
Process VM (2)Process VM (2)

2
Microprocessor Architecture & System Software Lab

OutlineOutline

Instruction Emulation
Exception Emulation
System Call Emulation
Code Cache Management

3
Microprocessor Architecture & System Software Lab

Instruction EmulationInstruction Emulation

How to do high performance instruction emulation?
Let us first understand the emulation overhead
The overall time for emulating an instruction N times
• T (Total) = S + NT
• S: one-time start-up overhead
• T: time required per emulation in steady state

S T

Interpretation 0 20

Binary translation 1000 2

4
Microprocessor Architecture & System Software Lab

Performance TradePerformance Trade--offoff
• If N < 45, interpretation is better
• If N > 45, binary translation is better

Interpretation

Binary Translation

10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

N – Numbers of Times Emulated

T
 – T

o
tal E

m
u
latio

n
 T

im
e

5
Microprocessor Architecture & System Software Lab

How to Exploit the TradeHow to Exploit the Trade--OffsOffs

We cannot predict know how many
times a block will be executed in advance

But we know if it is executed frequently,
(e.g., > 45), it is better to be translated
• Why? It has a better chance of being a
hot spot, so the start-up overhead can be offset

– i.e., benefit of translation > cost of translation

One solution: staged emulation
• Begins emulation with interpretation
• Collect profile data (e.g., execution frequency)
• If it is a hot spot, translate it
• If it is a real hot spot, translate it again with

optimization with a larger block (e.g., superblock)

Interpretation

Binary translation
of basic blocks

Binary translation
with optimization
(on superblocks)

Frequently used

Frequently used

6
Microprocessor Architecture & System Software Lab

Instruction EmulationInstruction Emulation

Frame work

Interpreter

Profile Data Binary Memory
Image Code Cache

Translator/
Optimizer

Emulation
Manager

7
Microprocessor Architecture & System Software Lab

Staged Emulation Execution FlowStaged Emulation Execution Flow

Detecting precise

guest state

8
Microprocessor Architecture & System Software Lab

Exception EmulationException Emulation

Trap : Direct result of program execution and
is produced by a specific instruction (e.g. /0)

Interrupt : External event (e.g. I/O interrupt)

Exception

• Correct handling of exceptions raised during
the emulation of guest process

9
Microprocessor Architecture & System Software Lab

ExceptionException EmulationEmulation
If there are exceptions raised during the emulation
of guest process, we should emulate them correctly

There are two types of exceptions
• Trap: direct result of program execution and is produced b

y a specific instruction
– Divide by zero, memory access violation, page fault, etc.

• Interrupt: external event
– I/O interrupt, timer interrupt, etc.

Actually, trap and interrupt are mechanism for
transferring control from user program to OS
• Another mechanism is system call which work similar to

the trap except for argument passing

10
Microprocessor Architecture & System Software Lab

Taxonomy of ExceptionsTaxonomy of Exceptions
ABI visible:
• All exceptions that are returned to the application via OS signa

l
• Function of OS and user-level ISA
• E.g., if there is an OS signal for memory protection fault, then

it is ABI visible
• E.g., include exceptions that cause the application to terminate

ABI invisible:
• ABI is essentially unaware of its existence
• There are no signals for them or the application does not

terminate when the exception occurs
• E.g., timer interrupt or page fault

11
Microprocessor Architecture & System Software Lab

Some Some ExceptionException Handling BasicsHandling Basics

When exception occurs, the following events occur
• Execution ceases and the processor goes into a “precise”

state
– Called precise exception handling

• Save PC and other registers
• Go into privileged mode and OS gains control
• OS saves remaining state of the faulting process
• OS either handles the trap or jumps to the handling code

– If the user established a trap handler, jump to the trap handler
• After trap handling completes, the process’s precise state is

restored and jump back to the faulting location of the process

12
Microprocessor Architecture & System Software Lab

Precise Exception HandlingPrecise Exception Handling
Most ISA supports precise exceptions
• An exception is precise if the following conditions are true

Why precise exception?
• Ensuring deterministic behavior when returned back

Precise exception handling will be done automatically
for the host process, but it should be done by the VM
for the guest process

Prior Instructions Faulting Instruction Following Instructions

Have been
executed

Have not been
executed

Generally not
executed

13
Microprocessor Architecture & System Software Lab

Exception Detection Exception Detection for a Tfor a Traprap
Can be detected in two ways
• Checked as part of an instruction’s interpretation routine

– E.g. check operands and the final sum a = b + c
– Inefficient but can always be done

Can be detected by host hardware during execution
• As a result of executing emulation code (interpreted or translated)
• OS signal mechanism play an important role

– Runtime register all exceptions for which the host OS signals
– When traps to the OS during emulation, the host OS will deliver signal
– Runtime signal handler checks the signal and do appropriate action

• What if the guest process itself registers signals via system call?
– Runtime intercepts the call and register it as a “guest-registered” one
– Runtime transfers to guest’s signal handler when signal arrives

14
Microprocessor Architecture & System Software Lab

Signal Handling by RuntimeSignal Handling by Runtime

Host OS

Runtime Check in guest’s
signal table

Transfer to guest’s
signal handling code

Handle the exception
indicated by the signal

Deliver a
signal

Yes

No

15
Microprocessor Architecture & System Software Lab

Three kinds of trapping conditionThree kinds of trapping condition

Trap is visible both to guest ABI and host ABI
• Invoke runtime signal handler

Not visible to host ABI
• Interpretive trap detection must be used

Not visible to guest ABI
• Extra traps: runtime trap handler will determine whether

the trap condition would be visible to source instruction

16
Microprocessor Architecture & System Software Lab

Securing PSecuring Precise recise GGuest uest SStatetate
The first thing is finding the excepting source PC
Straightforward for interpretation
When signal is delivered with a target PC, the current
source PC points to the excepting source instruction

Add:

sum =source1 + source2;

regs[RT] = sum;

PC = PC + 4;

source state is clear when
the exception signal comes

...

...

17
Microprocessor Architecture & System Software Lab

Securing PSecuring Precise recise GGuest uest SStatetate

Not straightforward with binary translation
Problem: binary translation typically does not keep
a continuously updated version of source PC

Use a reverse translation side table
• Contains <target PC, source PC> pairs
• Given the TPC of trapping instruction, runtime scan

the table for a match and get the SPC

18
Microprocessor Architecture & System Software Lab

Source CodeTranslated Code

Target PC Target PC

Target PC Target PC

Target PC Target PC

Signal returns
target PC to
runtime

Runtime
searches
side table

2

3

4

Find
corresponding
source PC

Side table

... ...

Block A

Block B

Block N

...
1Trap

occurs

Finding the trapping source PCFinding the trapping source PC

19
Microprocessor Architecture & System Software Lab

Inefficiency of Inefficiency of SSide ide TTableable
• The target PC lookup is expensive if we search linearly
• The table will be fairly large

Solutions
• Replace linear scan with binary search
• Reduce table size by saving only the TPC and SPC for the beginning of

the block, while other TPC and SPC are expressed as delta from these
saved TPC and SPC

– If the target ISA is a fixed size, save only SPC and its deltas

Some complications (will be dealt with in Chap 4)
• When a target instruction corresponds to multiple source instructions (e.g.,

load and add in RISC for a CISC instruction)
• When the translated code is optimized and rearranged
• Identify beginning of translated source block and analyze/interpret

20
Microprocessor Architecture & System Software Lab

Using an optimized side tableUsing an optimized side table

Block A

Block B

Block N

...
1Trap

occurs

Source CodeTranslated Code

Start PC Block Formation
Info

Start PC Block Formation
Info

Start PC N

Signal returns
target PC to
runtime

Runtime
searches
side table

2

3

5

Find
corresponding
source PC

Side table

... ...

Target PCs

Find source
code start
information

4

Analyze/interpret
source code

21
Microprocessor Architecture & System Software Lab

Precise State of RPrecise State of Registeregisters & Memorys & Memory

When an exception occurs during execution of translated block, the
precise state of registers and memory should also be restored

As to registers, no code reordering, no removal of register updates,
and consistent register mapping guarantees recovering source
register state from target register state

As to memory, it is changed only by store instructions and if the
translated code keeps the order of source code store instructions,
the memory state is consistent if trapped

If there are code reordering, then we need to handle them

22
Microprocessor Architecture & System Software Lab

Operating Operating SSystem ystem EEmulationmulation
Process-level VM (ABI level compatible) does not emula
te the individual instructions in the guest’s OS code

Just emulate the function of the guest’s system calls
• By converting them to host OS calls

– Mostly formatting arguments and return values
– E.g., system calls in IA-32 pass arguments via memory while

those in RISC pass arguments via registers

Two cases:
• Guest and Host OS are the same
• Guest and Host OS are the different

23
Microprocessor Architecture & System Software Lab

OS Call Translation for the Same OSOS Call Translation for the Same OS

It may be necessary to
• move and format arguments and return values
• form some data conversions

Reason
• Because of the hardware differences of the target platforms
• Arguments passing will be done in a memory resident stack

or registers
• Above changes must be compensated when emulating a sys

tem call

24
Microprocessor Architecture & System Software Lab

OS Call Translation for the Same OSOS Call Translation for the Same OS

Source code
segment

.

.

s_inst1

s_inst2

s_system_call X

s_inst4

s_inst5

.

.

Target code
segment

.

.

t-inst1

t_inst2

Jump runtime

t_inst4

t_inst5

.

.

Runtime

wrapper code

copy/convert arg1

copy/convert arg2

.

.t_system_call X

copy/convert
return val

return to t_inst4

Binary
translation

Convert system call
to a jump or
procedure call into
the runtime

25
Microprocessor Architecture & System Software Lab

RuntimeRuntime--implemented OS functionsimplemented OS functions

Some system calls may be handled directly be the runtime

Examples
• System call to establish a signal on behalf of the guest application

– Runtime record the application’s signal in a side table and return
to the guest process

• System call for memory management
– Process VM always maintain control on overall memory management
– E.g. Linux brk() system call is handled directly by runtime

26
Microprocessor Architecture & System Software Lab

Code Cache ManagementCode Cache Management

Code cache differs from a H/W cache in three ways
• The cached blocks do not have a fixed size

– Depends on the size of the translated target block
• The cache blocks are dependent on another due to chaining

– If a block is removed, corresponding link pointers must be
updated

• There is no copy of the cache contents in a backup space
– Need to be regenerated if want it back

Need different cache management algorithms

27
Microprocessor Architecture & System Software Lab

Code Cache ImplementationsCode Cache Implementations
Two key operations involving the code cache
• Given a SPC, find TPC

– When control transfer to code cache
– Use SPC-to-TPC map table

• Given a TPC, find a SPC
– Used to find the precise source PC when exception occurs
– Using reverse translation side table

28
Microprocessor Architecture & System Software Lab

Replacement algorithmsReplacement algorithms

Least recently used (LRU)
• Replaces a block that was unused for the longest period of time
• Make use of temporal locality

Problems in implementation
• Overhead in keeping track of the least recently used block

– Need to update LRU information each time a block is entered
• When an arbitrary block is removed, any link pointers linked to it

must be updated
– Backpointers can help for updating link pointers

• Cache fragmentation issue when an LRU block is removed

LRU is not used for code cache replacement

29
Microprocessor Architecture & System Software Lab

The use of The use of backpointersbackpointers

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptrs

Source PC Target PC Back Ptrs

block A

block B

block C

block N

...

...

...

Code Cache

Map Table

block C

block B

block N Original linking

Back linking

30
Microprocessor Architecture & System Software Lab

FlushFlush--WhenWhen--Full Full AAlgorithmlgorithm
Start from scratch approach
Advantages
• Provides an opportunity to eliminate superblocks

whose control paths are changed over time
Disadvantages
• All blocks being actively used have to be retranslated after flush

31
Microprocessor Architecture & System Software Lab

Preemptive FlushPreemptive Flush
Based on an observation
• Programs operate in phases
• A phase change is usually associated with an instruction working

set change

Preemptive flush
• When an increase in new translation is detected, the entire code

cache is flushed to make room for a new working set

32
Microprocessor Architecture & System Software Lab

Preemptive FlushPreemptive Flush

New
translations

Detect working set
change and flush

Time

33
Microprocessor Architecture & System Software Lab

FineFine--Grained FIFOGrained FIFO
A nonfragmenting algorithm that exploits temporal locality
• Code cache is managed as a circular buffer

– Oldest blocks are removed to make a room for new ones

• Reverse-translation table can also be managed in a FIFO manner

Performance
• Overcomes some disadvantages of LRU
• Still need backpointers to keep track of chaining

...

34
Microprocessor Architecture & System Software Lab

CoarseCoarse--Grained FIFGrained FIFOO
This is for simplifying backpointers
Partition the code cache into very large FIFO blocks
• Each FIFO block is allocated sequentially as usual, but when the

code cache is full, the oldest FIFO block is removed as a whole

Why is this good for simplfying backpointers?
• Maintain the backpointers only on a FIFO block basis

– Do not keep the backpointers within the same FIFO block
– Only keep them for different FIFO blocks

Why? Translation blocks in the same FIFO block will be removed together
• When a FIFO block is removed, all its backpointers are handled
• The point is that the number of intra-FIFO block links is much higher

than inter-FIFO block links

35
Microprocessor Architecture & System Software Lab

...

FIFO
block A

FIFO
block B

FIFO
block D

Code Cache Backpoint
Tables

CoarseCoarse--Grained FIFOGrained FIFO PicturePicture

36
Microprocessor Architecture & System Software Lab

Performance comparisonPerformance comparison

0

20

40

60

80

100

120

Relative
overhead
(%)

Flush 2 blocks 4 blocks 8 blocks 16 blocks 32 blocks 64 blocks Fine-grained

	Process VM (2)
	Outline
	Instruction Emulation
	Performance Trade-off
	How to Exploit the Trade-Offs
	Instruction Emulation	
	Staged Emulation Execution Flow
	Exception Emulation
	Exception Emulation
	Taxonomy of Exceptions
	Some Exception Handling Basics
	Precise Exception Handling
	Exception Detection for a Trap
	Signal Handling by Runtime
	Three kinds of trapping condition
	Securing Precise Guest State
	Securing Precise Guest State
	Finding the trapping source PC
	Inefficiency of Side Table
	Using an optimized side table
	Precise State of Registers & Memory
	Operating System Emulation
	OS Call Translation for the Same OS
	OS Call Translation for the Same OS
	Runtime-implemented OS functions
	Code Cache Management
	Code Cache Implementations
	Replacement algorithms
	The use of backpointers
	Flush-When-Full Algorithm
	Preemptive Flush
	Preemptive Flush
	Fine-Grained FIFO
	Coarse-Grained FIFO
	Coarse-Grained FIFO Picture
	Performance comparison

