Materials balances Reactors I

Today's lecture

- Materials balances (mass balances)
- Mixing and steady state
- Reactor analysis using mass balance
 - Completely mixed batch reactor

Basic theory

- Conservation of matter: matter (atoms) can neither be created nor destroyed
 - * exception (not relevant to this class!): $E = mc^2$

Mass balances (materials balances)

Simple accounting of materials: (Accumulation) = (Input) – (Output)

like in your bank account, balance = deposit - withdrawal

Mass balances (materials balances)

Q: In a week Prof. Choi's family purchase and bring into their house 50 kg of consumer goods. Of this amount, 50% is consumed as food. The Choi family recycle 25% of the solid waste that is generated. 1 kg accumulates in the house. Estimate the amount of solid waste they place outside their house every week.

Mass balances: Time as a factor

$$\frac{dM}{dt} = \frac{d(in)}{dt} - \frac{d(out)}{dt}$$
rate of rate of rate of accumulation input output

- Solving a mass balance problem:
 - 1) Define control volume (system boundary)
 - 2) Write a mass balance equation using time as a factor
 - 3) Solve the equation

Solving a mass balance problem

Q: Prof. Choi is filling his bathtub but he forgot to put the plug in. If the volume of water for a bath is 0.350 m³ and the tap is flowing at 1.32 L/min, and the drain is running at 0.32 L/min, how long will it take to fill the tub to bath level? At the time when the tub is filled, how much water will be wasted?

Mass balance: substances in water

$$\frac{dM}{dt} = \frac{d(in)}{dt} - \frac{d(out)}{dt}$$

For substances homogeneously distributed in water or air, d(in)/dt and d(out)dt can be calculated as:

$$\frac{Mass}{Time} = C \cdot Q = Mass flow rate$$

$$C = \text{concentration [M/L^3]}$$

$$Q = \text{flow rate [L^3/T]}$$

Accordingly,

$$\frac{dM}{dt} = C_{in} \cdot Q_{in} - C_{out} \cdot Q_{out}$$

Mass balances: efficiency

$$\frac{dM/dt}{C_{in} \cdot Q_{in}} = \frac{C_{in} \cdot Q_{in} - C_{out} \cdot Q_{out}}{C_{in} \cdot Q_{in}}$$
 mass flow rate out

• Efficiency, η

$$\eta = \frac{(mass\ in)(mass\ out)}{(mass\ in)} \times 100(\%)$$

when
$$Q_{in} = Q_{out}$$
,

$$\eta = \frac{C_{in} - C_{out}}{C_{in}} \times 100 (\%)$$

The state of mixing

- Ideal models for mixing
 - completely mixed systems: entire system is homogeneous

 plug flow systems: no mixing in the direction of flow; homogeneous (completely mixed) in the direction perpendicular to the flow

Steady state

- dM/dt = 0
- No change in the amount of materials in the control volume, i.e., M≠f(t)
 cf) transient state: M=f(t)

The mass balance equation gets simpler!
 (No left hand side term)

Mass balance: including reactions

(Accumulation) = (Input) - (Output) + (Reaction)

$$\frac{dM}{dt} = \frac{d(in)}{dt} - \frac{d(out)}{dt} + R$$

R = rate of change in mass due to reaction [M/T] = rV (V: volume)

reaction rate, $r = -kC^n$ [M/L³/T] (n=reaction order)

for 1^{st} order reaction, r = -kC (most common in the environment)

Mass balance: including reactions

Q: A well-mixed sewage lagoon is receiving 430 m³/d of untreated sewage. The lagoon has a surface area of 10 ha and a depth of 1.0 m. The pollutant concentration in the sewage discharging into the lagoon is 180 mg/L. The pollutants degrades in the lagoon according to first-order kinetics with a reaction rate constant of 0.70 d⁻¹. Assuming no other water losses or gains and that the lagoon is completely mixed, find the steady-state concentration of the pollutant in the lagoon effluent.

Reactor analysis – CMBR, 1st order reaction

Completely mixed batch reactor (CMBR)

- Fill-and-draw type
- No flow in or flow out

- 1) define control volume
- 2) write a mass balance eq.

Reactor analysis - CMBR, 1st order reaction

3) solve the equation

$$\frac{dC}{dt} = -kC$$

integrating over t=0 to t_{final} :

$$\frac{C_{final}}{C_{initial}} = e^{-kt_{final}}$$

Reactor analysis - CMBR, 1st order reaction

Q: A contaminated soil is to be treated in a completely mixed lagoon. To determine the time it will take to treat the soil, a laboratory completely mixed batch reactor is tested to gather the following data. Assuming a first-order reaction, estimate the rate constant, k, and determine the time to achieve 99% reduction in the original concentration.

Time (days)	Contaminant concentration (mg/L)
1	280
16	132

Reading assignment

Textbook Ch4 p. 144-162