

"Phase Transformation in Materials"

09.14.2015 Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Contents for previous class

- Binary System mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$G_1 = X_A G_A + X_B G_B \quad J/mol$$
 $G_2 = G_1 + \Delta G_{mix} \quad J/mol$

Ideal solution (
$$\Delta H_{mix} = 0$$
) $\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$

$$G = X_{\scriptscriptstyle A} G_{\scriptscriptstyle A} \, + \, X_{\scriptscriptstyle B} G_{\scriptscriptstyle B} \, + \, RT(X_{\scriptscriptstyle A} \ln X_{\scriptscriptstyle A} \, + \, X_{\scriptscriptstyle B} \ln \, X_{\scriptscriptstyle B})$$

Regular solution

$$G = X_A G_A + X_B G_B + \Omega X_A X_B + RT (X_A \ln X_A + X_B \ln X_B)$$

- Chemical potential and Activity

 $\mu_{A} = \left(\frac{\partial G'}{\partial n_{A}}\right)_{T, P, n_{B}}$

μ는 조성에 의해 결정되기 때문에 dn_A가 매우 작아서 조성변화 없어야

$$\mu_{A} = G_{A} + RT \ln a_{A} \quad \ln \left(\frac{a_{A}}{X_{A}}\right) = \frac{\Omega}{RT} (1 - X_{A})^{2}$$

 $\Delta H_{mix} = P_{AB} \varepsilon$ where $\varepsilon = \varepsilon_{AB} - \frac{1}{2} (\varepsilon_{AA} + \varepsilon_{BB})$

 $\frac{a_A}{X_A} = \gamma_A = \text{activity coefficient}$

* Binary System (two components) → A, B

: Equilibrium depends on not only pressure and temperature but also <u>composition</u>.

Solid Solution vs. Intermetallic Compounds

- atomic scale mixture/ Random distribution on lattice

-fixed A, B positions/ Ordered state

Pt_{0.5}Ru_{0.5} – Pt structure (fcc)

PbPt – NiAS structure

З

Hume-Rothery Rules for Mixing

Empirical rules for substitutional solid-solution formation were identified from experiment that are not exact, but give an expectation of formation.

- Solid solution:
 - Crystalline solid
 - Multicomponent yet homogeneous
 - Impurities are randomly distributed throughout the lattice
- Factors favoring solubility of B in A (Hume-Rothery Rules)
 - Similar atomic size: $\Delta r l r \leq 15\%$
 - Same crystal structure for A and B
 - − Similar electronegativities: $|\chi_A \chi_B| \le 0.6$ (preferably ≤ 0.4)
 - Similar valence
- If all four criteria are met: complete solid solution
- If any criterion is not met: *limited solid solution*

Cu-Ni Alloys

Cu-Ag Alloys

complete solid solution

limited solid solution

Assumption: a simple physical model for "binary solid solutions" : in order to introduce some of the basic concepts of the thermodynamics of alloys

1.3 Binary Solutions

1) Ideal solution

G = H - TS = E + PV - TS**Chemical potential**

The increase of the total free energy of the system by the increase of very small quantity of A, dn_A, will be proportional to μ_A .

 \rightarrow dn_A~ small enough (: μ_A depends on the composition of phase)

 $dG' = \mu_A dn_A$ (T, P, n_B: constant)

 $\mu_{\mathbf{\Delta}}$: partial molar free energy of A or chemical potential of A

 $dG' = \mu_A dn_A + \mu_B dn_B$ For A-B binary solution,

For variable T and P

$$dG' = -SdT + VdP + \mu_A dn_A + \mu_B dn_B \qquad ^6$$

1.3 Binary Solutions

1) Ideal solution

Fig. 1.12 The relationship between the free energy curve and Chemical potentials for an ideal solution.

Contents for today's class

- Binary Solid Solution

- Ideal solution and Regular solution
- : Chemical potential and Activity

Real solution

- Ordered phases: SRO & LRO, superlattice, Intermediate phase (intermetallic compound)
- Clustering
- Equilibrium in heterogeneous system

1.3 Binary Solutions

$$\Delta \boldsymbol{G}_{mix} = \Delta \boldsymbol{H}_{mix} - \boldsymbol{T} \Delta \boldsymbol{S}_{mix}$$

Q1: What is "Regular Solution"?

 $\Delta \boldsymbol{G}_{mix} = \Delta \boldsymbol{H}_{mix} - \boldsymbol{T} \Delta \boldsymbol{S}_{mix}$

Regular Solutions

Ideal solution : $\Delta H_{mix} = 0 \implies$ This type of behavior is exceptional in practice and usually mixing is endothermic or exothermic.

<u>Quasi-chemical model</u> assumes that heat of mixing, ΔH_{mix} , is only due to the bond energies between adjacent atoms.

Assumption: the volumes of pure A and B are equal and do not change during mixing so that the interatomic distance and bond energies are independent of composition. Structure model of a binary solution

Gibbs Free Energy of Regular Solutions

Q2: How can you estimate " ΔH_{mix} of regular solution"? $\Delta H_{mix} = \Omega X_A X_B$ where $\Omega = N_a z \epsilon$

1.3 Binary Solutions

Regular Solutions

	Bond energy	Number of bond
A-A B-B A-B	ε _{AA} ε _{BB} ε _{AB}	P _{AA} P _{BB} P _{AB}
Internal energy o	f the solution	
E =	$= P_{AA} \varepsilon_{AA} + P_{BB} \varepsilon_{B}$	$_{\rm B} + P_{\rm AB} \varepsilon_{\rm AB}$
Befor	re mixing	After mixing
	Mix	
$\Delta H_{mix} =$	P _{AB} ε where ε =	$=\varepsilon_{AB}-\frac{1}{2}(\varepsilon_{AA}+\varepsilon_{BB})_{12}$

1.3 Binary Solutions

Regular Solutions

Completely random arrangement

$$\varepsilon = 0 \quad \Longrightarrow \quad \varepsilon_{AB} = \frac{1}{2}(\varepsilon_{AA} + \varepsilon_{BB})$$

 $\Delta H_{mix} = 0$ ideal solution $\frac{P_{AB} = N_a z X_A X_B}{N_a : Avogadro's number}$

z: number of bonds per atom

(1)
$$\varepsilon < 0 \rightarrow P_{AB} \uparrow$$
 (2) $\varepsilon > 0 \rightarrow P_{AB} \downarrow$
(3) $\varepsilon \approx 0 \rightarrow \Delta H_{mix} = P_{AB}\varepsilon$
 $\Delta H_{mix} = \Omega X_A X_B$ where $\Omega = N_a z\varepsilon$
Regular solution

Fig. 1.14 The variation of ΔH_{mix} with composition for a regular solution.

Gibbs Free Energy of Regular Solutions

Q3: How can you estimate

"Molar Free energy for regular solution"?

	mix
$G = X_A G_A + X_B G_B + \Omega X_A X_B -$	$+ RT (X_A \ln X_A + X_B \ln X_B)$

Regular Solutions

Gibbs Free Energy of Binary Solutions

Q4: "Correlation between chemical potential and free energy"?

2) regular solution

Correlation between chemical potential and free energy

For 1 mole of the solution (T, P: constant)

G = E + PV - TS $G = \mu_A X_A + \mu_B X_B \quad Jmol^{-1}$

 $G = H-TS \qquad G = X_{A}G_{A} + X_{B}G_{B} + \Omega X_{A}X_{B} + RT (X_{A} \ln X_{A} + X_{B} \ln X_{B})$ $\longrightarrow X_{A}X_{B} = X_{A}X_{B}(X_{A} + X_{B}) = X_{A}^{2}X_{B} + X_{B}^{2}X_{A}$ $= X_{A}(G_{A} + \Omega(1 - X_{A})^{2} + RT \ln X_{A}) + X_{B}(G_{B} + \Omega(1 - X_{B})^{2} + RT \ln X_{B})$

Regular solution

$$\mu_{A} = G_{A} + \Omega (1 - X_{A})^{2} + RT \ln X_{A}$$

$$\mu_{B} = G_{B} + \Omega (1 - X_{B})^{2} + RT \ln X_{B}$$

$$= G_{A} + RT \ln X_{A}$$

$$= G_{B} + RT \ln X_{B}$$

ideal solution

$$\frac{1}{4 \text{ Constraints}} = \frac{1}{4 \text{ Constraints}} = \frac{1}{4$$

Gibbs Free Energy of Binary Solutions

Q5: What is "activity"?

Activity, a : effective concentration for mass action

Activity-composition curves for solutions

• For a dilute solution of B in A $(X_B \rightarrow 0)$

 $\gamma_{B} = \frac{\mathbf{a}_{B}}{X_{B}} \cong \text{constant} \quad (\text{Henry's Law})$ $\gamma_{A} = \frac{\mathbf{a}_{A}}{X_{A}} \cong 1 \qquad (\text{Rault's Law})$ 20

Variation of activity with composition (a) a_B , (b) a_A

Line 1 : (a) $a_B = X_B$, (b) $a_A = X_A$ Line 2 : (a) $a_B < X_B$, (b) $a_A < X_A$ Line 3 : (a) $a_B > X_B$, (b) $a_A > X_A$

Gibbs Free Energy of Binary Solutions

Q6: "Chemical equilibrium of multi-phases"?

Fig. 10. Transfer of dn_A moles of component A from the β to the α phase.

Activity of a component is just another means of describing the state of the component in a solution.

degree of non-ideality ?
$$\rightarrow \frac{a_A}{X_A}$$
 $\frac{a_A}{X_A} = \gamma_A, \quad a_A = \gamma_A X_A$
 γ_A : activity coefficient
 $\mu_A = G_A + RT \ln a_A$

Activity or chemical potential of a component is important when several condensed phases are in equilibrium.

Chemical Equilibrium (μ , a) \rightarrow multiphase and multicomponent ($\mu_i^{\alpha} = \mu_i^{\beta} = \mu_i^{\gamma} = ...$), ($a_i^{\alpha} = a_i^{\beta} = a_i^{\gamma} = ...$) ($\mu_A^{\alpha} = \mu_A^{\beta} = \mu_A^{\gamma} = ...$), ($a_A^{\alpha} = a_A^{\beta} = a_A^{\gamma} = ...$) ($\mu_B^{\alpha} = \mu_B^{\beta} = \mu_B^{\gamma} = ...$), ($a_B^{\alpha} = a_B^{\beta} = a_B^{\gamma} = ...$)

- **Binary System** mixture/ solution / compound
- Gibbs Free Energy in Binary System

$$G_1 = X_A G_A + X_B G_B \quad J/mol$$
 $G_2 = G_1 + \Delta G_{mix} \quad J/mol$

Ideal solution ($\Delta H_{mix} = 0$) $\Delta G^{mix} = RT(X_A \ln X_A + X_B \ln X_B)$

$$G = X_A G_A + X_B G_B + RT(X_A \ln X_A + X_B \ln X_B)$$

Regular solution
$$\Delta H_{mix} = P_{AB}\varepsilon$$
 where $\varepsilon = \varepsilon_{AB} - \frac{1}{2}(\varepsilon_{AA} + \varepsilon_{BB})$
 $G = X_A G_A + X_B G_B + \Omega X_A X_B + RT(X_A \ln X_A + X_B \ln X_B)$

- Chemical potential and Activity

$$\mu_{A} = \left(\frac{\partial G'}{\partial n_{A}}\right)_{T,P,n_{A}}$$

$$\mu_A = G_A + RT \ln a_A$$

 $\ln\!\left(\frac{a_A}{X_A}\right) = \frac{\Omega}{RT}(1 - X_A)^2$

 $\frac{a_A}{X_A} = \gamma_A = \text{activity coefficient}$

 μ 는 조성에 의해 결정되기 때문에 dn_A 가 매우 작아서 조성변화 없어야

- Chemical equilibrium

Q7: What is "Real Solution"?

sufficient disorder + lowest internal E

 $\Delta \boldsymbol{G}_{mix} = \Delta \boldsymbol{H}_{mix} - \boldsymbol{T} \Delta \boldsymbol{S}_{mix}$ **1.3 Binary Solutions** Real solution: sufficient disorder + lowest internal E Ideal or Regular solution : over simplification of reality **Config. Entropy** $S = k \ln w$ + mixing enthalpy $\Delta H_{mix} = \Omega X_A X_B$ where $\Omega = N_a z \varepsilon$ $\varepsilon \approx 0$ $S_{thermal} = 0$ when the size difference is large (a) $\varepsilon < 0$, $\Delta H_{mix} < 0$ (b) $\varepsilon > 0$, $\Delta H_{mix} > 0$ (c) strain effect **Ordered alloys** Clustering Interstitial solution P_{AA}, P_{BB} $P_{AB} \longrightarrow Internal E$ 27

* The degree of ordering or clustering will decrease as temp. increases due to the increasing importance of entropy.

Real solution: sufficient disorder + lowest internal E

- 2) In systems where there is a size difference between the atom e.g. interstitial solid solutions,
- $\rightarrow \Delta E = \Delta H_{mix} + elastic strain$
- → quasi- chemical model ~ underestimate ∆E due to no consideration of elastic strain field

New mathematical models are needed to describe these solutions.

Q8: Ordered phase I: "Short range order (SRO)" in solution

Fig. 1.19 (a) Random A-B solution with a total of 100 atoms and $X_A = X_B = 0.5$, $P_{AB} \sim 100$, S=0. (b) Same alloy with short-range order $P_{AB} = 132$, $P_{AB}(max) \sim 200$, S=(132-100)/(200-100)=0.32. 31

Q9: Ordered phase II: "Long range order (LRO)"

(1)superlattice, 2)intermediate phase, 3)intermetallic compound)

diate phases: (a) for an intermetallic com-(b) for an intermediate phase with a wide

* Compound : AB, A₂B...

→ entropy↓

 \rightarrow covalent, ionic contribution.

 \rightarrow enthalpy more negative \downarrow

 $\Delta H_{mix}^{S} << 0$

Small composition range → G ↓

Fig. 1.23 Free energy curves for intermed pound with a very narrow stability range, (stability range.

* The degree of ordering or clustering will decrease as temp. increases due to the increasing importance of entropy.

1.3 Binary Solutions

$\label{eq:constraint} \textbf{Ordered phase} \qquad \epsilon < 0, \ \Delta H_{mix} < 0$

- * In solutions with compositions that are close to a simple ratio of A:B atoms another type of order can be found.
- * This is known as long-range order (LRO) CuAu, Cu₃Au and many other intermetallics show LRO.

(The atom sites are no longer equivalent but can be labelled as A-sites and B-sites.) * A superlattice forms in materials with LRO

Superlattice formation: order-disorder transformation

- $\epsilon < 0$, $\Delta H_{mix} < 0$
- between dissimilar atoms than between similar atoms
- Large electrochemical factor: tendency for the solute atoms to avoid each other and to associate with the solvent atoms
- Size factor just within the favorable limit: lead to atomic rearrangement

so as to relieve the lattice distortion imposed by the solute atoms

β brass superlattice viewed as two inter-penetrating cubic lattices 38

1.3 Binary Solutions Five common ordered lattices

 $(a)L2_0$: FeAI/AgMg/AuCd/NiZn

(b) $L1_2$: (c) $L1_0$: CuZn/FeCo/NiAl/CoAl/ Cu₃Au/Ni₃Mn/Ni₃Fe/Ni₃Al/ CuAu/CoPt/FePt Pt₃Fe/Au₃Cd/Co₃V/TiZn₃

Cu OZn (a) (

Cu OAu (b)

(c) Cu OAu

(d) Al OFe

(d) D0₃:

Fe₃Al/Cu₃Sb/Mg₃Li/Fe₃Al/ Fe₃Si/Fe₃Be/Cu₃Al

Cd OMg (e)

39 (e) D0₁₉: Mg₃Cd/Cd₃Mg/Ti₃Al/Ni₃Sn/Ag₃In/ Co₃Mo/Co₃W/Fe₃Sn/Ni₃In/Ti₃Sn

 $\varepsilon < 0, \Delta H_{mix} < 0$

Fig. 1.21. Part of the Cu-Au phase diagram showing the regions where the Cu₃Au and CuAu superlattices are stable.

- The entropy of mixing of structure with LRO is extremely small and the degree ۲ of order decrease with increasing temperature until above some critical temperature there is no LRO at all.
- This temperature is a maximum when the composition is the ideal required ٠ for the superlattice.
- The critical temperature for loss of LRO increases with increasing Ω or ΔH_{mix} , ٠ and in many systems the ordered phase is stable up to the melting point.

Ordered Phase

Order-disorder phase transformation

- Not classical phase change=~not depend on diffusion process
- change of temperature allowed a continuous re-arrangement of atoms without changing the phase = "2nd order transition"
- boundary: ordered lattice & disordered lattice/phase rule could not applied

there are cases in which an ordered phase of one composition exists

in equilibrium with a disordered phase of a different composition.

- Simple composition of the type AB or AB₃ can the transformation

(i.e. at the temperature maximum) be considered diffusionless.

 $\varepsilon < 0$, $\Delta H_{mix} < 0 / \Delta H_{mix} \sim -21 \text{ kJ/mol}$

- * Many intermetallic compounds have stoichiometric composition $A_m B_n$ and a characteristic free energy curve as shown in Fig (a).
- * In other structure, <u>fluctuations in composition can be tolerated</u> by some atoms occupying 'wrong' position or by atom sites being left vacant, and in these cases the curvature of the G curve is much less, Fig (b). 44

 $\varepsilon < 0, \Delta H_{mix} < 0$

 $\varepsilon < 0$, $\Delta H_{mix} < 0 / \Delta H_{mix} \sim -38 \text{ kJ/mol}$

 $\varepsilon << 0$, $\Delta H_{mix} << 0 / \Delta H_{mix} \sim -142 \text{ kJ/mol}$

1.3 Binary Solutions

Intermediate Phase

_"different crystal structure as either of the pure component"

3 main factors determining <u>the structure of Intermediate phase</u>?

- 1) Relative atomic size
 - Laves phase (size difference: 1.1~1.6 ex: MgCu₂)
 <u>fill space most efficiently ~ stable</u>
 - Interstitial compound: MX, M₂X, MX₂, M₆X M= Cubic or HCP ex: Zr, Ti, V, Cr, etc, X= H, B, C, and N
- 2) Relative valency electron
 - electron phases ex_α & β brass
 # of valency electrons per unit cell
 → depending on compositional change

3) Electronegativity

- <u>very different electronegativites</u> \rightarrow ionic bond_normal valency compounds ex Mg₂Sn

MgCu₂ (A Laves phase)

Q10: "Clustering"? → Phase separation * The degree of ordering or clustering will decrease as temp. increases due to the increasing importance of entropy.

$\varepsilon > 0$, $\Delta H_{mix} > 0 / \Delta H_{mix} \sim +26 \text{ kJ/mol}$

Compositional analysis of as-cast CoCrFeNi/Cu HEA (dendrite)

- ROI 1, 2 : 1.4 nm x 2 nm x 2 nm
- ROI 3 : 1.2 nm x 2 nm x 23 nm

(1D concentration profile)

1	at%	2	at%
Со	26.19	Со	0.33
Cr	24.15	Cr	0.46
Fe	24.59	Fe	0.39
Ni	19.59	Ni	5.00
Cu	4.74	Cu	93.56
3-1'	at%	3-2'	at%
3-1' Co	at% 25.29	3-2' Co	at% 2.01
3-1' Co Cr	at% 25.29 25.63	3-2' Co Cr	at% 2.01 3.35
3-1' Co Cr Fe	at% 25.29 25.63 23.63	3-2' Co Cr Fe	at% 2.01 3.35 2.56
3-1' Co Cr Fe Ni	at% 25.29 25.63 23.63 20.66	3-2' Co Cr Fe Ni	at% 2.01 3.35 2.56 6.90

- Dendrite region: matrix (4.74 at%Cu) + 2nd phase (93.56 at%Cu)
- No segregation at the interface between Matrix and 2nd phase

$\epsilon > 0, \Delta H_{mix} > 0 / \Delta H_{mix} \sim +17 \text{ kJ/mol}$

$\varepsilon > 0$, $\Delta H_{mix} > 0 / \Delta H_{mix} \sim +5 \text{ kJ/mol}$

$\epsilon >> 0$, $\Delta H_{mix} >> 0 / \Delta H_{mix} \sim +60 \text{ kJ/mol}$

$\varepsilon >> 0$, $\Delta H_{mix} >> 0 / \Delta H_{mix} \sim +58 \text{ kJ/mol}$

Phase separation

 $(\mathbf{Y}_{56}\mathbf{Al}_{24}\mathbf{Co}_{20})_{25}(\mathbf{Ti}_{56}\mathbf{Al}_{24}\mathbf{Co}_{20})_{75}$

 $(Y_{56}Al_{24}Co_{20})_{50}(Ti_{56}Al_{24}Co_{20})_{50}$

 $(\mathbf{Y}_{56}\mathbf{Al_{24}Co_{20}})_{65}(\mathbf{Ti_{56}Al_{24}Co_{20}})_{35} \\ 57$

Phase separation in metallic glasses

Contents for today's class

- Binary System mixture/ solution / compound **Ideal solution** ($\Delta H_{mix} = 0$) Random distribution

Regular solutio

$$\Delta H_{mix} = P_{AB}\varepsilon \quad v$$

$$\Delta H_{mix} = P_{AB} \varepsilon \quad \text{where } \varepsilon = \varepsilon_{AB} - \frac{1}{2} (\varepsilon_{AA} + \varepsilon_{BB}) \quad \varepsilon \approx 0$$

$$AH_{mix} > 0 \text{ or } \Delta H_{mix} < 0$$

Real solution

Ordered structure

(a) $\varepsilon < 0$, $\Delta H_{mix} < 0$ Ordered alloys $P_{AB} \uparrow \longrightarrow$ Internal E \downarrow

(b) $\epsilon > 0$, $\Delta H_{mix} > 0$ Clustering P_{AA}, P_{BB}

(c) when the size difference is large strain effect Interstitial solution

