

Contents		
⊠ Ch.	1 Introduction to Optimum Design	
☑ Ch.	2 Unconstrained Optimization Method: Gradient Method	
☑ Ch.	3 Unconstrained Optimization Method: Enumerative Method	
☑ Ch.	4 Constrained Optimization Method: Penalty Function Method	
🗹 Ch.	5 Constrained Optimization Method: LP (Linear Programming)	
⊠ Ch. Qu	6 Constrained Optimization Method: SQP (Sequential adratic Programming)	
🗹 Ch.	7 Metaheuristic Optimization Method: Genetic Algorithms	
🗹 Ch.	8 Case Study of Optimal Dimension Design	
🗹 Ch.	9 Case Study of Optimal Route Design	
🗹 Ch.	10 Case Study of Optimal Layout Design	
Topics in Ship Design	Automation, Fall 2015, Myung-II Roh	

4

9

4. Davidon-Fletcher-Powell (DFP) Method (5/6): Example $2x_1+2x_2$			
Minimize $f(\mathbf{x}) = f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, Starting design point x ⁽⁰⁾ = (0, 0)			
■ 2 nd Iteration: Find x ⁽²⁾ Update the matrix A ⁽¹⁾ - approximation for the inverse of the Hessian matrix of the objective function - as follows: A ⁽¹⁾ = A ⁽⁰⁾ + B ⁽⁰⁾ + C ⁽⁰⁾ B ⁽⁰⁾ = $\frac{\mathbf{s}^{(0)}\mathbf{s}^{(0)^{T}}}{\mathbf{s}^{(0)}}$ B ⁽⁰⁾ = $\frac{\mathbf{s}^{(0)}\mathbf{s}^{(0)^{T}}}{\mathbf{s}^{(0)}}$ $\mathbf{s}^{(0)} = \alpha \mathbf{d}^{(0)} = \begin{pmatrix} -1\\ 1 \end{pmatrix}$ $\mathbf{c}^{(0)} = \begin{pmatrix} 1\\ -1 \end{pmatrix}$, $\mathbf{c}^{(1)} = \begin{pmatrix} -1\\ -1 \end{pmatrix}$ $\mathbf{y}^{(0)} = \mathbf{c}^{(1)} - \mathbf{c}^{(0)} = \begin{pmatrix} -2\\ 0 \end{pmatrix}$ (0) (0) ^T (1 - 1)	$\mathbf{C}^{(0)} = \frac{-\mathbf{z}^{(0)}\mathbf{z}^{(0)T}}{\mathbf{y}^{(0)T}\mathbf{z}^{(0)}}$ $\mathbf{A}^{(0)} = \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{z}^{(0)} = \mathbf{A}^{(0)}\mathbf{y}^{(0)} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$ $\mathbf{y}^{(0)T}\mathbf{z}^{(0)} = 4$ $\mathbf{z}^{(0)}\mathbf{z}^{(0)T} = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$ $= \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$ $\mathbf{A}^{(1)} = \mathbf{A}^{(0)} + \mathbf{B}^{(0)} + \mathbf{C}^{(0)}$ $(1 - 0) = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$		
	$ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} $ $ = \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 1.5 \end{pmatrix} $		

5. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method $(5/6)$: Example $2x_1 + 2x_2$			
Minimize $f(\mathbf{x}) = f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, Starting design point $\mathbf{x}^{(0)} = (0, 0)$			
■ 2 nd Iteration: Find $\mathbf{x}^{(2)}$ Update the matrix $\tilde{\mathbf{H}}^{(0)}$ - approximation for the Hessian matrix of the objective function - as follows: $\tilde{\mathbf{H}}^{(1)} = \tilde{\mathbf{H}}^{(0)} + \mathbf{D}^{(0)} + \mathbf{E}^{(0)}$ $\mathbf{D}^{(0)} = \frac{\mathbf{y}^{(0)}\mathbf{y}^{(0)^{T}}}{\mathbf{y}^{(0)^{T}}\mathbf{s}^{(0)}}$ $\begin{bmatrix} \mathbf{s}^{(0)} = \alpha \mathbf{d}^{(0)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \\ \mathbf{c}^{(0)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \mathbf{c}^{(1)} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \\ \mathbf{y}^{(0)} = \mathbf{c}^{(1)} - \mathbf{c}^{(0)} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} \\ \mathbf{y}^{(0)T}\mathbf{s}^{(0)} = 2 \\ = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$	$\mathbf{E}^{(0)} = \frac{-\mathbf{c}^{(0)}\mathbf{c}^{(0)T}}{\mathbf{c}^{(0)T}\mathbf{d}^{(0)}}$ $\begin{bmatrix} \mathbf{c}^{(0)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \mathbf{d}^{(0)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \\ \mathbf{c}^{(0)}\mathbf{c}^{(0)T} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \\ \mathbf{c}^{(0)T}\mathbf{d}^{(0)} = -2 \\ = \begin{pmatrix} -0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix} \\ \tilde{\mathbf{H}}^{(1)} = \tilde{\mathbf{H}}^{(0)} + \mathbf{D}^{(0)} + \mathbf{E}^{(0)} \\ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix} \\ = \begin{pmatrix} 2.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$		

