Air pollution I

Today's lecture

- Units for air pollutants
- Air pollution problems
- Air pollutants
- Indoor air pollution
- Acid rain

Today's goal

Units of measurement

- volume/volume units (for gas phase pollutants)
 - ppm = parts per million
 - ppb = parts per billion
 - ppt = parts per trillion
- mass/volume (for gas & particle phase pollutants)
 - usually μg/m³

Unit conversion

Consider a pollutant "i"

Ideal gas law: PV = nRT

$$\frac{n_{air}}{V_{air}} = \frac{P_{air}}{RT} = \frac{mole_{air}}{m_{air}^3}$$

 $R = ideal gas constant = 8.21 \times 10^{-5} \text{ m}^3-atm/K-mole}$

$$ppm_i = \frac{moles\ of\ pollutant\ i}{moles\ of\ air} \times 10^6 = \frac{\mu mole_i}{mole_{air}}$$

So,
$$\frac{\mu g_i}{m_{air}^3} = ppm_i \times MW_i \times \frac{P_{air}}{RT}$$

Unit conversion

Q: Convert 10 ppb of SO_2 to $\mu g/m^3$ at 20°C, 1 atm.

- Classification of air pollution problems
 - Microscale: less than the size of a house or slightly bigger
 - Mesoscale: a few hectares to the size of a city or slightly bigger
 - Macroscale: size of a county to a country and to the globe

- Microscale air pollution problems
 - Indoor air pollution: pollutants from burners,
 ovens, heaters, cigarette smoke, and underground
 - Cigarette smoke on streets

http://www.compacappliance.net

http://www.odamindia.org

http://www.edaily.co.kr

- Mesoscale air pollution problems
 - Vehicle exhaust
 - Smoke from power plants, factories, etc.
 - Smog

http://web.ornl.gov

http://www.bbc.com

- Macroscale air pollution problems
 - Acid rain
 - Yellow dust
 - Ozone depletion
 - Global warming

http://en.wikipedia.com

http://breitbart.com

- Carbon monoxide (CO)
 - Generated by incomplete combustion of carbon
 - Natural sources: oxidation of methane (CH₄) in the atmosphere
 - Anthropogenic sources: motor vehicles, fossil fuel burning, solid waste disposal, burning of plant materials
 - Carbon monoxide poisoning: lots of deaths in 1950s-1980s in Korea caused by indoor briquette burning

Lead

- Natural sources: volcanic activity and airborne soil
- Anthropogenic sources: smelters and refining processes, and incineration of lead-containing wastes
- In the past, lead used to be added to gasoline → significant air pollution problems → lead addition currently prohibited

- Nitrogen oxides
 - NO, NO₂, N₂O, NO₃, N₂O₃, N₂O₄, N₂O₅
 - NO and NO₂ are involved in the formation of photochemical smog and acid rain
 - $-NO_x = NO + NO_2$
 - Anthropogenic sources: combustion processes in motor vehicles, power plants, and the industry
 - N₂ is an inert gas, but reacts with oxygen at high temperature (>1600 K):

$$N_2 + O_2 \rightarrow 2NO$$

- Photochemical oxidants
 - Chemicals produced by reaction in the atmosphere in the presence of sunlight
 - Classified as secondary pollutants
 - Toxic effects because of their oxidizing ability:
 cause eye, nose, and throat irritation, and affect lung function
 - Major pollutants in photochemical smog
 - Most important photochemical oxidant: ozone

- Sulfur oxides
 - $-SO_{2}$, SO_{3} , SO_{4}^{2-}
 - Called SO_x
 - Sources
 - Direct emission of SO_x from power plants, industry, volcanoes, and the oceans
 - Oxidation of H₂S produced by natural biological processes or the industry
 - Involved in "London smog" and acid rain

Particulates

- Particles suspended in the air
- Natural sources: sea salt, soil dust, volcanic particles, smoke from forest fires
- Anthropogenic sources: fossil fuel burning, industrial processes
- Damage respiratory organs

Particulates

- Large particles are trapped at the upper respiratory system, but small particles go deeper
 - → small particles are more significant!
- Korean government regulate " PM_{10} " and " $PM_{2.5}$ "
 - PM₁₀: particulate matter less than 10 μm size
 - $PM_{2.5}$: particulate matter less than 2.5 μ m size

- Other hazardous air pollutants
 - Toxic organic compounds, heavy metals, arsenic, etc.
 - Korean government regulates 35 hazardous air pollutants
 - Some examples: cadmium, mercury, asbestos, dioxin, benzene

Indoor air pollution

- Difficult to regulate!
- CO and NO_x from gas ranges, ovens, heaters, and cigarette smoke
- Cigarette smoke also contains toxic compounds including carcinogens
- Bioaerosols: bacteria, viruses, fungi, mites, and pollen
- Radon: emitted from the ground (high in basements)
- Volatile organic compounds
 - ex) formaldehyde: emitted from building materials ("sick") building syndrome")
- Heavy metals: emitted from paints

Acid rain

- SO_2 and NO_x in the air undergo series of reactions to form sulfuric acid (H_2SO_4) and nitric acid (HNO_3)
- pH in natural rain has a pH near 5.6 (why?)
- Rain pH in polluted areas can go below 5, sometimes even close to 2
- Effects: acidification of rivers and lakes (fish deaths),
 nutrient leaching from soil (plant deaths)

Reading assignment

Textbook Ch 12 p. 587-605