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System Call Emulation
Code Cache Management
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Instruction EmulationInstruction Emulation

How to do high performance instruction emulation?
Let us first understand the emulation overhead
The overall time for emulating an instruction N times
• T (Total) = S + NT
• S: one-time start-up overhead 
• T: time required per emulation in steady state

S T

Interpretation 0 20

Binary translation 1000 2
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Performance TradePerformance Trade--offoff
• If N < 45, interpretation is better
• If N > 45, binary translation is better

Interpretation

Binary Translation
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How to Exploit the TradeHow to Exploit the Trade--OffsOffs

We cannot predict know how many 
times a block will be executed in advance

But we know if it is executed frequently,
(e.g., > 45), it is better to be translated
• Why? It has a better chance of being a 
hot spot, so the start-up overhead can be offset

– i.e., benefit of translation > cost of translation

One solution: staged emulation
• Begins emulation with interpretation
• Collect profile data (e.g., execution frequency)
• If it is a hot spot, translate it
• If it is a real hot spot, translate it again with

optimization with a larger block (e.g., superblock)

Interpretation

Binary translation 
of basic blocks

Binary translation 
with optimization
(on superblocks)

Frequently used

Frequently used
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Instruction EmulationInstruction Emulation

Frame work

Interpreter

Profile Data Binary Memory 
Image Code Cache

Translator/
Optimizer

Emulation
Manager
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Staged Emulation Execution FlowStaged Emulation Execution Flow

Detecting precise 

guest state
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Exception EmulationException Emulation

Trap  : Direct result of program execution and 
is produced by a specific instruction (e.g. /0)

Interrupt  : External event  (e.g. I/O interrupt)

Exception

• Correct handling of exceptions raised during 
the  emulation of guest process
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ExceptionException EmulationEmulation
If there are exceptions raised during the emulation 
of guest process, we should emulate them correctly

There are two types of exceptions
• Trap: direct result of program execution and is produced b 

y a specific instruction
– Divide by zero, memory access violation, page fault, etc.

• Interrupt: external event
– I/O interrupt, timer interrupt, etc.

Actually, trap and interrupt are mechanism for 
transferring control from user program to OS
• Another mechanism is system call which work similar to 

the trap except for argument passing
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Taxonomy of ExceptionsTaxonomy of Exceptions
ABI visible: 
• All exceptions that are returned to the application via OS signa 

l
• Function of OS and user-level ISA
• E.g., if there is an OS signal for memory protection fault, then 

it is ABI visible
• E.g., include exceptions that cause the application to terminate

ABI invisible: 
• ABI is essentially unaware of its existence
• There are no signals for them or the application does not 

terminate when the exception occurs
• E.g., timer interrupt or page fault
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Some Some ExceptionException Handling BasicsHandling Basics

When exception occurs, the following events occur
• Execution ceases and the processor goes into a “precise” 

state
– Called precise exception handling

• Save PC and other registers
• Go into privileged mode and OS gains control
• OS saves remaining state of the faulting process
• OS either handles the trap or jumps to the handling code

– If the user established a trap handler, jump to the trap handler
• After trap handling completes, the process’s precise state is 

restored and jump back to the faulting location of the process
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Precise Exception HandlingPrecise Exception Handling
Most ISA supports precise exceptions
• An exception is precise if the following conditions are true

Why precise exception? 
• Ensuring deterministic behavior when returned back

Precise exception handling will be done automatically 
for the host process, but it should be done by the VM 
for the guest process

Prior Instructions Faulting Instruction Following Instructions

Have been 
executed

Have not been 
executed

Generally not 
executed 
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Exception Detection Exception Detection for a Tfor a Traprap
Can be detected in two ways
• Checked as part of an instruction’s interpretation routine

– E.g. check operands and the final sum a = b + c
– Inefficient but can always be done

Can be detected by host hardware during execution
• As a result of executing emulation code (interpreted or translated)
• OS signal mechanism play an important role

– Runtime register all exceptions for which the host OS signals
– When traps to the OS during emulation, the host OS will deliver signal
– Runtime signal handler checks the signal and do appropriate action

• What if the guest process itself registers signals via system call?
– Runtime intercepts the call and register it as a “guest-registered” one
– Runtime transfers to guest’s signal handler when signal arrives
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Signal Handling by RuntimeSignal Handling by Runtime

Host OS

Runtime Check in guest’s 
signal table

Transfer to guest’s 
signal handling code

Handle the exception 
indicated by the signal

Deliver a 
signal

Yes 

No 
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Three kinds of trapping conditionThree kinds of trapping condition

Trap is visible both to guest ABI and host ABI
• Invoke runtime signal handler

Not visible to host ABI
• Interpretive trap detection must be used

Not visible to guest ABI
• Extra traps: runtime trap handler will determine whether 

the trap condition would be visible to source instruction
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Securing PSecuring Precise recise GGuest uest SStatetate
The first thing is finding the excepting source PC
Straightforward for interpretation
When signal is delivered with a target PC, the current 
source PC points to the excepting source instruction

Add:

sum =source1 + source2;

regs[RT] = sum;

PC = PC + 4;

source state is clear when 
the exception signal comes

...

...
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Securing PSecuring Precise recise GGuest uest SStatetate

Not straightforward with binary translation
Problem: binary translation typically does not keep 
a continuously updated version of source PC

Use a reverse translation side table
• Contains <target PC, source PC> pairs
• Given the TPC of trapping instruction, runtime scan 

the table for a match and get the SPC
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Source CodeTranslated  Code

Target PC Target PC

Target PC Target PC

Target PC Target PC

Signal returns 
target PC to 
runtime

Runtime 
searches 
side table

2

3

4

Find 
corresponding 
source PC

Side table

... ...

Block A

Block B

Block N

...
1Trap 

occurs

Finding the trapping source PCFinding the trapping source PC
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Inefficiency of Inefficiency of SSide ide TTableable
• The target PC lookup is expensive if we search linearly
• The table will be fairly large

Solutions
• Replace linear scan with binary search
• Reduce table size by saving only the TPC and SPC for the beginning of 

the block, while other TPC and SPC are expressed as delta from these 
saved TPC and SPC

– If the target ISA is a fixed size, save only SPC and its deltas

Some complications (will be dealt with in Chap 4)
• When a target instruction corresponds to multiple source instructions (e.g., 

load and add in RISC for a CISC instruction)
• When the translated code is optimized and rearranged
• Identify beginning of translated source block and analyze/interpret 
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Using an optimized side tableUsing an optimized side table

Block A

Block B

Block N

...
1Trap 

occurs

Source CodeTranslated  Code

Start PC Block Formation 
Info

Start PC Block Formation 
Info

Start PC N

Signal returns 
target PC to 
runtime

Runtime 
searches 
side table

2

3

5

Find 
corresponding 
source PC

Side table

... ...

Target PCs

Find source 
code start 
information

4

Analyze/interpret 
source code
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Precise State of RPrecise State of Registeregisters & Memorys & Memory

When an exception occurs during execution of translated block, the 
precise state of registers and memory should also be restored

As to registers, no code reordering, no removal of register updates, 
and consistent register mapping guarantees recovering source 
register state from target register state

As to memory, it is changed only by store instructions and if the 
translated code keeps the order of source code store instructions, 
the memory state is consistent if trapped

If there are code reordering, then we need to handle them
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Operating Operating SSystem ystem EEmulationmulation
Process-level VM (ABI level compatible) does not emula
te the individual instructions in the guest’s OS code

Just emulate the function of the guest’s system calls
• By converting them to host OS calls

– Mostly formatting arguments and return values
– E.g., system calls in IA-32 pass arguments via memory while 

those in RISC pass arguments via registers

Two cases:
• Guest and Host OS are the same
• Guest and Host OS are the different
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OS Call Translation for the Same OSOS Call Translation for the Same OS

It may be necessary to 
• move and format arguments and return values
• form some data conversions

Reason
• Because of the hardware differences of the target platforms
• Arguments passing will be done in a memory resident stack 

or registers
• Above changes must be compensated when emulating a sys 

tem call
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OS Call Translation for the Same OSOS Call Translation for the Same OS

Source code 
segment

.

.

s_inst1

s_inst2

s_system_call X

s_inst4

s_inst5

.

.

Target code 
segment

.

.

t-inst1

t_inst2

Jump runtime

t_inst4

t_inst5

.

.

Runtime

wrapper code

copy/convert arg1

copy/convert arg2

.

.t_system_call X

copy/convert 
return val

return to t_inst4

Binary 
translation

Convert system call 
to a jump or 
procedure call into 
the runtime
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RuntimeRuntime--implemented OS functionsimplemented OS functions

Some system calls may be handled directly be the runtime

Examples
• System call to establish a signal on behalf of the guest application

– Runtime record the application’s signal in a side table and return 
to the guest process

• System call for memory management
– Process VM always maintain control on overall memory management
– E.g. Linux brk() system call is handled directly by runtime
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Code Cache ManagementCode Cache Management

Code cache differs from a H/W cache in three ways
• The cached blocks do not have a fixed size

– Depends on the size of the translated target block
• The cache blocks are dependent on another due to chaining

– If a block is removed, corresponding link pointers must be 
updated

• There is no copy of the cache contents in a backup space
– Need to be regenerated if want it back

Need different cache management algorithms
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Code Cache ImplementationsCode Cache Implementations
Two key operations involving the code cache
• Given a SPC, find TPC

– When control transfer to code cache
– Use SPC-to-TPC map table

• Given a TPC, find a SPC
– Used to find the precise source PC when exception occurs
– Using reverse translation side table 
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Replacement algorithmsReplacement algorithms

Least recently used (LRU)
• Replaces a block that was unused for the longest period of time
• Make use of temporal locality

Problems in implementation
• Overhead in keeping track of the least recently used block

– Need to update LRU information each time a block is entered
• When an arbitrary block is removed, any link pointers linked to it 

must be updated
– Backpointers can help for updating link pointers

• Cache fragmentation issue when an LRU block is removed

LRU is not used for code cache replacement
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The use of The use of backpointersbackpointers

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptrs

block A

block B

block C

block N

...

...

...

Code Cache

Map Table

block C

block B

block N Original linking

Back linking



30
Microprocessor Architecture & System Software Lab

FlushFlush--WhenWhen--Full Full AAlgorithmlgorithm
Start from scratch approach
Advantages
• Provides an opportunity to eliminate superblocks 

whose control paths are changed over time
Disadvantages
• All blocks being actively used have to be retranslated after flush
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Preemptive FlushPreemptive Flush
Based on an observation
• Programs operate in phases
• A phase change is usually associated with an instruction working 

set change

Preemptive flush
• When an increase in new translation is detected, the entire code 

cache is flushed to make room for a new working set
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Preemptive FlushPreemptive Flush

New 
translations

Detect working set 
change and flush

Time
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FineFine--Grained FIFOGrained FIFO
A nonfragmenting algorithm that exploits temporal locality
• Code cache is managed as a circular buffer

– Oldest blocks are removed to make a room for new ones

• Reverse-translation table can also be managed in a FIFO manner

Performance
• Overcomes some disadvantages of LRU
• Still need backpointers to keep track of chaining

...
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CoarseCoarse--Grained FIFGrained FIFOO
This is for simplifying backpointers
Partition the code cache into very large FIFO blocks
• Each FIFO block is allocated sequentially as usual, but when the 

code cache is full, the oldest FIFO block is removed as a whole

Why is this good for simplfying backpointers?
• Maintain the backpointers only on a FIFO block basis

– Do not keep the backpointers within the same FIFO block
– Only keep them for different FIFO blocks

Why? Translation blocks in the same FIFO block will be removed together
• When a FIFO block is removed, all its backpointers are handled
• The point is that the number of intra-FIFO block links is much higher 

than inter-FIFO block links
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...

FIFO 
block A

FIFO 
block B

FIFO 
block D

Code Cache Backpoint 
Tables

CoarseCoarse--Grained FIFOGrained FIFO PicturePicture
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Performance comparisonPerformance comparison
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