
HighHigh--Level LanguageLevel Language
Virtual Machine ArchitectureVirtual Machine Architecture

2
Microprocessor Architecture & System Software Lab

ContentsContents
Java VM Architecture
CLI VM Architecture
Summary of HLL VM vs. Process VM

3
Microprocessor Architecture & System Software Lab

Java Instruction SetJava Instruction Set

Instruction set format
• opcode byte + zero or more operands

– Operand can be an index, immediate data, or PC-relative offset
– Wide & escape code can be used to extend

• Each primitive type has its own instruction set
– E.g., iadd, fadd, …
– Operand types must match the opcode
– So, bytecode ISA is called a typed stack machine

4
Microprocessor Architecture & System Software Lab

DataData--Movement InstructionsMovement Instructions

Pushing constants onto the stack
• aconst_null, iconst_1, ldc (via constant pool), bipush (direct)
• There can be different instructions for the same function

Stack manipulation instructions
• pop, dup, swap

Move values bet’ operand stack and locals in the stack frame
• iload_1, aload 5, istore_2, astore 5

Object creation, field access, and check instructions
• new creates a new object and save the reference on the operand stack
• getfield/putfield move data bet’n object and stack
• Getstatic/putstatic move data bet’n object and method area
• checkcast checks if the top object is an instance of a type

5
Microprocessor Architecture & System Software Lab

Conversion and Functional InstructionsConversion and Functional Instructions

Type Conversion
• I2f converts the top element from int to float

Functional Instructions
• Arithmetic, logical, and shift instructions
• Only operates on int, float, double, long

6
Microprocessor Architecture & System Software Lab

Control Flow InstructionsControl Flow Instructions
Branches and jumps
• ifeq, if_icmpeq, lookupswitch

• PC-relative branch to a constant offset (no indirection)
Method call
• invoke(virtual|static|special|interface) <index>

– Indexes CP where information on method address, arguments, # locals,
stack depth can be found

Argument check, frame allocation, push arguments as locals
Jump to the method
Return PC is saved on the stack (in frame data area), but can not be
accessed directly (only through return)

• ireturn makes a return after popping an integer and then push it on
the stack after removing the frame

All control paths can be easily tracked
• No code discovery problem

7
Microprocessor Architecture & System Software Lab

Operand Stack TrackingOperand Stack Tracking

For any point in the program, the operand stack state
must be the same regardless of the path to the point
Operand stack tracking at loading for validity check
• Since control flows can be determined in loading time
• Loader can also checks for the followings

– Stack limits
– Types of arguments to JVM instructions
– Accesses or assignments to local variables

Invalid program found via operand stack tracking
• ex) iconst_4

istore_1
Loop:

aconst_null
iinc 1 –1
iload_1
ifeq Loop

Operand stack is not equivalent at Loop.

8
Microprocessor Architecture & System Software Lab

Exceptions and ErrorsExceptions and Errors

Exception handling in Java
• By providing try, catch, and finally blocks

try {

………..

}

catch (exception_type e) {

……

}

finally {

…………

}

All exceptions must be handled somewhere
• If there is no catch block in a excepting method, stack frame is

popped until the exception handler is found
An exception is thrown via athrow instruction

9
Microprocessor Architecture & System Software Lab

Exception TableException Table

Use exception table to specify an exception handler

It means that if an arithmetic exception is thrown between bytecode 8
and 12, jump to bytecode 96

From To Target Type

8 12 96 Arithmetic
Exception

10
Microprocessor Architecture & System Software Lab

Java VM Architecture Java VM Architecture
-- Exceptions and ErrorsExceptions and Errors

Exception handler example
• Example Java code

public class ExceptionTest {

public static void main(String args[]) {

try {
java.io.FileInputStream x
= new java.io.FileInputStream(“myfile”);

} catch(java.io.FileNotFoundException e) {
System.out.println(“Not found”);

} finally {
System.out.println(“This must be executed”);

}
}

}

11
Microprocessor Architecture & System Software Lab

Structure of Class FileStructure of Class File

Binary class file includes metadata + code
Magic number
• 0xCAFEBABE(in big-endian order)

Constant pool (CP)
• References and constants used by methods

Access flags
• Class or interface, public or private, final or not

This class and super class
• Names which are given as indexes to CP

Interfaces
• Name of interfaces that this class implements

12
Microprocessor Architecture & System Software Lab

Java VM Architecture Java VM Architecture
-- Class File StructureClass File Structure

Fields
• Specification of fields declared in this class

Methods
• Bytecode instruction stream

Attributes
• More details

13
Microprocessor Architecture & System Software Lab

Java VM Architecture Java VM Architecture
-- Class File StructureClass File Structure

ClassStruct.txtClassStruct_java.txt

14
Microprocessor Architecture & System Software Lab

Native Method SupportNative Method Support

Java Native Interface (JNI)
• Allows Java code and native code to interoperate

– E.g., Java code call a routine compiled from C

15
Microprocessor Architecture & System Software Lab

Java APIsJava APIs

Java provides abundant APIs
• Network computing, component-based S/W, GUIs
• Each edition provides different API packages

J2SE (Standard Edition)
• API for PC users and client-side applications, JavaBeans

J2EE (Enterprise Edition)
• API for developing large enterprise software infrastructure
• EJB, servlet, JSP, JMS,

J2ME (Micro Edition)
• Light-weight platform for embedded system

16
Microprocessor Architecture & System Software Lab

Java Core APIsJava Core APIs
java.lang
• Core Java programming language classes
• Object class: superclass of all Java classes
• Class class: each loaded class has a Class object for it; it allows to extract

information on the class using refelction
• Thread class, SecurityManager class, …

java.util
• Fundamental data structures
• Vector class, Enumeration interface, Hashtable class, …

java.awt, java.io, java.net

17
Microprocessor Architecture & System Software Lab

Serialization and ReflectionSerialization and Reflection
Allows exposing the feature of an object to outside

Remote method invocation from one Java program to another, on
different platforms, with object arguments
• Argument or return value object must be converted to an

implementation-independent form due to platform difference
Objects created by a program may persist bet’n runs, stored on a
disk or a flash memory (e.g., Java card)
• Convert the object into an implementation-independent form

network

storage

platform 2

platform
independent

form

platform 1

18
Microprocessor Architecture & System Software Lab

Serialization and ReflectionSerialization and Reflection

Serialization: the process of converting an object into an
implementation-independent form
• Object must be declared to implement Serialzable interface
• Other objects referenced in the object must be serialized
• Requires reflection, look inside an object to find all members

Other reflection usages
• When a running program is given a reference to unknown object
• Component-based programming (JavaBeans) often requires a

graphical tool which must read bean’s design patterns
• Java.lang.reflect API is an interface to a class’ Class object

– Which includes description of a class

19
Microprocessor Architecture & System Software Lab

ThreadsThreads

Thread
• Multithreading support is provided by java.lang.Thread class

(and Runnable interface)

• Thread execute run() method during its lifetime.
Synchronization through monitor
• Required when we have a synchronized method
• Supported by monitorenter and monitorexit bytecode
• Locks are associated with each synchronized object
• Other synchronization support: Notify(), notifyAll(), wait()

20
Microprocessor Architecture & System Software Lab

Java APIsJava APIs

Synchronization Example

21
Microprocessor Architecture & System Software Lab

Common Language Infrastructure (CLI)Common Language Infrastructure (CLI)

A VM architecture of Microsoft .NET framework
• Common language runtime (CLR) is MS implementation of CLI

• Other implementations: DotGNU Portable .NET, MONO
Terminology comparison to Java
• JVM Architecture CLI

– Analogous to an ISA
• JVM Implementation CLR

– Analogous to an ISA implementation
• Java bytecode CIL (common intermediate lang)

MSIL (MS intermediate lang.)
– The instruction part of the ISA

• Java Platform .NET framework
– ISA implementation + libraries

22
Microprocessor Architecture & System Software Lab

Microsoft .NET OverviewMicrosoft .NET Overview

A software component that can be added to Windows
• Is included in Vista
• Intended to be used by most new applications for Windows

Provides large APIs and manages program execution
• User interface, DB connectivity, cryptography, web application

development, numeric algorithms, and network
• Programs for .NET are executed in a managed environment

– CLR who manages portability, security, memory, and exception

http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Memory_management
http://en.wikipedia.org/wiki/Exception_handling

23
Microprocessor Architecture & System Software Lab

Design Goals of .NETDesign Goals of .NET

Interoperability
• Allows interaction between new

and older applications

Component infrastructure
• “plug-and-play”

Language integration
• COM was binary reuse, not

language integration

Others
• Reliability, Security, Internet

interoperation,Simple deployment

Common Language Runtime

Framework Base Classes

Data and XML classes

Web Services Web Forms Windows Forms

Windows Platform

.NET Framework

24
Microprocessor Architecture & System Software Lab

The Common Language InfrastructureThe Common Language Infrastructure

Similarities with Java environment
• Support OOP within a managed runtime environment,
• Includes built-in protection and garbage collection
• Platform independent

Differences from Java environment
• Not only platform independent, but also HLL independence

– Support multiple, interoperating HLLs
• Support both verifiable and unverifiable code (even mixed)

– Verifiable: C#, Visual Basic .NET, Java, some managed C++
– Unverifiable: some managed C++, legacy C and C++
– Invalid programs cannot run in CLI

• Useful while unsafe legacy code still exists

25
Microprocessor Architecture & System Software Lab

Independence and InteroperabilityIndependence and Interoperability

Compile

Managed C++
program

Unverifiable
Module

IA-32 Platform

CLR

C# program Java program Visual Basic
.NET program

Verifiable
Module

Verifiable
Module

Verifiable
Module

IPF Platform

Other CLI
implementation

To achieve both,

• Standard rule among language

• Platform independent and verifiable IR

• Platform-independent module specification

• Methodology or specification

for plumbing type of objects

• Specification to represent information

of program

• Specification of VM runtime

• ……

So CLI, MSIL, PE/COFF, CLS, CTS, etc,.
are defined by Microsoft.

26
Microprocessor Architecture & System Software Lab

CLI Module StructureCLI Module Structure

PE/COFF Headers

CLR Header

CLR Data

Metadata IL code

Native Code and Data
(optional)

.data, .rdata, .rsrc, .text

27
Microprocessor Architecture & System Software Lab

Microsoft PE/COFFMicrosoft PE/COFF

Portable Executable and Common Object File Format
• For interoperability
• Just like any other executable files to the OS

Metadata with object definitions and constants
MSIL bytecode (even for C)
Native Code and data (e.g., for encryption)

28
Microprocessor Architecture & System Software Lab

InteroperabilityInteroperability

Not method level such as JNI
More integrated way that also extends to data
• A type defined in a language can be used across languages

Require change to language implementation
• Standardization of language CLS
• Standardization of type CTS

29
Microprocessor Architecture & System Software Lab

Interoperate exampleInteroperate example

C# HLL Program

Compile and Load

Bytecode
Methods

Object

C HLL Program

Compile and Load

Bytecode Methods
(some unverifiable)

Memory Block

Object

Array

get/put via
unmanaged pointers

get/put via
managed pointers

getfield/putfield

30
Microprocessor Architecture & System Software Lab

AttributesAttributes

Allow programmer to pass
information to runtime via
metadata
Running program can access
it by reflection

using System;
public class MainApp
{

public static void Main()
{

// This generates a compile-time warning.
int MyInt = Add(2,2);

}

// Specify attributes between square brackets
// in C#. This attribute is applied only to
// the Add method.
[Obsolete("Will be removed in next version")]
public static int Add(int a, int b)
{

return (a+b);
}

}

31
Microprocessor Architecture & System Software Lab

MSILMSIL

Stack-oriented V-ISA which is similar to bytecode
Support constant pool called stream
Control flow instruction
• Verifiable PC relative jump or call/return.
• Supports unverifiable function pointer

Only for vector instruction (no array)
• APIs for array

Static type checking based on stack tracking
Not a typed instruction set (add instead of addi)

32
Microprocessor Architecture & System Software Lab

MSIL Memory ArchitectureMSIL Memory Architecture
Metadata
Streams

Local
variables

Argument
Table

GLOBAL
STORAGE

evaluation
stack

opcode

opcode

opcode

operand operand

operand

Instruction Stream

ALU

33
Microprocessor Architecture & System Software Lab

ExampleExample

0: iconst_2
1: aload_0
2: getfield #2
5: iconst_0
6: iaload
7: aload_0
8: getfield #2
11: iconst_1
12: iaload
13: iadd
14: imul
15: ireturn

Java bytecode

0: ldc.i4.2
1: ldarg.0
2: ldobj <token>
5: ldc.i4.0
6: ldelem.i4
7: ldarg.0
8: ldobj <token>
11: ldc.i4.1
12: ldelem.i4
13: add
14: mul
15: ret

MSIL code

class Retangle {
protected int sides [];

...

public int perimeter() {
return 2*(sides[0] + sides[1]);

}

...

}

Java code

34
Microprocessor Architecture & System Software Lab

CLR ExecutionCLR Execution

Verifier
JITC compiler
• JIT compilation occurs only

the first time a method is
invoked

• Ngen pre-JITC during
installation and setup time

.NET PE files (metadata and IL)

Class loader

JIT compiler

Verifier

JIT

Execution support and management
(garbage collection, security engine,
code manager, exception manager,

thread support, etc.)

CLR’s Virtual Execution Engine

OS loader

35
Microprocessor Architecture & System Software Lab

Isolation and Isolation and AppDomainsAppDomains

CLI supports running multiple application on a VM
• Useful for increasing system utilization
• But should be careful about security
• Not very successful in Java

AppDomains (application domains)
• Share same VM with complete, lightweight isolation
• Each process may contain multiple threads

Application Application Application

VM VM VM

Host
Process

Host
Process

Host
Process

Host OS

AppDomain AppDomain AppDomain

VM(CLR)

Host
Process

Host OS

36
Microprocessor Architecture & System Software Lab

Summary: HLL VM vs. Process VMSummary: HLL VM vs. Process VM

Metadata in V-ISA allows verification/interoperability
• Regular ISA does not have it. Compiler use data structures and

then throw away; they are implicit in binary code
Memory architecture is more abstract
Strict limitation in memory address formulation
Relaxed requirement for precise exception
No registers lead to simpler emulation
Instruction discovery is obvious
No self-modifying or self-referencing code
Minimal OS dependence thru libraries

	High-Level Language�Virtual Machine Architecture
	Contents
	Java Instruction Set
	Data-Movement Instructions
	Conversion and Functional Instructions
	Control Flow Instructions
	Operand Stack Tracking
	Exceptions and Errors
	Exception Table
	Java VM Architecture �- Exceptions and Errors
	Structure of Class File
	Java VM Architecture �- Class File Structure
	Java VM Architecture �- Class File Structure
	Native Method Support
	Java APIs
	Java Core APIs
	Serialization and Reflection
	Serialization and Reflection
	Threads
	Java APIs�
	Common Language Infrastructure (CLI)
	Microsoft .NET Overview
	Design Goals of .NET
	The Common Language Infrastructure
	Independence and Interoperability
	CLI Module Structure
	Microsoft PE/COFF
	Interoperability
	Interoperate example
	Attributes
	MSIL
	MSIL Memory Architecture
	Example
	CLR Execution
	Isolation and AppDomains
	Summary: HLL VM vs. Process VM

