457.212 Statistics for Civil & Environmental Engineers In-Class Material: Class 16 Function of Random Variables (A&T 4.2)

- 1. **Derived Distribution** of the function of a r.v., Y = g(X)
 - (a) **P**robability **M**ass Function $p_{Y}(y)$
 - Sum up the probability mass function values of *X* that satisfy y = g(X)

$$p_Y(y) = P(Y = y) = \sum_{all \ x_i: y = g(x_i)} p_X(x_i)$$

- (b) Cumulative Distribution Function (Discrete), $F_{Y}(y)$
 - Sum up the probability mass function values of X that satisfy g(X) = y

$$F_{Y}(y) = P(Y \le y) = \sum_{all \ x_i: g(x_i) \le y} p_{X}(x_i)$$

Example 1 (Contd.): CDF of Y and Z?

- (c) Cumulative Distribution Function (Continuous), $F_{Y}(y)$
 - () the probability () function of X for the range(s) satisfying g(X) = y

$$F_Y(y) = P(Y \le y) = \int_{g(x) \le y} f_X(x) dx$$

- (d) **P**robability **D**ensity Function, $f_Y(y)$
 - (i) One-to-one mapping and $\frac{dy}{dx} > 0$

Due to the one-to-one mapping,

$$P(x < X \le x + dx) = P(y < Y \le y + dy)$$

$$f_X(x)dx = f_Y(y)dy$$

Therefore,

$$f_{Y}(y) =$$

(ii) One-to-one mapping and $\frac{dy}{dx} < 0$

Due to the one-to-one mapping,

$$P(x < X \le x + dx) = P(y < Y \le y + dy)$$

$$f_X(x)dx = f_Y(y)(-dy)$$

Therefore,

$$f_{Y}(y) =$$

(i) & (ii) One-to-one mapping: $f_{\gamma}(y) =$

х

(iii) Non one-to-one mapping

$$P(y < Y \le y + dy) = \sum P(x_i < X \le x_i + dx)$$

Therefore,
$$f_Y(y) = \sum_{\text{all } x_i: g(x_i) = y} f_X(x_i) \left| \frac{dx}{dy} \right|_{x=x_i}$$

Example 2: $X \sim N(\mu, \sigma)$ and consider the linear function $U = g(X) = \frac{X - \mu}{\sigma}$

- (a) The probability density function of U, $f_U(u)$?
- (b) What type of the distribution does U follow? Mean? Standard deviation?

Example 3: $X \sim LN(\lambda, \zeta)$. The PDF of $Y = \ln X$? (Distribution of the natural logarithm of a lognormal random variable) **Example 4:** The strain energy (*E*) accumulated during a linearly elastic behavior is proportional to the square of the applied force, S^2 , i.e. $E = cS^2$ where *c* is a positive constant. When *S* follows the standard normal distribution, what is the PDF of the strain energy?

2. Important Examples of **Derived Distributions**

- (a) The sum of s.i. Poisson random variables follows a ______ distribution
 - X_i , i = 1,...,n ~ Poisson r.v.'s with v_i (mean occurrence rate)

→ See Example 4.5 in A&T

(b) Linear functions (including sum) of normal r.v.'s follow ______ distribution

 X_i , $i = 1,...,n \sim \text{Normal r.v.'s}$ with μ_i and σ_i (mean and standard deviation)

$$Z = \sum_{i=1}^{n} a_i X_i + a_0 \quad \sim \underline{\qquad} \text{ r.v. with } \mu_Z = ? \text{ and } \sigma_Z = ? \text{ (Next class)}$$

(c) Products or quotients of lognormal r.v.s follow _____

$$X_i$$
, $i = 1,..,n \sim \text{lognormal with } \lambda_i$ and ζ_i

$$Z = a_0 \prod_{i=1}^n X_i^{a_i} \sim \underline{\qquad} r.v.$$

→ Why? Take the natural logarithm: $\ln Z = \ln a_0 + \sum a_i \ln X_i$ ~ Normal