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Chapter 14. The Association of Phase Regions



14.1. Law of adjoining phase regions

* Construction of phase diagram:
Phase rule ~ restrictions on the disposition of the phase regions

e.g. no two single phase regions adjoin each other through a line.

* Rules for adjoining phase regions in ternary systems

1) Masing, “a state space can ordinarily be bounded by another state
space only if the number of phases in the second space is one less
or one greater than that in the first space considered.”

2) Law of Adjoining Phase Regions: “most useful rule”

R; =R—-D"—=D" >0

R1 : Dimension of the boundary between neighboring phase regions
R : Dimension of the phase diagram or section of the diagram (vertical or isothermal)

D~ : the number of phases that disappear in the transition from one phase region to the other

D* : the number of phases that appear in the transition from one phase region to the other



14.2. Degenerate phase regions

* Law of adjoining phase region ~ applicable to space model and their
vertical and isothermal sections, but no “invariant reaction isotherm”
or “four-phase plane” was included.

* In considering phase diagrams or section containing degenerate
phase regions, it is necessary to replace the missing dimensions
before applying the law of adjoining phase regions.

To overcome this situation,
.. ~ one regards the point T, as a de-
liquid 5“‘“” generate (liquid+solid) phase region
(p+f=c+1; 2+f=1+1) and one replaces the missing

: o/ dimension to give the diagram.

Law of adjoining phase regions Tas solid + liguid
|
—1R=1,D" =1, Dt =1;
therefore Rr: =1

Phase rule: invariant reaction (f=0)

=) This is now a topologically correct
diagram which obeys the law of
solid  adjoining phase regions (a very
useful method for checking the
construction of phase diagrams)

but lead to violation of phase rule.
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Fig. 228. Illustration of a degenerate phase region. (a) The melting of pure A; (b) the melting of pure A when
point T, is regarded as a degenerate phase region and replaced by a *‘solid+liquid” phase region.



* Degenerate phase regions in space models of phase diagrams and in
their sections can be dealt with in a similar manner by replacing the
missing dimensions.

Invariant reaction isothermal Liquidus and solidus curves do not meet at T,

"
§ aeb (one dimension)

(b)

l

Comply with the law of adjoining phase regions
Fig. 229. Illustration of degenerate phase regions. (a) The eutectic phase diagram; (b) corresponding diagram
allowing for degeneration of the phase regions.
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14.3. Two-dimensional sections of phase diagrams

* The boundary between adjoining phase regions in a two-dimensional
phase diagram or a two-dimensional section of a phase diagram can
be either a line or a point. (R, < R—1 ->R;=1)

(@) R =2; R; = 1 _a line separates phase regions containing i and A+1 phases

(o from o+ f, Fig. 220a; a+y from o+ f+7, Fig. 178e; and /+ o +y from
[+o+p+7y, Fig. 230). As stressed previously, the missing dimensions have to be added to
degenerate phase regions to allow application of the law.

Phase region I

a{;+c¥‘2+_ _,4—{:«"pl

a{']+.|:xf +.. ..+ 3o

. ) A A+1

Phase region II

Fig. 231. Phase distribution in a two-dimensional diagram when the boundary between adjoining phase regions
is one-dimensional.



14.3. Two-dimensional sections of phase diagrams

* The boundary between adjoining phase regions in a two-dimensional
phase diagram or a two-dimensional section of a phase diagram can
be either a line or a point. (R; < R—1 —-R,;<1)

(b) R=2; R;=0_three boundary lines to meet at a point in a two dimensional
diagram (Impossible)

Phase region I

.::K'1+ac”'2+ T By

Phase region II \

Fig. 232. Impossibility of three boundary lines meeting at a point in a two-dimensional diagram.

If we now consider the transition from region III to region II it is evident that none of the
three possible phase compositions for region III satisfy the law of adjoining phase regions. At
least four lines must meet at a point in a two-dimensional diagram. In general, only four

lines meet at a point in a two-dimension diagram.




(b) R=2; R;=0_only four lines may meet at a point in two-dimensional diagrams
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Fig. 233. Boundary lines meeting at a point in a two-dimensional diagram. (a) Impossibility of five lines meeting
at a point; (b) distribution of phase regions when four lines meet at a point; (¢) only four lines may meet at a
point.,



That there are exceptions to the rule that four lines meet at a point in a two-dimensional
diagram is evident from an examination of Fig. 178b and f. In each case six lines meet at
a_central point. It will be noted, however, that in both cases the section passes through an

invariant point—FE and ¢ respectively. Palatnik and Landau call such sections nodal or non-
regular sections. Only regular sections obey the law of adjoining phase regions completely.

3 . 4 M Fig. 178f 12



14.4. The Cross Rule: useful in checking the phases present in phase regions
adjoining a point in two-dimensional diagrams
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Fig. 234. The cross rule, (a) disposition of phase regions when one region is /4%, (b) alternative disposition
of phase regions.



14.5. Non-regular two-dimensional sections

Non-reqular sections behave erratically and the dimensions of the phase region boundaries
in such sections are reduced irregularly compared to those in the phase diagram.
Ts

exceptions to the rule that four lines meet
at a point in a two-dimensional

Fig. 178b
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<3D ternary space model> ©3 <2D Non-regular section (NRS)>

This boundary exists as a point in both the space model and the non-regular section. The
point E and the associated boundaries (NRS) is a nodal plexus. Note that the degenerate
phase region | + a + p +yis not shown in (NRS).




14.5. Non-regular two-dimensional sections

Nodal plexi can be classified into four types according to the manner of their formation:

Type 1 The nodal plexus is formed without degeneration of any geometrical element of
the two-dimensional regular section to elements of a lower dimension

Catull % Fig. 235. Type 1 nodal plexus.

Type 2 The number of lines degenerate to a point but there is no degeneration of two
dimensional phase regions. In the formation of a type 2 nodal plexus the line
0,0, in the regular section degenerates into point O of the nodal plexus
associated with the non-regular section.

o B “ aif O\ Fig. 236. Type 2 nodal plexus.



14.5. Non-regular two-dimensional sections

Nodal plexi can be classified into four types according to the manner of their formation:

Type 3 A number of two dimensional phase regions degenerate into a point. In this case
the phase region | + a + p disappears with the transition from a regular to a non-
regular two dimensional section.

o L+48

Lecls Bo Fig. 237. Type 3 nodal plexus.

Type 4 A number of two dimensional phase regions degenerate to a line. In the
formation of the nodal plexus the phase region | + B + y and B + y have
degenerated into the line 0,0.,.
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14.5. Non-regular two-dimensional sections

Nodal plexi can be classified into four types according to the manner of their formation:

Nodal plexi of mixed types may also be formed. A type 2/3 one is shown in Fig.
239. In the formation of the nodal plexus the two dimensional | + y region
degenerates to a point — triangle 0,0;0, degenerates to point O — and the line 0,0,
degenerates to the same point O. The former process corresponds to the formation of
a type 3 nodal plexus and the latter to the formation of a type 2 nodal plexus.
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/ plexus.

1) Formation of nodal plexi:
Transition from a regular section to a non-regular section of a ternary system

2) Opening of nodal plexi:
Subsequent transition from the non-regular section back to a regular section



Fig. 240. Formation and opening of nodal plexi
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Fig. 240. Formation and opening of nodal plexi
Formation Nedal plexus Opening
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Fig. 240 (e).



Fig. 225f
Fig. 242. Vertical section intermediate between Figs. 225f and g.



Fig. 240. Formation and opening of nodal plexi
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Fig. 173a

1 Fig. 178f 12
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In general, the distribution of phases in non-regular sections does not obey the cross rule.
Consider the non-regular section 11-12 through the invariant point ¢ in Fig. 177. In the section
(Fig. 178f) six lines meet at point ¢. Referring to the ternary space model in Fig. 173a, eight

phase regions adjoin point ¢. These are: A a T 8\1 51 by b?
a
(1) y where ¢ is a point on surface Tec,czhcic, a3 \?\\\ \\W //% g
(2) I4-y where c is a point on surface Tecicc, 13 N\ ¢ v ~_E.- % 7 _42
(3) a+y where ¢ is a point on surface ¢ychcy . \ SN/ ]
(4) p+y where ¢ is a point on surface c,chcy L | 22 g
(5) I+a+y where ¢ is a point on line ¢5c¢ o : \ ! ©
(6) I+f+y  where c is a point on line ¢,c 1 Ve 2
(7) a+f+y  where c is a point on iine ¢k e Co e
(8) I+a+ p+7y where cis a point representing one apex of the phase region. C13C < Fig. 177

Of these eight phase regions only six adjoin point ¢ in the non-regular section (Fig. 178f). In
the transition from the non-regular section to the regular sections which straddle it the other
two phase regions will appear. These phase regions are the y and the /+ o+ f+y regions.




* Three methods by which an non-regular section of the type shown in Fig. 178f may
change to a regular section — Figs. 240a, b and ¢ — “Figs. 240c is the only possible mode”

Transition of the non-regular section (middle figure) into regular sections.
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Corresponding vertical sections to Fig. 243.



“Figs. 240c is the only possible mode”
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* The importance of non-reqular
sections lies in the fact that they
represent an intermediate step in
the transition from one-reqgular
sections to another regular section.
If we started with the two non-
regular sections 11-12 and 3-4
passing through the invariant points
¢ and E, we could construct the
sequence of vertical section given in
Fig. 178.
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Fig. 178. Vertical sections through the space model of Fig. 173a.
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Fig. 245. Formation of the sequence of vertical sections (Fig. 178a—h) by the movement of lines wx and yz. 27



14.6. Critical Points

The rule of adjoining phase regions does not apply in the immediate
neighborhood of critical points in phase diagrams and their sections.

An empirical formula for the determination of
the dimensions of a critical element: Rl — R—Dc \>“ 0.'

Where R, is the dimension of the boundary between neighboring phase regions,
R is the dimension of the phase diagram or section, and
D. represents the number of phases that are combined into one phase as a result of

the corresponding critical transformation.

Example
" Ry =R-D, =2-2=0.

o' The critical element is zero-dimensional—point c.

C
D, =2
two phases «; and o, merge at the critical

o) o + o o o .
point into the « phase.
A B

Fig. 246. Binary miscibility gap with critical point c. 28



Chapter 15. Quaternary phase Diagrams

Four components: A, B, C, D

Assuming isobaric conditions,
Four variables: Xy, Xg, Xcand T

A difficulty of four-dimensional geometry
— further restriction on the system = : X8

Most common figure:
“ equilateral tetrahedron *

4 pure components
6 binary systems
4 ternary systems | ENRLY e
A quarternary System . —_— | _______ . ...... ________ - g

S s e B




* Draw four small equilateral tetrahedron
— formed with edge lengths of a, b, ¢, d

a+b+c+d=100

%A=Pt=c, i
%B=Pr=a, |
%C=Pu=d,
%D=Ps=b
= t
Wi "'r“ g o o R e e e i e e el e e i l:; _______i\\" X
S -~ R L »
3
A A L
Y

Fig. 247. Representation of a quaternary svstem by an equilateral tetrahedron.



Fig. 248. Plotting of alloy compositions in quaternary systems. 31



Useful geometrical properties
of an equilateral tetrahedron

B 32
C:D constant on plane AB/ C:D and B:D constant on plane A/K

A
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