DFP) Method (2/6)

( ) ( ) 1 ( )[ ( )] ( )k k kf   x H x x
Newton’s method

( ) ( ) 1 ( )( )k k k  d H c
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 Step 6: Update the matrix A(k) - approximation for the inverse of
the Hessian matrix of the objective function - as follows:

where, the correction matrices B(k) and C(k) are calculated as 
below.

nnkkkk     ;     )()()()1( CBAA

 Step 7: Set k = k+1 and go to Step 2.

matrix

( ) ( )
( )

( ) ( )
        ;   

T

T

k k
k

k k
n n 

s s
B

s y

( ) ( )
( )

( ) ( )
      ;     

T

T

k k
k

k k
n n


 

z z
C

y z
matrix matrix

( ) ( )

( ) ( 1) ( )

( 1) ( 1)

( ) ( ) ( )

                 :    1

        :    1

( )        :    1

              :

k k
k

k k k

k k

k k k

n

n

f n




 

 

  

  



s d

y c c

c x

z A y

matrix

matrix

matrix

matrix[ ][ 1] [ 1]n n n n   

4. Davidon-Fletcher-Powell (DFP) Method (3/6)

( )

( )

k

k

d : search direction

: optimum step size
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 1st Iteration: Find x(1)

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x

(0) (0) 1 4 0 2 0 1
( )

1 2 0 2 0 1
f

      
              

c x

(0) (0) (0) (0) (0) 1

1

 
        

 
d A c Ic c

(1)( )
2 2 0 1.0

df

d
 


    

x










1

1)1(x

To minimize        ,(1)( )f x

(0) 2 21 ( 1) 2     c

Replacing       to   
for convenience

0 

Check stopping criterion.

(1) (0) (0)
0

0 1

0 1







 

      
       
     

x x d

4. Davidon-Fletcher-Powell (DFP) Method (4/6): Example

(1) 2( ) 2f   x

(1) ( , )  xSubstitute                into the objective 
function

Starting design point x(0) = (0, 0)
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 (0) (0) 1
1  s d

 (0) (0) 1  1
1  1

T  s s

Update the matrix A(1) - approximation 
for the inverse of the Hessian matrix of 
the objective function - as follows:

 (1) 1
1
 c

(0) (0) 4
T

y z

(0) (0) 2
T

s y

 (0) (0) (0) 2
0
 z A y

 (0) (1) (0) 2
0
  y c c

(0) (0)
(0)

(0) (0)

T

T
s s

B
s y

 (0) (0) 4  0
0  0

T

z z

 1  0
0  0


(1) (0) (0) (0)

1 0 0.5 0.5 1 0

0 1 0.5 0.5 0 0
0.5 0.5

0.5 1.5

  
      

            
 

   

A A B C

(1) (0) (0) (0)  A A B C

 0.5  0.5
0.5  0.5

 

(0) 1
,

1

 
   

c

(0) (0)
(0)

(0) (0)T

T


z z
C

y z

(0) 1 0

0 1

 
   

 
A I

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x

4. Davidon-Fletcher-Powell (DFP) Method (5/6): Example 
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 2nd Iteration: Find x(2)

Starting design point x(0) = (0, 0)
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(1) 2  c











1

0)1()1()1( cAd

1)( 2)2(  xf











5.1

1)2(x

(2) 0  c
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1
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x x d

Replacing       to     
for convenience

1 

(2) ( 1,1 )  xSubstitute                   into the objective 
function

To minimize        ,(2) ( )f x
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xxff x

(2) (2) 1 4 ( 1) 2 1.5 0
( )

1 2 ( 1) 2 1.5 0
f

       
              

c xCheck stopping criterion.

→Stop!

→Optimal design point

Check stopping criterion.

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x

4. Davidon-Fletcher-Powell (DFP) Method (6/6): Example

 2nd Iteration: Find x(2)

Starting design point x(0) = (0, 0)
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (1/6)

 This method updates the Hessian matrix rather than its 
inverse at every iteration.

 Step 1: Estimate a starting design point x(0).
Choose a symmetric positive definite nn matrix       as
an approximation for the Hessian matrix of the objective function.
In the absence of more information, let            . Specify
a tolerance  for the stopping criterion. Set k = 0, and compute
the gradient vector as                   .

 Step 2: Calculate the norm of the gradient vector as       .
If             , then stop the iterative process. Otherwise, continue.
It is noted that Step 1 and 2 of this method and the steepest 
descent method are the same.

(0)H

(0) H I

)( )0()0( xc f

)(kc
)(kc
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 Step 3: Solve the linear system of the following equation to
obtain the search direction.

This equation looks like                        of the Newton’s method,
but       is an approximated Hessian matrix , comprised of the 
first order derivatives.

 Step 4: Compute optimum step size  = k to minimize f(x(k) + d(k)).

 Step 5: Update the design point as x(k+1) = x(k) + kd(k).

( ) ( ) 1 ( )( )k k k d H c

( )kH
( ) ( ) 1 ( )( )k k k d H c

( )kH

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (2/6)

( ) ( ) 1 ( )[ ( )] ( )k k kf   x H x x
Newton’s method

( ) ( ) 1 ( )( )k k k  d H c
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 Step 6: Update the matrix       - approximation for the Hessian
matrix of the objective function - as follows:

where, the correction matrices D(k) and E(k) are given as below.

 Step 7: Set k = k+1 and go to Step 2.

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (3/6)

matrix( 1) ( ) ( ) ( )       :    k k k k n n    H H D E 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
; ;

T T

T T

k k k k
k k

k k k k
 

y y c c
D E

y s c d

( ) ( )

( ) ( 1) ( )

( 1) ( 1)( )

k k
k

k k k

k kf




 



 

 

s d

y c c

c x

: change in design

: change in gradient
( )

( )

k

k

d : search direction

: optimum step size

( )kH
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 1st Iteration: Find x(1)

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x
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To minimize        ,(1)( )f x

(0) 2 21 ( 1) 2     c

Replacing       to   
for convenience
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Check stopping criterion.
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x x d

(0) (0)0
,

0

 
  
 

x H I

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (4/6): Example

(1) 2( ) 2f   x

(1) ( , )  xSubstitute                into the objective 
function

Starting design point x(0) = (0, 0)
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 (0) (0) 1
1  s d

(0) (0) 4 0

0 0

T  
  
 

y y

Update the matrix       - approximation 
for the Hessian matrix of the objective 
function - as follows:

(0)H

 (1) 1
1
 c

(0) (0) 2
T

 c d

(0) (0) 2
T

y s

 (0) (1) (0) 2
0
  y c c
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T

T
y y

D
y s
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1 1

T  
   

c c
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1 0 2 0 0.5 0.5

0 1 0 0 0.5 0.5
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H H D E 
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2 0
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,
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c

(0) (0)
(0)

(0) (0)T

T


c c
E

c d

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x
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5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (5/6): Example 
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 2nd Iteration: Find x(2)

Starting design point x(0) = (0, 0)
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(1) 2  c

(2) 2( ) 4 2 1f    x
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Replacing       to     
for convenience

1 

(2) ( 1,1 2 )  xSubstitute                     into the objective 
function

To minimize        ,(2) ( )f x
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(2) (2) 1 4 ( 1) 2 1.5 0
( )

1 2 ( 1) 2 1.5 0
f

       
              

c xCheck stopping criterion.

→Stop!

→Optimal design point 

Check stopping criterion.

Minimize 2 2
1 2 1 2 1 1 2 2( ) ( , ) 2 2 ,f f x x x x x x x x     x

(1) (1) (1) H d c

 (1) 0
2d(1) 2.5 0.5

,
0.5 0.5

 
  
 

H  (1) 1
1

 c

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (6/6): Example 

 2nd Iteration: Find x(2)

(1) (1) 1 (1)( ) d H c

Starting design point x(0) = (0, 0)


