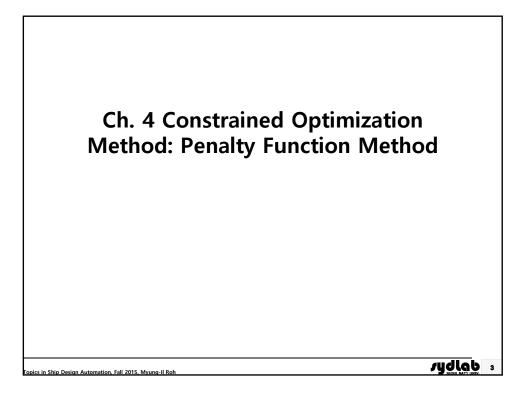
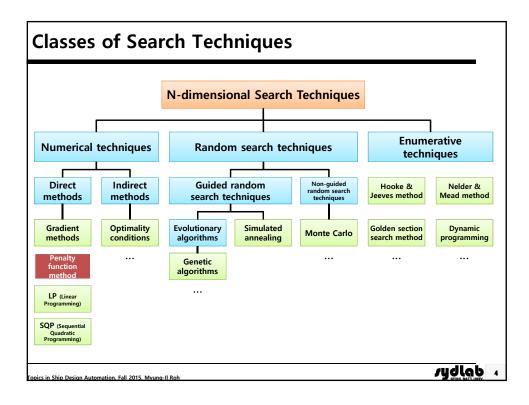
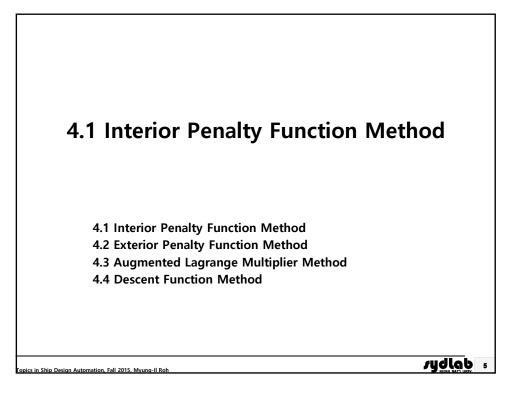
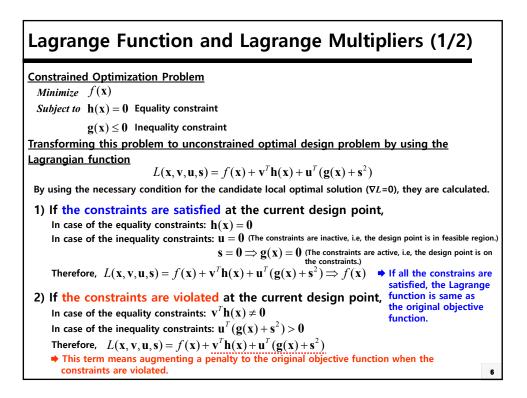


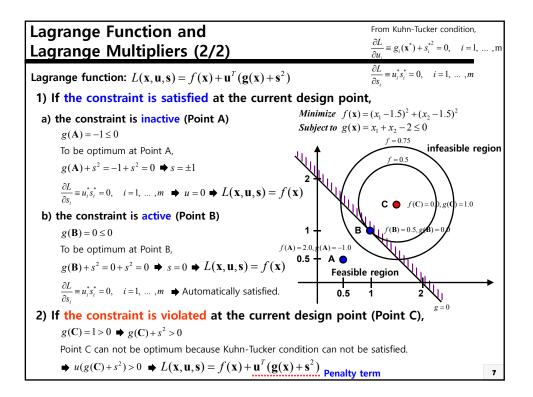
Contents
☑ Ch. 1 Introduction to Optimum Design
In Ch. 2 Unconstrained Optimization Method: Gradient Method
Image: Ch. 3 Unconstrained Optimization Method: Enumerative Method
☑ Ch. 4 Constrained Optimization Method: Penalty Function Method
☑ Ch. 5 Constrained Optimization Method: LP (Linear Programming)
 Ch. 6 Constrained Optimization Method: SQP (Sequential Quadratic Programming)
I Ch. 7 Metaheuristic Optimization Method: Genetic Algorithms
Image: Ch. 8 Case Study of Optimal Dimension Design
☑ Ch. 9 Case Study of Optimal Route Design
☑ Ch. 10 Case Study of Optimal Layout Design
Copies in Ship Desian Automation. Fall 2015. Mvuna-II Roh

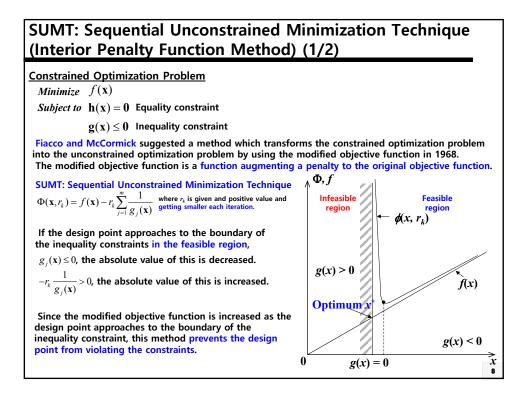


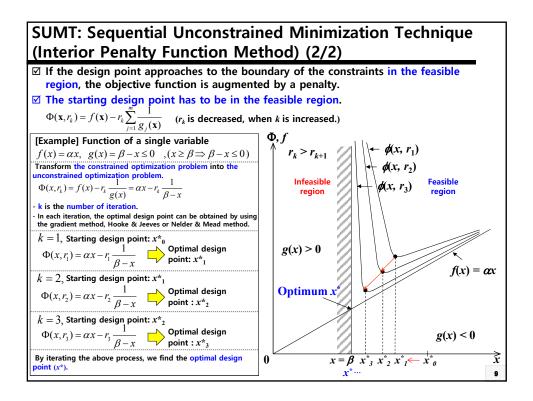


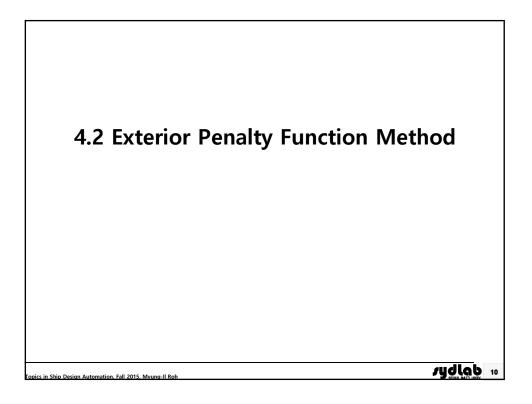


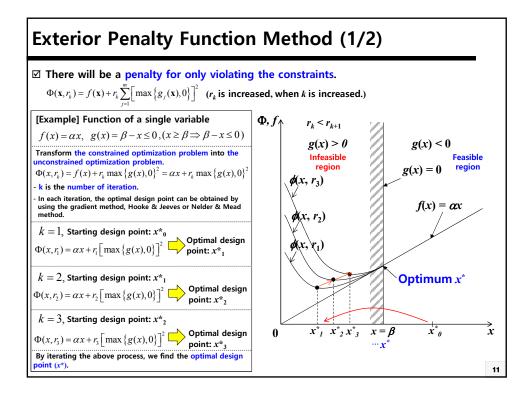


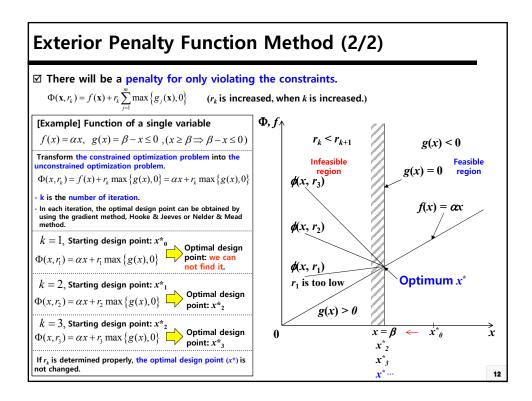


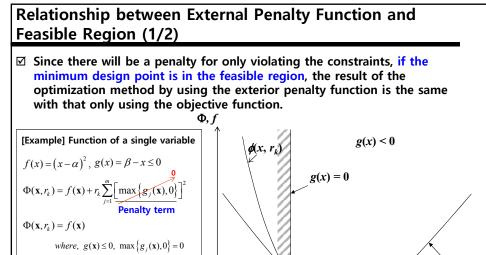












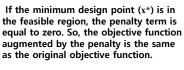
g(x) > 0

Infeasible

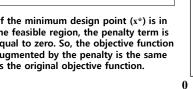
region

 $x = \beta$

 $x=\alpha$



s in Ship Design Automation, Fall 2015, Myung-II Rol





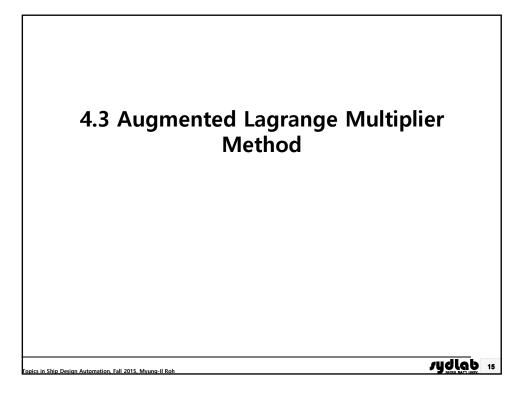
 $f(x) = (x - \alpha)^2$

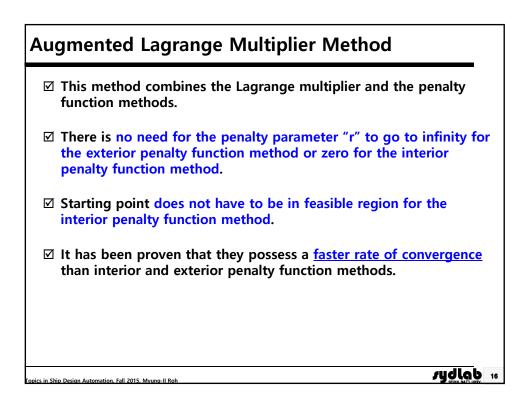
Feasible

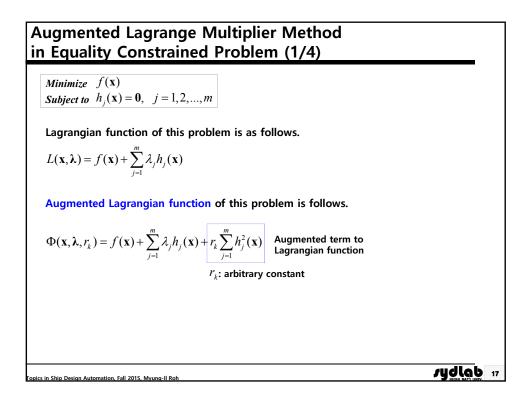
region

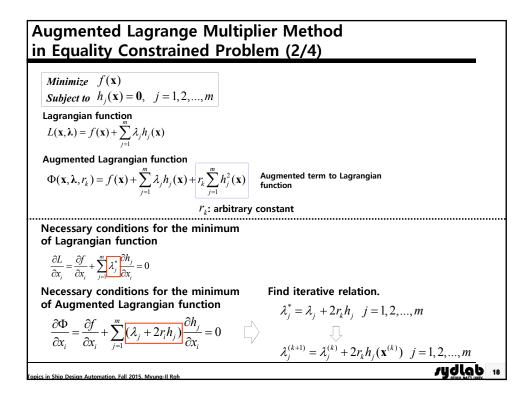
rydlab 13

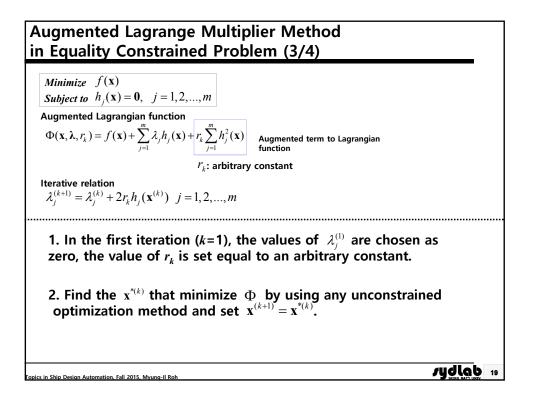
Optimum x











Augmented Lagrange Multiplier Method in Equality Constrained Problem (4/4) Minimize $f(\mathbf{x})$ **Subject to** $h_i(\mathbf{x}) = \mathbf{0}, \quad j = 1, 2, ..., m$ Augmented Lagrangian function $\Phi(\mathbf{x}, \boldsymbol{\lambda}, r_k) = f(\mathbf{x}) + \sum_{j=1}^m \lambda_j h_j(\mathbf{x}) + r_k \sum_{j=1}^m h_j^2(\mathbf{x})$ Augmented term to Lagrangian function r_k : arbitrary constant Iterative relation $\lambda_i^{(k+1)} = \lambda_i^{(k)} + 2r_k h_i(\mathbf{x}^{(k)}) \quad j = 1, 2, ..., m$ 3. The values of $\lambda_j^{(k)}$ and r_k are then updated by using the iterative relation to start the next iteration. $r_{k+1} = cr_k, c > 1$ $\lambda_j^{(k+1)} = \lambda_j^{(k)} + 2r_k h_j(\mathbf{x}^{*(k)}) \quad j = 1, 2, ..., m$ 4. If $\left|\lambda_{j}^{(k+1)} - \lambda_{j}^{(k)}\right| < \varepsilon$, stop the iteration and take $\mathbf{x}^{*} = \mathbf{x}^{*(k)}$. sydlab 20 utomation, Fall 2015, Myung-II

