
Process VM (1)Process VM (1)



2
Microprocessor Architecture & System Software Lab

OutlineOutline

Overview of Virtual Machine Implementation
Compatibility
Memory Address Space Mapping
Memory Architecture Emulation
• Memory protection
• Self-modifying code



3
Microprocessor Architecture & System Software Lab

Process VMProcess VM

Allows running programs compiled for other systems
• With different OS and/or ISA
• Provide a virtual environment at the process level

Examples
• IA-32 EL

– Running IA-32/Windows programs on Itanium/Windows
• FX!32

– Running IA-32/Windows programs on Alpha/Windows
• ARIES

– Running PA-RISC/HP-UX programs on Itanium/HP-UX 

Runtime software encapsulates a guest process
• Give it the same appearance as a native host process



4
Microprocessor Architecture & System Software Lab

Process Virtual MachineProcess Virtual Machine

HOST OS

Guest
Process

runtime

Host
Process

Guest
Process

runtime

Guest
Process

runtime

Host
Process

create

Disk
Network 

Communication
File Sharing



5
Microprocessor Architecture & System Software Lab

Virtual Machine ImplementationVirtual Machine Implementation

Loader Guest Memory Image

Initialization

OS Call Emulator

Emulation Engine

Interpretor

Translator

Exception
Emulation

Code Cache
Manager

Exception
Side Tables

Code Cache

Profile
Data

Host Operating System



6
Microprocessor Architecture & System Software Lab

Virtual Machine ImplementationVirtual Machine Implementation

Loader Guest Memory Image

Initialization

OS Call Emulator

Emulation Engine

Interpretor

Translator

Exception
Emulation

Code Cache
Manager

Exception
Side Tables

Code Cache

Profile
Data

Host Operating System

Initialize
signals

Writes the guest code and 
data into the guest’s 
memory image

Load the runtime code

Turns control over to the 
initialization block



7
Microprocessor Architecture & System Software Lab

Virtual Machine ImplementationVirtual Machine Implementation

Loader Guest Memory Image

Initialization

OS Call Emulator

Emulation Engine

Interpretor

Translator

Exception
Emulation

Code Cache
Manager

Exception
Side Tables

Code Cache

Profile
Data

Host Operating System

Initialize
signals

Allocate memory

Establish signal handlers

Start the emulation engine



8
Microprocessor Architecture & System Software Lab

Virtual Machine ImplementationVirtual Machine Implementation

Loader Guest Memory Image

Initialization

OS Call Emulator

Emulation 
Engine

Interpretor

Translator

Exception
Emulation

Code Cache
Manager

Exception
Side Tables

Code Cache

Profile
Data

Host Operating System

Initialize
signals

Interpretor

Translator

Covered in Chapter2



9
Microprocessor Architecture & System Software Lab

Process VM ComponentsProcess VM Components

OS call emulator
• Translates a system call issued by the guest program into 

appropriate system call(s) to the host OS and handles results

Exception emulator
• Handles traps occurring as a result of executing interpreted 

or translated instructions or external interrupts
– Runtime should secure precise guest state and do appropriately 
– Resorts to signal handlers established at the initialization

All signals are registered

Profile Database
• Dynamically collected info which will be used for optimization



10
Microprocessor Architecture & System Software Lab

CompatibilityCompatibility
Definition
• Accuracy with which a guest’s behavior is emulated on the host platform, as 

compared with its behavior on its native platform
• Simply, result on VM = result on native platform ?

A matter of correct functioning
• Not a matter of Performance

Virtual Machine

Same Result



11
Microprocessor Architecture & System Software Lab

Level of CompatibilityLevel of Compatibility
Intrinsic compatibility
• Strict form of compatibility
• Required by some system VMs
• Too strict for process VMs
• Another term: complete transparency

Extrinsic compatibility
• Relies on externally-provided assurance 

of guest program as well as on the VM
– E.g., “a program compiled with gcc using C 

standard libraries are compatible”
– Resource requirement, verification, etc.



12
Microprocessor Architecture & System Software Lab

A Compatibility FrameworkA Compatibility Framework
Proving compatibility is too hard, so we define a framework

• By decomposing the system (Guest program, runtime, OS, H/W)

Dividing states and mapping
• User-managed state
• OS-managed state

Dividing operations
• User-level instructions
• Operating system operations

For each control transfer between
user code and OS on a native 
platform, there is a corresponding
control-transfer point in the VM



13
Microprocessor Architecture & System Software Lab

Sufficient Compatibility ConditionsSufficient Compatibility Conditions
At the point of control transfer from emulating user instruc
tions to the OS, the guest state (both user & OS 
managed) is equivalent to the host state, under the given 
state mapping
• Equivalence is maintained at OS control transfer, not at 

instruction granularity, providing more flexibility in emulation
At the point of control transfer back to user instructions, th
e guest state is equivalent to the host state, under the giv
en state mapping



14
Microprocessor Architecture & System Software Lab

Why Sufficient?Why Sufficient?

User-OS control transfers are the only points where the 
state may be made visible to the “outside world”, yet
Same compatible results could be achieved in other 
ways
• E.g., when a system call reads/writes a small portion of guest 

memory, our condition requires all memory state should be 
equivalent



15
Microprocessor Architecture & System Software Lab

State MappingState Mapping

Mapping user-managed state in registers and memory
• Guest data and code mapped to host’s user address space
• Guest registers mapped to host registers and/or runtime data 

region of memory

Register mapping is straightforward
Memory space mapping 
• Map guest’s address space to host’s address space

– Runtime emulator should map addresses for guest’s 
load/store/fetch

• Maintain protection requirements
• Address mapping can be done by S/W or by H/W or by both



16
Microprocessor Architecture & System Software Lab

Runtime SoftwareRuntime Software--Supported TranslatiSupported Translationon

Guest addresses are not contiguously mapped
• Translation table is used for guest-to-host translation 
• Most flexible, but most software-intensive method

Runtime
Software

Translation
Table

Guest
Address Space

Host
Address Space



17
Microprocessor Architecture & System Software Lab

An Address Translation ExampleAn Address Translation Example

Code sequence for a load instruction



18
Microprocessor Architecture & System Software Lab

Direct Direct Translation MethodTranslation Method

Guest address space is mapped contiguously
• Source load/store can be translated 1-to-1 to target 

load/store (with a fixed offset added in the right case)
• More efficient than the table method

Guest 
Application

Address
Space

Guest 
Application

Address
Space

Guest 
Application

Address
Space

Guest 
Application

Address
Space



19
Microprocessor Architecture & System Software Lab

Memory ProtectionMemory Protection
Protect guest address space in the host memory
• e.g., protect a store to the code area of guest program
• Protect according to guest ISA’s read/write/execute protection

If translation table is used, use protection information 
added in the translation table (correct but slow)
If direct translation method is used, use the host OS 
and the host hardware for page protection
• A system call specifying a page and its access privileges 

(e.g., mprotect() system call in Linux)
• A signal for a memory access fault (e.g., SIGSEGV) which will 

be delivered to the runtime if there is a disallowed access



20
Microprocessor Architecture & System Software Lab

Page Size & Protection Type IssuesPage Size & Protection Type Issues

Guest page size smaller than the host page size 
• If two differently-protected guest pages allocated to a host page
• One solution is aligning to the host page boundaries

Reduce efficiency & portability
• Another is giving lesser privilege

Handle the “extra” traps

Protection types mismatch
• Host supports a subset of guest protections

Guest Page
(Data)

Guest Page
(Code)

Host Page

RW

RE

RW?
RE?

RWE?



21
Microprocessor Architecture & System Software Lab

SelfSelf--Referencing Referencing && SelfSelf--ModifyingModifying CodeCode

Self-Referencing Code
• An application program refers to itself
• No problem since all load and store addresses mapped to 

source memory region, not translated region



22
Microprocessor Architecture & System Software Lab

SelfSelf--Referencing Referencing && SelfSelf--ModifyingModifying CodeCode

Self-Modifying
• An application program attempts to modify itself
• Causes potential problems when binary translation is used



23
Microprocessor Architecture & System Software Lab

SelfSelf--ModifyingModifying CodeCode
Basic method for handling SMC
• Original source code region: write-protected (by mprotect())

– In binary translation, write-protect the region when translating it
• Write to this region: SIGSEGV trap and a signal is delivered
• Runtime throws away translated code blocks using a side table
• Disable the write-protection temporarily
• Interpret through the code block that triggered the fault

– Really modifies itself now
• Re-enable the write-protection
• If the modified block is used again, 

it will be re-translated



24
Microprocessor Architecture & System Software Lab

SMC Handling OverheadSMC Handling Overhead

This is costly if we discard many, un-related 
translations
Fortunately, SMC is rather uncommon
Some programs include much SMC, though
Worse if data and code are intermixed 
• Pseudo-SMC: write into code page does not modify 

code but will trigger write-protection fault
• How to deal with frequently occurring pseudo-SMC?



25
Microprocessor Architecture & System Software Lab

FineFine--Grain ProtectionGrain Protection
Provide hardware support for write-protecting memory at granularity 
finer than full pages
• EM maintains a finer-granularity protection table with a write-protect bit 

mask, where a bit corresponds to a small region
• As code is translated, the bit for the translated region is set
• If a write is to a data-only region (the bit is not set), no need to flush the 

translated code
• Reduce flushing of translations



26
Microprocessor Architecture & System Software Lab

SelfSelf--Checking TranslationsChecking Translations
Leave the page unprotected, and before the translated code is executed, 
check if its source code has not been changed

When all translations forced to be self-checking
• Code size and molecules executed are increased
• Optimization: dynamically link/unlink prolog code

– When there is a write-protect fault, runtime links prolog code and turn off the write 
protection such that prolog code is executed



27
Microprocessor Architecture & System Software Lab

Handling True SelfHandling True Self--Modifying CodeModifying Code

Many PC applications typically rely on SMC
• E.g., modify the immediate or offset fields in instructions 

inside an inner loop instead of allocating a register for it

Perform a specialized translation for common 
cases

• At least, no need for retranslation for this code


	Process VM (1)
	Outline
	Process VM
	Process Virtual Machine
	Virtual Machine Implementation
	Virtual Machine Implementation
	Virtual Machine Implementation
	Virtual Machine Implementation
	Process VM Components
	Compatibility
	Level of Compatibility
	A Compatibility Framework
	Sufficient Compatibility Conditions
	Why Sufficient?
	State Mapping
	Runtime Software-Supported Translation
	An Address Translation Example
	Direct Translation Method
	Memory Protection
	Page Size & Protection Type Issues
	Self-Referencing & Self-Modifying Code
	Self-Referencing & Self-Modifying Code
	Self-Modifying Code
	SMC Handling Overhead
	Fine-Grain Protection
	Self-Checking Translations
	Handling True Self-Modifying Code

