- Email: <u>ychoi81@snu.ac.kr</u>
- Course material/textbook:
 - 1. Lecture notes
- 2. Davis & Masten (2014) Principles of Environmental Engineering and Science, 3rd ed.

Course objectives

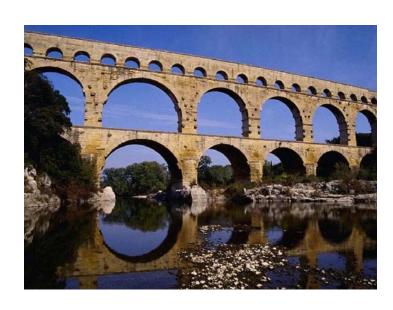
- General background on environmental science and engineering
- Understand principles of environmental science
- Understand causes, effects, and engineering solutions for environmental problems
- Local to global scale
- Water, air, soil, waste, noise, ...

Evaluation

Homework assignments [20%]
 Midterm [30%], final [30%]
 Attendance, etc. [20%]

Plagiarism & cheating: 80% of the class low

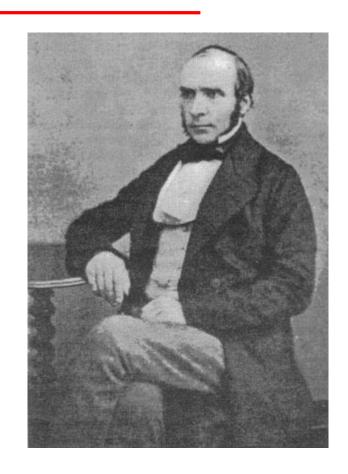
Environmental engineering is manifest by sound engineering thought and practice in the solution of problems of environmental sanitation, notably in

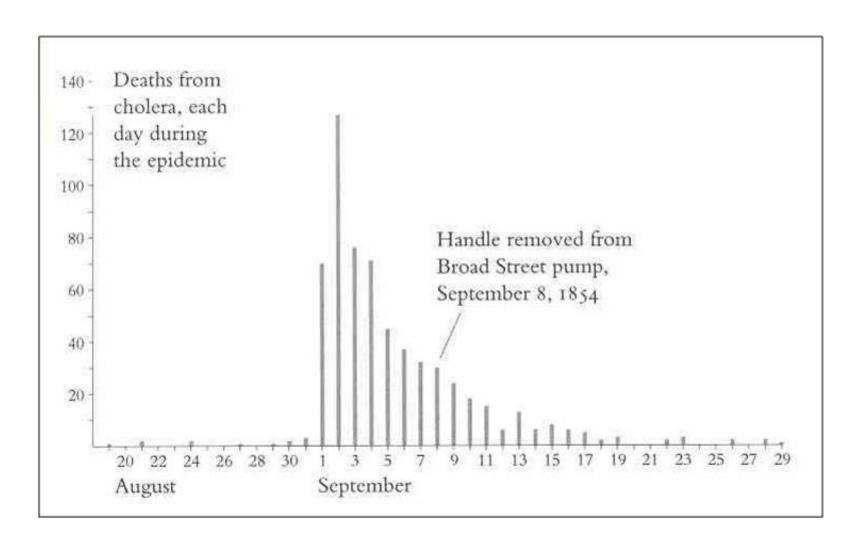

- i) the provision of safe, palatable, and ample public water supplies,
- ii) The proper disposal of or recycle of wastewater and solid wastes,
- iii) The adequate drainage of urban and rural areas for proper sanitation, and
- iv) The control of water, soil, and atmospheric pollution and the social and environmental impact of these solutions.

```
(...)
(ASCE, 1977)
```

We will focus on principles of environmental chemistry and biology and their engineering applications that help improving human health and environmental soundness

Why Department of <u>Civil</u> and <u>Environmental</u> Engineering?


- It stems from civil engineering!
- Mid-1800s to mid-1900s: sanitary engineering (focused on providing safe drinking water)


Roman waterway system

Pioneers of environmental sci. & eng.

- Dr. John Snow
 - Cholera outbreak in London (1853)
 - Tracked 83 victims: most of them obtained water from a hand pump located on Broad St.
 - Low incidence at a workhouse and the Lion Brewery: own water supply

Pioneers of environmental sci. & eng.

Great medical advances in modern age

- Sanitation (clean water and sewage disposal)
 15.8%
- 2. Antibiotics 15%
- 3. Anaesthesia 14%
- 4. Introduction to vaccines 12%
- 5. Discovery of the structure of DNA 9%

(British Medical Journal, 2007)

Environ. Eng. history in Korea

- Rapid economic growth since 1960
- Before 1980: most sewage and wastewater ran directly to rivers

Nakdong-river phenol outbreak

- Ranked as #1 of the environmental outbreaks in Korea since 1950
- Occurred in the city of Gumi, Doosan electronics

Initial outbreak: Mar 16, 1991

- Burst in the pipeline that transports liquid phenol from a storage tank to a phenolic resin manufacturing plant
- 30 tons of liquid phenol were leaked and introduced to a drinking water reservoir that serves for 2+ million citizens around the city of Daegu (3rd largest city in Korea)

Nakdong-river phenol outbreak

- Citizens reported an objectionable odor in tap water operators of the water intake facility added chlorine to the water
- Chlorination of phenol resulted in the formation of chlorophenols: much more odorous and more toxic than phenol!
- (At least) thousands of citizens became ill: headaches, nausea, abortion, etc.

Nakdong-river phenol outbreak

2nd outbreak: Apr 22, 1991

- The government allowed reopening the plant only 1 mo. after the initial outbreak
- Leak at the joint of the phenol storage tank 5 days after reopening
 → 1.3 tons of phenol were released to the reservoir

Follow-ups

- 24 personnel including employees of Doosan electronics and public officers were jailed
- Minister and vice minister of the Ministry of Environment were forced to retire
- Enacted [Act on Special Measures for the control of Environmental Offenses Illegal Check Control]

Environ. Eng. history in Korea

 Almost nothing in 1970s to Full coverage in 2000s

	1991	1996	2001	2006	2011
하수도보급률 (%) %population linked to sewer treatment system	35.7	52.6	73.2	85.5	90.9
하수시설처리용량 (천톤/일) Sewage treatment capacity (10 ³ ton/day)	5,258	11,452	19,230	23,273	25,228

e-나라지표, www.index.go.kr

Problem solved?

Reading assignments

Textbook Ch1-1~4