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Chapter 12. Ternary phase Diagrams
Liquid Immiscibility

Liquid immiscibility in one or more of the binary systems can lead to

either three-phase or four-phase equilibria in the ternary system.

Immiscibility can arise if either monotectic or syntectic reactions occur

in the binary system; true ternary immiscibility is also possible.




1) Liquid immiscibility in binary system

* Monotectic reaction: \ \'—1/ /
Liquid1 < Liquid2+ Solid [/ L+s \
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12.1. Two Binary Systems are Monotectic

« The AB and BC binaries are monotectics, the AC binary is eutectic.
A o2 A S | R lz________S>__ B> g

Projection of the system when two
binaries contain monotectics




12.2. One Binary System is Monotectic  Liquid immiscibility in ternary system

a) Projection of the system when only one binary is monotectic and
two binaries are simple eutectic.

A oy L S l2 Cl2> <ﬁ> B

b) the corresponding liquidus surface



12.3. None of the binaries contain liquid miscibility gaps
but True Ternary Liquid Immiscibility Appears




Chapter 13. Ternary phase Diagrams

Four-phase Equilibrium involving Allotropy of one component

In the transition from (b) a binary diagram of the closed y type to
(a) one of the expanded y type, a four-phase equilibrium will appear.
It is assumed that BC binary shows a complete series of solid solutions
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Fig. 220. Binary phase diagram (a) with an expanded y field, (b) with closed y field.

Recognisable as the Fe-Fe,C diagram Produce by ferrite forming elements
Such as Cr, Mo, Si and W

==) This type of ternary is of importance in the metallurgy of low alloy steels.



A binary diagram with the expanded y type
C
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Temperature, °C
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Ternary space mode

involving a transition from a closed y field to an expanded vy field

vy & o + P reaction — afy phase region

* ay ruled surface: tie line ac — tie line a,c,4

* ap ruled surface: ab — a,b,
* By ruled surface: bc — b,c,4

o + v two phase region : i
This region originates at the tie
line a,c, on the peritectic horizon
a,C,p, at the time line a,c; on the
eutectoid horizontal a,c;b,.

v 2 o transit
~ on AB binary

a2y trar

Te]g
/

1si’g

on AC biy

jon

Ao For the sake of clarity the BC binary system is not included.




A tabular representation of the ternary

Binary AB Binary AC Ternary

Peritectic horizontal a,c,p,
l+a2y

Eutectic horizontal ase,b,
|2 a+B
Y Ternary quasi peritectic reaction
4 phase plane: acP aPb l+x=f+y

f:'-‘-ﬁ-}"L

I cPb v

Eutectic horizontal c,e;b,

[

[=f+y e,

Eutectoid horizontal a,c;b,

!

y=a+f Cy
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Projection of the ternary system
involving a transition from a closed y field to an expanded vy field

Four-phase equilibrium: | +a2B+y

A G 9 ¢Cs 1 Pi C2 .t by b, B
\\ / /"

m
jf

I"J"ID:- a /

/ Four-phase plane: Pbac

p, horizontal — ayL

e, horizontal = afL
o + vy two phase region

P: L+a — y+f
The dotted lines from c to m, and
from a to m, are intended to remind b

PR v L v L
a B a
the reader that the a+y phase region

starts on the AB binary, moves to the B B
AC binary and then back to the AB
binary again as the temperature falls.




Location of vertical sections through projection
involving a transition from a closed vy field to an expanded v field

A Is ay Ca Ty Py Eo 2, by Ba B
e

#
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(a) (Bl (c)
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By taking this series of
vertical sections we have seen
how the closed y binary is
transformed to the expanded
v binary through the ternary.

15



Chapter 14. The Association of Phase Regions

16



14.1. Law of adjoining phase regions

* Construction of phase diagram:
Phase rule ~ restrictions on the disposition of the phase regions

e.g. no two single phase regions adjoin each other through a line.

* Rules for adjoining phase regions in ternary systems

1) Masing, “a state space can ordinarily be bounded by another state
space only if the number of phases in the second space is one less
or one greater than that in the first space considered.”

Fig. 226. Application of the law of adjoining
phase regions to the vertical section of Fig. 178h. TSL
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14.1. Law of adjoining phase regions

* Construction of phase diagram:
Phase rule ~ restrictions on the disposition of the phase regions

e.g. no two single phase regions adjoin each other through a line.

* Rules for adjoining phase regions in ternary systems

1) Masing, “a state space can ordinarily be bounded by another state
space only if the number of phases in the second space is one less
or one greater than that in the first space considered.”

2) Law of Adjoining Phase Regions: “most useful rule”

R; =R—-D"—=D" >0

R1 : Dimension of the boundary between neighboring phase regions
R : Dimension of the phase diagram or section of the diagram (vertical or isothermal)

D~ : the number of phases that disappear in the transition from one phase region to the other

D* : the number of phases that appear in the transition from one phase region to the other



Example 1 R, =R-D"=D" >0 a | I

1) Vertical section is two-dimensional and so R = 2. “ 5

2) |- 11:D=0/D"=1-R;=1&
H—-1:D=1/D*=0—-R; =1

=) boundary ~ one dimension, line ab

3)Il-V:D=0/D*=2 >R, =0&
V—-Il:D=2/D*'=0—-R,=0 L :
= boundary ~ zero dimension, point c @By

Fig. 226. Application of the law of adjoining
TABLE 14 Dbhaseregions to the vertical section of Fig. 178h.
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iL I 1III I 1v I 1v I v v Vv VI

Transition 1 \%
oo oo oo ¥ ¥ oo oo I
from: I1 I I 11 Iv 11 VI 111 vV Il A"AN A% YV VI
R 2 2 o ) 2 2 2 2 2 i 2 2 2 2 2
D~ 0 1 1 0 0 1 0 1 0 2 0 1 0 1
D+ 1 0 0 1 1 0 1 0 2 0 1 0 1 0
R 1 1 1 1 1 | | 1 0 0 1 1 1 1
Corresponding line line line line point line 1 Slaine,

geometrical element




Example 2

Ta
A B
oc
Te > Ta> Te> e> ey
<y
C
- -
Ry =R-D -=D" =0 TABLE 15
Transition p I+p I+a+ B
from: B I+a+f atp ! B atf MHatf 1« f Ha 4+ atf
R 3 3 3 3 3 3 3 3 3 3 3 3 3
D~ 0 0 0 1 1 1 0 2 2 2 1 1 1
D+ 1 2 1 0 0 1 1 0 0 0 0 0 0
R, 2 1 2 2 2 1 2 1 1 1 2 2 2
Corresponding
geometrical a b c d e f g h i j k 1 m
element

a — surface (Tghb,Ty), b - line (bb,), ¢ - surface (bb,d,db), d — surface (Tzee,Ty), e — surface (Tghb,Ty), [ - line
(bb,), g — surface (bb,e,eb), h —line (ee,), i — line (aa,), j — line (bb,), k — surface (aee,a,a), 1 — surface (bb,e,eb),

m - surface (abb,a,a).
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Example3 R, = R—D™—D* > 0

1) Isothermal sections are two-dimensional
and so R = 2.

2) Transitions from a single phase region to
its neighbors = line or point

3) Other transitions, e.g. |+a+p — o+p or
l+a or I+p =) line ab/ ac/ bc

227. Application of the law of adjoining phase
regions to the isothermal section of Fig. 176c¢.

TABLE 16

Transition x _ ] _ p == - ! = i
from: a+pf Ho Hot+f at+pf I+ Hat+f [+a I+ 4y H+at+p  I+y

R p 2 2 2 2 2 2 2 2 2 2

D~ 0 0 0 0 0 0 0 0 0 0 0

D+ 1 1 2 1 1 2 1 1 1 2 1

R, 1 1 0 1 l 0 1 1 1 0 1

Corresponding

geometrical line point line point line point line

element (da) (na) (a) (eb) (bf) (b) (mec) (gc) (kh) (c) (i)




14.2. Degenerate phase regions

* Law of adjoining phase region ~ applicable to space model and their
vertical and isothermal sections, but no invariant reaction isotherm
or four-phase plane was included.

* In considering phase diagrams or section containing degenerate
phase regions, it is necessary to replace the missing dimensions
before applying the law of adjoining phase regions.

To overcome this situation,
.. ~ one regards the point T, as a de-
liquid 5“‘“” generate (liquid+solid) phase region
(p+f=c+1; 2+f=1+1) and one replaces the missing

: o/ dimension to give the diagram.

Law of adjoining phase regions Tas solid + liguid
|
—1R=1,D" =1, Dt =1;
therefore Rr: =1

Phase rule: invariant reaction (f=0)

=) This is now a topologically correct
diagram which obeys the law of
solid  adjoining phase regions (a very
useful method for checking the

J construction of phase diagrams)

sohd

but lead to violation of phase rule.

A A

ta)l (b)

Fig. 228. Illustration of a degenerate phase region. (a) The melting of pure A; (b) the melting of pure A when
point T, is regarded as a degenerate phase region and replaced by a *‘solid+liquid” phase region.



* Degenerate phase regions in space models of phase diagrams and in
their sections can be dealt with in a similar manner by replacing the
missing dimensions.

Invariant reaction isothermal Liquidus and solidus curves do not meet at T,

"
§ aeb (one dimension)

(b)

l

Comply with the law of adjoining phase regions
Fig. 229. Illustration of degenerate phase regions. (a) The eutectic phase diagram; (b) corresponding diagram
allowing for degeneration of the phase regions.

A B8

23



* Sections through invariant four-phase planes in ternary systems
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Fig. 177. Location of vertical section through Fig. 173a.
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Fig. 230. Degeneration phase regions in vertical sections through ternary space models (Fig. 178¢).



* In three dimensional representations of ternary systems the junction
of various phase regions can be summarized as follows:

a,

Ta

N

C2

&) Tc

C

(1) A single phase region with a two
phase region over a surface,

(2) A single phase region with a three
phase region along a line (non-isothermal)

(3) A single phase region with a four-
phase region at a points,

(4) a two phase region with a three
phase region over a ruled surface,

(5) a two phase region with a four
phase region along a tie line,

(6) a three phase region with a four
phase region over a tie triangle,

(7) a surface separated two neighboring
phase regions,

(8) four neighboring phase regions
meet along a common line,

(9) six neighboring phase regions
meet at a common points.



14.3. Two-dimensional sections of phase diagrams

* The boundary between adjoining phase regions in a two-dimensional
phase diagram or a two-dimensional section of a phase diagram can
be either a line or a point. (R, < R—1))

(@) R =2; R; = 1 _a line separates phase regions containing i and A+1 phases

(o from o+ f, Fig. 220a; a+y from o+ f+7, Fig. 178e; and /+ o +y from
[+o+p+7y, Fig. 230). As stressed previously, the missing dimensions have to be added to
degenerate phase regions to allow application of the law.

Phase region I

a{;+c¥‘2+_ _,—i—dla

a{']+cx.f +.. ..+ 3o

. ) A A+1

Phase region II

Fig. 231. Phase distribution in a two-dimensional diagram when the boundary between adjoining phase regions
is one-dimensional.



14.3. Two-dimensional sections of phase diagrams

* The boundary between adjoining phase regions in a two-dimensional
phase diagram or a two-dimensional section of a phase diagram can

be either a line or a point. (R; < R—1)

(b) R =2; R, = O0_three boundary lines to meet at a point in a two
dimensional diagram (Impossible)

Phase region I

‘:xj_r‘x"g_‘_ . R & +Or.2+- . +ﬂ.}. + X 2+

FPhase region II

Phase region II \

Fig. 232. Impossibility of three boundary lines meeting at a point in a two-dimensional diagram.

If we now consider the transition from region III to region II it is evident that none of the
three possible phase compositions for region III satisfy the law of adjoining phase regions. At
least four lines must meet at a point in a two-dimensional diagram. In general, only four
lines meet at a point in a two-dimension diagram.




(b) R=2; R;=0_only four lines may meet at a point in two-dimensional diagrams

Y Phase region I
d|1-ﬂ’q - q'ﬂl

Phose regon IO
'ﬁ'}\. ' q:'.?n +2

m",t I:'!‘;d- " --4-:{;"+ 5{.!.,4-1

e ——
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Phose region 1T (a)

Phate region X
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i L ,"-‘ \"-‘ Phode rmegeon bili
f P
\
i
\\x /
wepey N\ St wriy
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L

Fig. 233. Boundary lines meeting at a point in a two-dimensional diagram. (a) Impossibility of five lines meeting
at a point; (b) distribution of phase regions when four lines meet at a point; (¢) only four lines may meet at a
point.



That there are exceptions to the rule that four lines meet at a point in a two-dimensional
diagram is evident from an examination of Fig. 178b and f. In each case six lines meet at
a_central point. It will be noted, however, that in both cases the section passes through an

invariant point—FE and ¢ respectively. Palatnik and Landau call such sections nodal or non-
regular sections. Only regular sections obey the law of adjoining phase regions completely.

3 . 4 M Fig. 178f 12
29



14.4. The Cross Rule: useful in checking the phases present in phase regions
adjoining a point in two-dimensional diagrams

L
L
—\ \

L+ ol+y l

+Y L+B+7 1 L+

o /4 BY
14 4 p
+ +
ol+y B+y V| o By 4

2 ' 10
( ¢f Fig.178e with elimination

(ef. Flg. 178¢) ( et Fig.178g) of | «+a&+f +p degenerale

nhase reagion)\

Fig. 234. The cross rule, (a) disposition of phase regions when one region is /4%, (b) alternative disposition
of phase regions.



14.5. Non-regular two-dimensional sections

Non-reqular sections behave erratically and the dimensions of the phase region boundaries
in such sections are reduced irregularly compared to those in the phase diagram.
Ts

exceptions to the rule that four lines meet
at a point in a two-dimensional

Fig. 178b

<] |

b, Y 2‘: Invariant point E é
g
4
Y oL+ ﬁ + 7
ay Lt+|f

C G 4

<3D ternary space model> ©3 <2D Non-regular section (NRS)>

This boundary exists as a point in both the space model and the non-regular section. The
point E and the associated boundaries (NRS) is a nodal plexus. Note that the degenerate
phase region | + a + p +yis not shown in (NRS).




14.5. Non-regular two-dimensional sections

Nodal plexi can be classified into four types according to the manner of their formation:

Type 1 The nodal plexus is formed without degeneration of any geometrical element of
the two-dimensional regular section to elements of a lower dimension

el N Fig. 235. Type 1 nodal plexus.

Type 2 The number of lines degenerate to a point but there is no degeneration of two
dimensional phase regions. In the formation of a type 2 nodal plexus the line
0,0, in the regular section degenerates into point O of the nodal plexus
associated with the non-regular section.

o B “ aif O\ Fig. 236. Type 2 nodal plexus.



14.5. Non-regular two-dimensional sections

Nodal plexi can be classified into four types according to the manner of their formation:

Type 3 A number of two dimensional phase regions degenerate into a point. In this case
the phase region | + a + p disappears with the transition from a regular to a non-
regular two dimensional section.

o L+48

Lecls Bo Fig. 237. Type 3 nodal plexus.

Type 4 A number of two dimensional phase regions degenerate to a line. In the
formation of the nodal plexus the phase region | + B + y and B + y have
degenerated into the line 0,0.,.

[

sy & B Fig. 238. Type 4 nodal plexus.



14.5. Non-regular two-dimensional sections

Nodal plexi can be classified into four types according to the manner of their formation:

Nodal plexi of mixed types may also be formed. A type 2/3 one is shown in Fig.
239. In the formation of the nodal plexus the two dimensional | + y region
degenerates to a point — triangle 0,0;0, degenerates to point O — and the line 0,0,
degenerates to the same point O. The former process corresponds to the formation of
a type 3 nodal plexus and the latter to the formation of a type 2 nodal plexus.

i .. (oo 4 it ¥ PR _a,.*}?',-
= f?j E | /,/
) J . J/ £ B
y\ By T N
%t a~y / N P ey
” A By B2
Oy
A B+
vy .. ; .
- Fig. 239. Mixed type 2/3 nodal
F, ;‘I‘,-‘-rl:_'; —JJ' \t\\- I
/ plexus.

1) Formation of nodal plexi:
Transition from a regular section to a non-regular section of a ternary system

2) Opening of nodal plexi:
Subsequent transition from the non-regular section back to a regular section



Fig. 240. Formation and opening of nodal plexi
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Fig. 240. Formation and opening of nodal plexi
Formation Nedal plexus Opening

\Lax’y

By
xy / LAY
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(cf Fig. 242) ( cf Fig.225f) ( cf. Fig. 225e)
Fig. 240 (e).
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