

	llars of a deadw	eight 150,000 ton bulk carri	ier (parent ship) and ship	owner's requirements
	ltem	Parent Ship	Design Ship	Remark
	L _{OA}	abt. 274.00 m	max. 284.00 m	
	L _{BP}	264.00 m		
Principal	B _{mld}	45.00 m	45.00 m	
Dimension	5 D _{mld}	23.20 m		
	T _{mld}	16.90 m	17.20 m	7
	T _{scant}	16.90 m	17.20 m	7
Deadweight		150,960 ton	160,000 ton	at 17.20 m
Speed		13.5 kts	13.5 kts	90 % MCR (with 20 % SM)
	TYPE	B&W 5S70MC		
M	NMCR	17,450 HP×88.0 RPM		Derating Ratio = 0.9
Ē	DMCR	15,450 HP×77.9 RPM		E.M = 0.9
	NCR	13,910 HP×75.2 RPM		
F	SFOC	126.0 g/HP.H		
c	TON/DAY	41.6		Based on NCR
Cruising Range		28,000 N/M	26,000 N/M	-
Midship Section		Single Hull Double Bottom/Hopper /Top Side Wing Tank	Single Hull Double Bottom/Hopper /Top Side Wing Tank	
	Cargo	abt. 169,380 m ³	abt. 179,000 m ³	Including Hatch Coaming
	Fuel Oil	abt. 3,960 m ³		Total
Capacity	Fuel Oil	abt. 3,850 m ³		Bunker Tank Only
	Ballast	abt. 48,360 m ³		Including F.P and A.P Tank

۸inim	ization of Shipbuil	ding Cos	t				
		Unit	MFD ¹⁾	MS ²⁾	GA ³⁾	HYBRID ⁴⁾ w/o Refine	HYBRID ⁴⁾ with Refine
G	DWT	ton	160,000				
l V	Cargo Capacity	m ³	179,000				
Ē	T _{max}	m	17.2				
N V knots		13.5					
	L	m	265.54	265.18	264.71	264.01	263.69
	В	m	45.00	45.00	45.00	45.00	45.00
	D	m	24.39	24.54	24.68	24.71	24.84
C _B		-	0.8476	0.8469	0.8463	0.8427	0.8420
	D _P	m	8.3260	8.3928	8.4305	8.4075	8.3999
	P _i	m	5.8129	5.8221	5.7448	5.7491	5.7365
	A _E /A _O	-	0.3890	0.3724	0.3606	0.3618	0.3690
E	Building Cost	\$	59,889,135	59,888,510	59,863,587	59,837,336	59,831,834
	Iteration No	-	10	483	96	63	67
	CPU Time ⁵⁾	sec	4.39	209.58	198.60	184.08	187.22

..... 4 14 6 ~ 4: ٠ .

Determination of Optimal Principal Dimensions of a Naval Ship

Formulation of a Naval S	for Determining Optimal Prir hip	ncipal Dimensions
Find	L, B, D, T, C_B	Design Variables
Minimize	BHP[HP](or FC[kg/h]) or Hull Structure Weight[LT]	Objective Function
Subject to	* Equilibrium condition of displacement and weight $I \cdot B \cdot T \cdot C \cdot c \cdot (1 + \alpha) = \Lambda - I W T$	Constraints $T + VI$
	* Requirements for displacement(9,000ton class)	
	8,900 [L1] $\leq \Delta \leq$ 9,100 [L1] * Requirements for speed-power	
	$P/(2\pi n) = \rho \cdot n^2 \cdot D_P^4 \cdot K_Q$ $R_T/(1-t) = \rho \cdot n^2 \cdot D_P^4 \cdot K_T$	
	$A_E / A_O \ge K + \frac{(1.3 + 0.3Z) \cdot T_h}{D^2}$	
	$D_{P} \cdot (p_{o} + \rho \cdot g \cdot n - f_{o})$ * Miscellaneous design requirements	(p_v)
	$L \leq L \leq L^{\circ}, B' \leq B \leq B^{\circ}, D' \leq D \leq 0.98 (L / B)_{parent} \leq L$	$\leq D^{*}, C_{B} \leq C_{B} \leq C_{B}$ $ B \leq 1.02 (L B)_{parent}$
	 Optimization problem having 5 unknowns, and 7 inequality constraints 	3 equality constraints,

6

Optimization Result for							
he Mini	mizat	ion of F	uel Con	sumptio	n		
CASE 4. M	nimizo f		ntion (f)				
CASE 1. IVI	Unit	DDG-51	MFD	MS	GA	HYBRID w/o.Refine	HYBRID with Refine
L	m	142.04	157.68	157.64	157.60	157.79	157.89
В	m	17.98	20.11	19.69	19.47	19.60	19.59
D	m	12.80	12.57	12.67	12.79	12.79	12.74
Т	m	6.40	5.47	5.57	5.69	5.68	5.63
C _B	-	0.508	0.520	0.506	0.506	0.508	0.512
Pi	m	8.90	9.02	9.38	9.04	9.06	9.06
A _E /A _O	-	0.80	0.80	0.65	0.80	0.80	0.80
n	rpm	88.8	97.11	94.24	96.86	96.65	96.64
F.C (<i>f</i> ₁)	kg/h	3,391.23	3,532.28	3,526.76	3,510.53	3,505.31	3,504.70
H.S.W	LT	3,132	3955.93	3901.83	3910.41	3942.87	3,935.39
Δ	LT	8,369	9,074	8,907	8,929	9,016	9,001
Iteration No	-	-	6	328	97	61	65
CPU Time	sec	-	3.83	193.56	195.49	189.38	192.02
CPU Time	Sec	-	3.83	193.56	195.49	189.38	rydlab

Optimization Result for the Minimization of Hull Structure Weight							
CASE 2: Mi	Unit	DDG-51	e weight (f ₂) MFD	MS	GA	HYBRID w/o.Refine	HYBRID with Refine
L	m	142.04	157.22	155.92	155.78	155.58	155.56
В	m	17.98	20.09	20.09	20.12	20.10	20.09
D	m	12.80	12.72	12.66	12.63	12.66	12.67
Т	m	6.40	5.64	5.63	5.61	5.65	5.66
C _B	-	0.508	0.510	0.506	0.508	0.508	0.508
Pi	m	8.90	8.98	9.42	9.04	9.46	9.45
A _E /A _O	-	0.80	0.80	0.65	0.80	0.65	0.65
n	rpm	88.8	97.40	94.06	97.29	93.93	93.98
F.C	kg/h	3,391.23	3,713.23	3,622.40	3,618.71	3,603.89	3,602.60
H.S.W (<i>f</i> ₂)	LT	3,132	3,910.29	3,855.48	3,850.56	3,844.43	3,844.24
Δ	LT	8,369	9,097	9,014	9,008	9,004	9,003
Iteration No	-	-	7	364	95	64	68
CPU Time	sec	-	3.91	201.13	192.32	190.98	192.41
on Theories of Ship an	nd Offshore Plar	it. September 2015. Mvi	ung-II Roh				ydlab

CASE 3: Mi	inimize f	fuel consum	ption (f ₁) & h	null structure	e weight (f ₂)		* w ₁ = w ₂ =
	Unit	DDG-51	MFD	MS	GA	HYBRID w/o Refine	HYBRID with Refine
L	m	142.04	157.37	157.02	156.74	156.54	156.51
В	m	17.98	19.99	19.98	19.82	19.85	19.82
D	m	12.80	12.70	12.69	12.73	12.82	12.84
Т	m	6.40	5.61	5.62	5.67	5.77	5.80
C _B	-	0.508	0.510	0.506	0.506	0.508	0.508
Pi	m	8.90	9.02	9.51	9.33	9.50	9.05
A _E /A _O	-	0.80	0.80	0.65	0.65	0.65	0.65
N	rpm	88.8	97.11	93.49	94.53	93.52	93.51
F.C (f ₁)	kg/h	3,391.23	3,589.21	3,583.56	3,556.15	3,551.98	3,551.42
H.S.W (<i>f</i> ₂)	LT	3,132	3,931.49	3,896.54	3,891.45	3,880.74	3,880.18
$w_1f_1 + w_2f_2$	-	3,261.62	3,760.35	3,740.05	3,723.80	3,716.36	3,715.80
Δ	LT	8,369	9,074	9,048	9,004	9,001	9,001
Iteration No	-	-	7	351	93	65	68
CPU Time	sec	-	3.99	201.63	191.28	190.74	193.22

			CASE 1	CASE 2	CASE 3
	Unit	DDG-51	Minimize f ₁ (fuel consumption)	Minimize f ₂ (hull structure weight)	Minimize w ₁ f ₁ +w ₂ f ₂
L	m	142.04	157.89	155.56	156.51
В	m	17.98	19.59	20.09	19.82
D	m	12.80	12.74	12.67	12.84
Т	m	6.40	5.63	5.66	5.80
C _B	-	0.508	0.512	0.508	0.508
Pi	m	8.90	9.06	9.45	9.05
A _E /A ₀	-	0.80	0.80	0.65	0.65
n	rpm	88.8	96.64	93.98	93.51
F.C	kg/h	3,391.23	3,504.70	3,602.60	3,551.42
H.S.W	LT	3,132	3,935.39	3,844.24	3,880.18
Objective	-	-	3,504.70	3,844.24	3,715.80
Δ	LT	8,369	9,001	9,003	9,001
Iteration No	-	-	65	68	68
CPU Time	sec	-	192.02	192.41	193.22

Find	t_p, t_s, b, a, d, N	
Minimize	$Weight = \left[\rho_p \cdot L \cdot W \cdot t_p + \rho_s \right]$	$\cdot L \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \left] \cdot 10^{-3} \ [ton]$
	$= \left[7.85 \cdot 14.929 \cdot 8.62 \right]$	$24 \cdot t_p + 7.85 \cdot 14.929 \cdot \left\{ (2a \cdot (\cos \theta)^{-1} + b + c) \cdot N + c \right\} \cdot t_s \left] \cdot 10^{-3} \\ : \text{ weight of top plate and stiffeners} \right\}$
Subject to)	
	$\sigma_{v} \leq 0.8 \cdot 315 \left[N / mm^{2} \right]$: maximum permissible stress
	$f \le 0.0056 \cdot 3.138 \ [m]$: maximum permissible deflection
	$t_{\min} \leq t_p \ [mm]$: minimum thickness of a top plate
	$M_{\min} \le M_{net} \ [cm^3]$: minimum section modulus of stiffeners
	$A_{\min} \le A_{net} \ [cm^2]$: minimum shear area of stiffeners
	N(2a+b) < W	: geometric limitation
	d < H	: geometric limitation
	$0^{\circ} < \theta \leq 90^{\circ}$: geometric limitation

ltem	Unit	Manual design	Optimization result
t _p	mm	16	14
t _s	mm	8	8
b	m	0.170	0.160
a	m	0.120	0.111
d	m	0.220	0.198
N	-	8	8
Weight	ton	26.225	23.975
Maximum stress	MPa	218	252
Maximum deflection	mm	5.532	6.388

		HYBRID			RID		
	Unit	Actual Ship	MFD	MS	GA	w/o Refine	with Refine
Building Cost	\$/m	-	21,035.254748	20,637.828634	20,597.330090	20,422.478135	20,350.28689
<i>x</i> ₁	mm	800.0	787.038274	811.324938	780.000000	810.000000	810.3701321
<i>x</i> ₂	mm	800.0	762.891023	799.038243	750.000000	800.000000	800.1282732
<i>x</i> ₃	mm	780.0	743.313979	787.034954	770.000000	790.000000	789.0923943
<i>x</i> ₄	mm	835.0	814.142029	833.909455	820.000000	830.000000	834.838424
x5	mm	770.0	756.434513	772.349435	790.000000	780.000000	780.002092
<i>x</i> ₆	mm	16.5	16.983723	16.203495	16.000000	16.000000	16.390923
x ₇	mm	16.0	16.829142	16.043803	16.500000	16.000000	15.989044
<i>x</i> ₈	mm	15.5	16.020913	15.390394	16.000000	15.500000	15.432091
<i>x</i> ₉	mm	17.0	17.329843	17.039439	16.500000	16.500000	17.139433
x ₁₀	mm	14.5	15.001923	14.324335	15.000000	15.000000	14.780908
x ₁₁	mm	13.5	14.192834	14.240495	14.000000	13.500000	13.550214
x ₁₂	mm	14.5	15.123051	15.403945	14.500000	14.500000	14.500130
x ₁₃	mm	17.0	16.902832	16.849387	16.500000	17.000000	17.010902
x ₁₄	mm	14.0	14.784034	14.739454	15.500000	14.500000	14.309324
x ₁₅	mm	14.0	15.129430	14.448504	15.500000	14.500000	14.588917
x ₁₆	mm	14.5	14.824045	14.940584	15.000000	15.000000	14.789992
Iteration No	-	-	8	912	93	64	70
CPU Time	sec	-	2.90	293.28	272.91	265.06	267.92

mposition of Lightweight (L' Most of displa	Weight (Displacement) WT) + Variable Load (VL, cargo weight) cement becomes the lightweight.
	Item
100	Hull Structure
200	Propulsion
300	Electric Systems
400	Communication and Control
500	Auxiliary System
600	Outfitting and Furnishing
	Armamont

Mathematica Optimal Prin	I Formulation of a Problem for Determining cipal Dimensions of a Submarine
Find	$\mathbf{X} = \{L_{bow}, L_{mid}, L_{aft}, B, D, C_{man}, ASW, C4I, ISR, MCM, SPW, PSYS, BAT_{typ}, N_g\}$
Maximize	$F_1 = Performance(\mathbf{X})$ and \Rightarrow Optimization problem having
Minimize	$F_2 = Cost(\mathbf{X})$ and $F_3 = Risk(\mathbf{X})$: Cost : Overall measure of risk 3 objective functions
Subject to	
$g_1 = atr -$	$\mathit{ata}(\mathbf{X}) \leq 0$: Constraint about the allowable area
$g_2 = v f f_{\min}$	$t_{n} - \textit{vff}(\mathbf{X}) \! \leq \! 0$: Constraint about the minimum free flood volume
$g_3 = vff(2)$	$K(t) - \nu f\!\!f_{\max} \leq 0$: Constraint about the maximum free flood volume
$g_4 = wlea$	$M_{\min} - W_8(\mathbf{X}) \leq 0$: Constraint about the minimum lead ballast
$g_5 = W_8(Y)$	$K(\mathbf{X}) - wlead_{\max} \leq 0$: Constraint about the maximum lead ballast
$g_6 = V s_{\min}$	$-Vs(\mathbf{X}) \leq 0$: Constraint about the minimum sustained speed
$g_7 = KWg$	$g_{req} - K Wg(\mathbf{X}) \! \leq \! 0$: Constraint about the required electrical power
$g_8 = GM_r$	$g_{\min}-GM(\mathbf{X})\leq 0$ $g_9=GB_{\min}-GB(\mathbf{X})\leq 0$: Constraints about the minimum GM and GB
$g_{10} = E_{\min}$	$-E(\mathbf{X}) \leq 0$: Constraint about the minimum endurance range
$g_{11} = Es_{mi}$	$s_{\rm in} - Es({\bf X}) \le 0$: Constraint about the minimum sprint range 42

Application to various ro	utes			
Route/Fuel consumption	Manual route [A]	Optimal route [B]	Reduction (B-A)	Ratio (B/A)
Venquber~Luanda	2,064ton (\$1,032K)	1,968ton (\$984K)	96ton (\$48K)	95.3%
Boston~Lagos	872ton (\$436K)	850ton (\$425K)	23ton (\$11.5K)	97.4%
Tampico~Cape Town	1,389ton (\$694.5K)	1342ton (\$671K)	47ton (\$23.5K)	<mark>96.6</mark> %
Santos~Laum	1,057ton (\$528.5K)	1,029ton (\$514.5K)	28ton (\$14K)	97.4%
Montevideo~Helsinki	1,179ton (\$589.5K)	1,140ton (\$570K)	39ton (\$19.5K)	96.7 %
 About 3.4% fuel redu 	iction were made.			

Problem for the Determination of the Optimal Lifting Sequence of Erection Blocks

$\ensuremath{\boxtimes}$ Objective

Minimization of the travel distance without load of a crane

☑ Input ("Given")

- Before and after positions of each erection block
- Priority for lifting of each erection block per ship number
- Available earliest and latest time for lifting of each erection block
- Required time for lifting of each erection block
- Specification and number of wires and shackles for lifting each erection block

Ø Output ("Find")

The

 Optimal lifting sequence of erection blocks

ries of Ship and Offshore Plant, September 2015, Myung-II Ro

Example of a Blocks in Shi	a Deadweight 600 ton Transporter for Moving ipyards
	Block
(a) Tran	sporter with loading (b) Transporter without loading
Specifications	 Length: 23.3 m Breadth: 6.6 m Height: Avg. 2.2 m (1.55 ~ 2.2 m, adjustable) Lightweight: 126 ton Speed: without loading 15 km/h, with loading 10 km/h Number of wheels: 88
Purpose	Moving blocks, deck houses, main engines, large pipe equipments, etc.
Features	 Moving forward and backward, 360° at the current position Two control rooms at the front and back Two signalmen are required for ensuring against risks
esign Theories of Ship and Offshore	Plant. September 2015. Myung-II Roh

Problem for the Determination of the Optimal Transporting Sequence of Erection Blocks

☑ Objective

Minimization of the travel distance without block of transporters

☑ Input ("Given")

- Total number of blocks and transporters
- Weight of each block and specifications of each transporter
- Before and after positions of each block
- Priority for transporting of blocks
- Available earliest and latest time for transporting of blocks
- Roads in shipyard for the block transportation

☑ Output ("Find")

n Theories of Ship and Offshore Plant, September 2015, Myung-II Roh

Optimal route and transporting sequence of blocks

Find X_i	Transporting time for each block	Design Variables
Minimize $F_1 = \sum_{i=1}^{B} \sum_{j=1}^{T} x_{j}$	$\sum_{i}^{k} (e_i^k / V^k)$ and	
i=1 $k=1$	Total transporting time	Objective Function
$Minimize \qquad F_2 = \sum_{i=2}^{k} \sum_{j=1}^{k} \sum_{k}$	$\sum_{j=2}^{2} \sum_{l=1}^{x_i^*} x_j^* C_{kl}$	ces between transporters
Subject to		Constraints
$g_1 = w_i - t_k \leq 0$	Constraints about the maxi	mum deadweight of trans
$g_2 = r_i - p_i^k \le 0$	Constraints about the start	of the transporting time
$g_3 = d_i^k - s_i \leq 0$	Constraints about the end	of the transporting time

		Manual scheduling	Genetic algorithm	Proposed algorithm	
Total transportatio	n time	14 hr 16 min	12 hr 24 min	12 hr 13 min	
Total transportation time w ithout loading		6 hr 10 min	4 hr 18 min	4 hr 7 min	
No. of interferences between the transporters d uring the transportation		7	2	1	
	T ₁	11 blocks	12 blocks	13 blocks	
No. of allocated	T ₂	34 blocks	34 blocks	32 blocks	
ansporter	T ₃	24 blocks	25 blocks	27 blocks	
	T₄	28 blocks	26 blocks	25 blocks	

Optimization Result for the 9,000 ton Missile Destroyer - Comparison with a Parent Ship (1/2)

lte	em	Unit	Paren	t ship	Optimizat	ion result	Note			
Vw	.B.T	m ³	1,18	81.4	1,0!	50.6	Objective function (Minimize)			
BM ₁ BM ₂		kN∙m	74,694.3	50,401.1	67,254.7	47,325.6	Objective function (Minimize)			
<i>ф</i> _{0,1}	φ _{0,2} °		0.000	0.038	0.000	0.038	Requirements for damage stability condition by			
A _{2,1} /A _{1,1}	A _{2,2} /A _{1,2}	-	40.871	40.544	40.874	40.666	international regulations			
<i>T</i> ₁	T ₂ m		6.919	6.884	6.819	6.787				
t ₁	t ₂	m	0.192	0.396	0.309	0.589				
ϕ_1	<i>\$</i> 2	o	1.243	1.336	0.839	0.896				

 BM_{j} : Maximum bending moment at the *i*th loading condition

 D_{T_i} in maximum because for the test for the second parameters $A_{i,j}$; initial heel angle at the jth damage case $A_{i,j}$; A_{2,j}; Areas of the negative and the positive righting moment from a statistical stability curve and a heeling arm curve at the jth damage case T_j , t_j ; Equivalent draft and trim at the jth damage case ϕ ; Equivalent heel angle considering beam wind at the jth damage case

82

-	Эр - О	tin pt	nal F imiz	acilit atior	ty Layo 1 Resul	out t of	Proble f the F	em o ore	of a N Body	Naval : V	Ship		
					/ Inner struc	ture	wall						
	0		1	2	3	4	5	6					
	7		8	9	Passage 10	P a s s a ge	11	12		Compu	ted compa	rtment	layout plan
		13		14	15 16	17	18	19	ie Z				
1	<mark>Actu</mark>	<mark>al c</mark>	ompartr	<mark>ment lay</mark>	out plan		0	2	1	15 4	3	19	5
value	60,000 55,000	<mark>erg</mark>	<mark>ence hi</mark>	story			7	13	12	10	11		9
ive function	50,000	<u>~</u>		L			8		16	14	18	17	6
Objecti	45,000	50	100 150	200 250	200 250 400	450 500							NUM
	0	50	100 150	Generation N	lumber	430 500							90

48

	/						
Vellhead	w	Gas Compressing	GC	Workshop/Stores	WS	Safety Utilities	SU
Xmas Trees	W/10	Compression Train	GC/10	Workshop - Mechanical	WS/10	Fire Water Pumps	SU/1
Manifold	W/20	Scrubber	GC/20	Workshop - Electrical	WS/20	Emergency Generator	SU/2
Well Control	W/30	Coolers	GC/30	Stores	WS/30	Emergency Switchgear	SU/3
Conductors	W/40	Lube Oil/Seal Oil	GC/40	Laboratory	WS/40	UPS	SU/4
) willing	P	Gas Metering	GC/50	Storage - Standby Fuel	WS/50	Survival Craft	SU/5
	U			Storage - Jet Fuel	WS/60	Bridges	SU/60
BUN	D/10	Risers	R	Storage - Flamm./Comb. Liquids	WS/70	Electrical Dawar Constitution	FI
Uritung Derrick	D/20	Risers/Manifolds	R/10	Storage - Process Consumables	WS/80		I EL
Uriting Support	D/30	ESD Valves	R/20			Driver / Power Generator	EL/10
Mud Systems (Active)	D/40	Pigging Facilities	R/30			Switchgear	EL/20
Drilling Control	D/50	Subsea Sat. Facilities	R/40	Material Handling	мн	Transmission Systems	TS
eparation/Stabilization	SS	Flare System	F	Cranes	MH/10	Relief and Blowdown	TS/10
Separation	SS/10	Flare Knockout	F/10	Laydown Areas	MH/20	Drains - Open	TS/20
Stabilization	SS/20	Tower (incl. tip)	F/20			Drains - Closed	TS/30
Test Separation	SS/30			100000		Piping - Process	TS/40
Produced Water Treatment	SS/40	Living Quarter	LQ	Utilities	U	Piping - Safety	TS/50
Oil Export Pumping	SS/50	Living Quarters	LQ/10	Seawater System	U/10	Piping - Utilities.	TS/60
Oil Metering	SS/60	Living Quarters Utilities	LQ/20	Instrument Air System	U/20	Cables - Instrumentation	TS/70
		Sheltered Area	LQ/30	Diesel System	U/30	Cables - Electrical	TS/80
as Processing	GP	Helideck	LQ/40	HVAC	U/40	Ducting - HVAC	TS/90
Gas Processing	GP/10	Control	6	Potable Water	U/50		
Condensate Processing	GP/20	Control	L	Sewage Systems	U/60	water Injection	wi
Dehydration	GP/30	Central Control	C/10	Heating Systems	U/70	Injection	WI/10
Fuel Gas	GP/40	Local Control	C/20	Cooling Systems	U/80	Treatment	W1/2

•	major inc Reactive I major inc	ide bel ide	ents havio ents i	r c niti	ha	rac	to														
•	 Active behavior characteristics: Probability of a module initiating major incidents Reactive behavior characteristics: Propensity for a module to escalate major incidents initiated elsewhere. 																				
-	 major incidents Reactive behavior characteristics: Propensity for a module to escalate major incidents initiated elsewhere. 			ate																	
-	Antagonisms Ma					ed	اعا،	501	vh	p. r pre	ا <u>ن</u> ،	pe	131	·y	.0	a		Ju			ale
	Antagonicme Ma		_		au	eu	CI.	Sev			•										
H	AIILAGUIIISIIIS MA	atri	x	1.11			60	66		-			14/5			611	51			ר	
	FUNCTION GROUP		REACTIVE	3	3	3	GP	2	к 3	7	10	3	w5 2	MH 2	2	3	EL 3	3	2		
			ACTIVE	l J	5	5	5	~	5	5	5	5	-	-	-	5	5	5	-		
-	WELL HEAD	W	3	-																	
	DRILLING	D	3	3	-						Ea	ch	nu	mb	er	(1-	-3)	re	pre	sents a	
	SEP./STABILIZATION	SS	2	3	3	-									· ·	¥.	-,		p. c		
	GAS PROCESSING	GP	2	3	3	3	-				qua	anτ	iτa	live	Va	aiue	e o	τtr	nei	isk when	τωα
	GAS COMPRESSION	GC	3	3	3	3	3	-			mo	du	les	are	e lo	oca	ted	l in	ad	liacent zor	nes
	RISERS	R	3	3	3	3	3	3	-		-1-		TL								
	FLARE SYSTEM	F	2	3	3	3	3	3	3	-	cio	se.	In	e n	igi	ier	nu	imt	ber,	the more	ris
	LIVING QUARTER	LQ	0	3	3	3	3	3	3	3	lav	out	t.								
	CONTROL	c	0	3	3	3	3	3	3	3	1	-									
	WORKSHOP/STORES	WS	0	3	3	2	2	3	3	2	1	1	-								
	MATERIAL HANDLING	MH	1	3	3	2	2	3	3	2	2	2	1								
	UTILITIES	U	1	3	3	2	2	3	3	2	2	2	1	1	-						
	SAFETY UTILITIES	SU	1	3	3	3	3	3	3	3	2	2	1	2	2	-					
	ELEC. POWER GEN.	EL	3	3	3	3	3	3	3	3	3	3	2	2	2	3	-				
	TRANSMISSION SYSTEMS	ΤS	3	3	3	3	3	3	3	3	3	3	2	2	2	3	3	-		1	
	WATER INJECTION	WI	0	3	3	2	2	3	3	2	1	1	1	1	1	1	2	2	-		
L				•																-	
inces NAS "La	yout Considerations for	Offsł	hore Tonsid	es Fa	cilitie	s" 19	90														
ative Ris	sk Assessment, SIPM Rej	port	EP 55000-1	8, Ma	ay 199	3,15	50														

Characteristics of Equipment Layout in Topsides Modules of Offshore Plant

☑ Limited Installation Area

- Considering the limited Hull area, equipment shall be placed on the multi-floors module.
 Same functional systems shall be installed in the same module in order to reduce the
- piping installation space.
 - Offshore installation shall be performed on the module basis to easily install each modules on the hull area.
 - Every maintenance can be easily performed on each modules basis.

