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Objectives

- Present concept of fluidity

- Introduce fundamental properties of fluid
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1.1 Scope of Fluid Mechanics

• Problems of water supply

flood prevention

navigation need to know fluid phenomena

water power

irrigation
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1.2 Historical Perspective

• d'Alembert (1744)

"The theory of fluids must necessarily be based upon experiment"

• d'Alembert paradox theory - ideal, inviscid fluid

practice - real fluid (viscous)

• Two schools theoretical group → hydrodynamics

practical group → hydraulics

• Navier and Stokes

→ general equations for viscous fluid → equation of motion
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1.2 Historical Perspective

[Re] Navier-Stokes equation

Claude-Louis Navier (1785-1836, French engineer) and George Gabriel

Stokes (1819-1903, UK mathematician & physicist)

- one continuity equation + three momentum equations

- model the weather, ocean currents, water flow in a pipe, the air's flow

around a wing, and motion of stars inside a galaxy

- design of aircraft and cars, the study of blood flow, the design of power

stations, the analysis of pollution,

- exact solution - one of the seven most important open problems in

mathematics
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1.2 Historical Perspective

• New problems in modern times

- Dispersion of man's wastes in lakes, rivers, and oceans

→ Environmental Fluid Mechanics (Hydraulics)

• state: solid

liquid increasing spacing increasing inter

fluid gaseous and latitude of molecular cohesive

plasma particle motion force

• fluid – continuum → no voids or holes
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1.3 Physical Characteristics of the Fluid State
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1.3 Physical Characteristics of the Fluid State

stress
strain

solid fluid

tension

elastic deformation

→ permanent distortion

unable to support tension 

(surface tension)

compression
elastic deformation 

(compressible fluid)

shear (tangential forces)

permanent distortion or   flo

w (change shape) to infini

tesimal shear stress
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1.3 Physical Characteristics of the Fluid State

dv
dy

τ µ=
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1.3 Physical Characteristics of the Fluid State

stress

real fluid (viscous fluid)

ideal fluid 

(non-viscous 

fluid)

in motion at rest
at rest and 

in motion

compression 

(pressure)
○ ○ ○

shear ○ × ×
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1.3 Physical Characteristics of the Fluid State

incompressible fluid compressible fluid

① Compressibility is of small important. ① Compressibility is predominant.

② Liquids and gases may be treated 

similarly.

② Behavior of liquids and gases is quite 

dissimilar.

③ Fluid problems may be solved with 

the principles of mechanics.

③ Thermodynamics and heat transfer 

concepts must be used as well as 

principles of mechanics.
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1.3 Physical Characteristics of the Fluid State

• Properties of pressure (compression)

① Pressure must be transmitted to solid boundaries normal to those

boundaries.

② At a point, pressure has the same magnitude in all directions.

→ Pressure is a scalar quantity.

* Fluid does not resist any small shearing stress → "Flow occurs"
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1.3 Physical Characteristics of the Fluid State

Weight
.W Volγ=
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1.3 Physical Characteristics of the Fluid State

0F∑ =


(a)1 3 sin 0xF p dz p ds θ∑ = − =

2 3/ 2 cos 0zF p dx gdxdz p dsρ θ∑ = − − =

[Pf]

Apply Newton's law for static equilibrium

(b)

sindz ds θ=

cosdx ds θ=

1 3 1 3( ) : sin sin 0a p ds p ds p pθ θ∴ − = → =

Substitute following relations into Eq. (a) & (b)
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1.3 Physical Characteristics of the Fluid State

2 3( ) : cos cos cos 0
2
dzb p ds g ds p dsθ ρ θ θ− − =

2 3
1
2

p p gdzρ∴ = +

0dz → 2 3p p≈

1 2 3p p p∴ = = ( 0)dx dz= =

As then 

at a point 
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1.4 Units and Density

• SI units - SI system – metric system

f- Frequency ( ):   hertz (HZ = s-1) 

F

F ma=

2/ /a v t L t= = 2Lt−  
/v L t= 1Lt−  

21kg m/s 1N( )F Newton∴ → ⋅ =

• Force, 

→ introduce Newton's 2nd law of motion

Force = mass × acceleration

(m/s2)

(m/s)
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1.4 Units and Density

Dimension SI unit English system (FSS)

Length (L) metre (m) feet (ft)

Mass (M) kilogram (kg) slug (-)

Time (t) second (s) second (s)

Temp. (T) kelvin (K) degree Rankine (°R)
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1.4 Units and Density

E
2 2kg m /s ( )E FL J Joule= → ⋅ =

P
2 3/ / kg m sP E t J s= → = ⋅

p ,σ τ
2 2/ N/m Pa (pascal) kg/m sp F A= → = = ⋅

T

• Energy, (work)

• Power, 

• Pressure, ;   Stress, 

• Temperature, :   degree Celsius (°C) 
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1.4 Units and Density

ρ

3kg/mM
V

ρ = →

• Density, 

= mass per unit volume

~ depends on the number of molecules per unit of volume

~ decreases with increasing temperature

γ

3 2 2N/m kg/m sW
V

γ = → = ⋅

• Specific weight (weight density), 

= weight (force) per unit volume



20/92

1.4 Units and Density

(1.1)

W Mg=
g

gγ ρ∴ =

[Re]
(Newton’s 2nd law of motion)

= acceleration due to gravity

1/ ρ• Specific volume=volume per unit mass=

• Specific gravity, s.g. , ~ r. d. (relative density)

= ratio of density of a substance to the density of water at a specified

temperature and pressure

. . f f

w w

s g
ρ γ
ρ γ

= =
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1.4 Units and Density

[Re] s.g. of sea water = 1.03

s.g. of soil = 2.65

s.g. of mercury = 13.6

( )F ( )M
• Advantage of SI system and English FSS system

① It distinguishes between force and mass .

② It has no ambiguous definitions.
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1.4 Units and Density

SI English system

1,000 kg/m3 1.94 slugs/ft3

9,806 N/m3 62.4 lb/ft3

9.81 m/s2 32.2 ft/s2

ρ

γ

g
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1.4 Units and Density

α

β
,γ Γ

,δ ∆

ε
ζ
η

,θ Θ

ι

• Greek Alphabet

Alpha angle

Beta [beitə] angle

Gamma specific weight, circulation

Delta thickness of boundary layer

Epsilon eddy viscosity, height of surface roughness

Zeta

Eta

Theta

Iota [aioutə]

Kappa [kæpə]κ
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1.4 Units and Density

,λ Λ

µ

ν
ξ
ο
π

ρ

,σ ∑

τ

Lambda

Mu [mju:] dynamic viscosity

Nu kinematic viscosity

Xi [gzai, ksai] vorticity

Omicron

Pi [pai]

Rho mass density

Sigma Sigma Xi, Scientific Research Society, 1886

honor society for scientists & engineers

Tau shear

Upsilon,υ ϒ
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1.4 Units and Density

,ϕ Φ

χ

,ψ Ψ

,ω Ω

Phi [fai] Phi Beta Kappa

Chi [kai]

Psi [psai, sai] stream function

Omega angular velocity

• Prefixes

E exa 1018

P peta 1015

T tera 1012

G giga 109

M mega 106
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1.4 Units and Density

µ

M mega 106

k kilo 103

h hecto 102

da deca 101

d deci 10-1

c centi 10-2

m milli 10-3

micro 10-6

n nano 10-9

p pico 10-12

f femto 10-15

a atto 10-18
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1.5 Compressibility, Elasticity

• Elastic behavior to compression

• Compressibility ≡ change in volume due to change in pressure

solid - modulus of elasticity, E (N/m2)

fluid - bulk modulus
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1.5 Compressibility, Elasticity
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1.5 Compressibility, Elasticity

1

dVdp
V

∝
1

dVdp E
V

→ = −

1

1

( , )dp dpE V const fn p TdV dV
V

= − = − ≠ = → p E↑ → ↑

1

1 1dVC
E V dp

= = −

• Stress-strain curve (E↑, difficult to compress) 

= modulus of compressibility (m2/N)

Minus means that increase in

pressure causes decrease in

volume
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1.5 Compressibility, Elasticity

, 1E C= ∞ 

ρ

[Re] large E/small C → less compressible

• incompressible fluid (inelastic):

→ constant density =const.

~ water

• compressible fluid

→ changes in density → variable density

~ gas
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1.5 Compressibility, Elasticity

Pressure

106 N/m2

Temperature, °C

0° 20° 50° 100° 150°

0.1 1950 2130 2210 2050

10.0 2000 2200 2280 2130 1650

30.0 2110 2320 2410 2250 1800

100.0 2530 2730 2840 2700 2330
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1.5 Compressibility, Elasticity

E

E

- increases as pressure increases.

- is maximum at about 50 °C.

→ The water has minimum compressibility at about 50 °C.

1
dpE V
dV

= −

1

V p
V E
∆ ∆

≈ −

2 1 2 1

1

V V p p
V E
− −

≈ −

• For the case of a fixed mass of liquid at constant temperature
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1.5 Compressibility, Elasticity

Compressibility Modulus of Elasticity,  E (kPa)

steel 1/80 of water water 2,170,500

mercury 1/12.5 of water sea water 2,300,000

nitric acid 6 of water mercury 26,201,000



34/92

1.5 Compressibility, Elasticity

62,200 10 PaE = ×
6

2 1 7 10 Pap p= + ×

2 1 2 1

1

0.0032V V p p
V E
− −

∴ ≈ − = −

2 1(1 0.0032)V V∴ = −

0.3%V∆ ≈

[Ex] For water; @ 20˚C

decrease

→ water is incompressible

6
3

7 10 Pa 70101.3 10 Pap ×∆ = ≈
×

기압
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1.6 Viscosity

[Re] From Wikipedia

Viscosity is a measure of the resistance of a fluid which is being

deformed by either shear stress or tensile stress.

Viscosity ~ "thickness" or "internal friction"

▪ water ~ "thin", having a lower viscosity

▪ honey ~ "thick", having a higher viscosity 

The less viscous the fluid is, the greater its ease of movement (fluidity). 

Viscosity describes a fluid's internal resistance to flow and may be 

thought of as a measure of fluid friction. 

dv
dy

τ µ=
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1.6 Viscosity

For example, high-viscosity felsic magma will create a tall, steep 

stratovolcano, because it cannot flow far before it cools, while low-

viscosity mafic lava will create a wide, shallow-sloped shield volcano. 

All real fluids (except superfluids) have some resistance to stress and 

therefore are viscous, but a fluid which has no resistance to shear stress 

is known as an ideal fluid or inviscid fluid.

[Re] super fluid – a fluid having frictionless flow, and other unusual

properties
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1.6 Viscosity

• Two types of fluid motion (real fluid)

1) laminar flow:

- viscosity plays a dominant role

- fluid elements or particles slide over each other in layers (laminar)

- molecular diffusion

[Ex] flow in a very small tube, a very thin flow over the pavement, flow in

the laminar flow table
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1.6 Viscosity

Re Vd
ν

=

where V = flow velocity; d = characteristic length; n = kinematic viscosity

Diameter of pipe,
Depth of stream

2) turbulent flow:

- random or chaotic motion, eddies of various sizes are seen

- common in nature (streams, rivers, pipes)

- large scale mixing between the layers

• Reynolds number

[Ex] flows in the water supply pipe, flows in the storm sewer pipe, flows in

the and canals and streams
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1.6 Viscosity

• Reynolds experiments

laminar flow: Re < 2,100

transition: 2,100<Re < 4,000

turbulent flow: Re > 4,000

The same fluid with
different velocity
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1.6 Viscosity

Spiral
secondary
flow

Secondary
flow
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1.6 Viscosity
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1.6 Viscosity

cube
streamline

source

sink
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1.6 Viscosity

Smooth
surface

Eddying
motion
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1.6 Viscosity
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1.6 Viscosity

Symmetric shape,
No separation



46/92

1.6 Viscosity
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1.6 Viscosity

Separation, eddy
formation

Growth
of eddy
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1.6 Viscosity
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1.6 Viscosity
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1.6 Viscosity

• laminar flow

2 1d d dvdt dv dt
dy dy dy
−

= = = yx
dG
dy
ζτ =

2 2 1 1

2 1 2 1

;
( )

d v dt d v dt
d d v v dt

= =
− = −

• strain = relative displacement [Cf] solid mechanics

[Re] total angular displacement
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1.6 Viscosity

no velocity at the
boundary (no slip)
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1.6 Viscosity

τ
• Experiment has shown that, in many fluids, shearing (frictional) stress

per unit of contact area, is proportional to the time rate of relative

strain.

/dv dvdt dt
dy dy

τ∴ ∝ =

dv
dy

τ µ= →

(velocity gradient)

Newton’s equation of viscosity (1.2)

µwhere = coefficient of viscosity

= dynamic (absolute) viscosity

Large → sticky, difficult to flowµ
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1.6 Viscosity

• viscosity = measure of fluid's resistance to shear or angular

deformation

= internal resistance of a fluid to motion (fluidity)

[Re] Friction forces result from

- cohesion for liquid

- momentum interchange between molecules for gas

[Re] angular deformation due to tangential stress
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1.6 Viscosity

dy

x
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1.6 Viscosity

du duu y t u t y t
dy dy

 
= + ∆ ∆ − ∆ = ∆ ∆ 
 

/du duy t y t
dy dy

= ∆ ∆ ∆ = ∆

• rate of angular deformation

(i) displacement of AB relative to CD

(ii) angular displacement of AC

(iii) time rate of angular deformation

/du dut t
dy dy

= ∆ ∆ =

dv
dy

τ µ=
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1.6 Viscosity

µ• dynamic viscosity,

/F Aτ =

[ ] 2 2 1 2 2/ kg/(m s ) PaMLT L ML Tτ − − −   = = ⋅ =   

1
1dv LT T

dy L

−
−    = =       

[ ]
1 2

1 1 2
1/ kg/m s N s / m Pa sdv ML T ML T

dy T
µ τ

− −
− −

−

    ∴ = = = = ⋅ = ⋅ = ⋅       

11 ( ) 10 Pa spoises Poiseuille −⇒ = ⋅
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1.6 Viscosity

ν• kinematic viscosity,

µν
ρ

=

[ ]
1 1

2 1 2
3 m /sML T L T

ML
ν

− −
−

−

 
 = = =   

 

(1.3)

1 m2/s = 104 stokes =106 centistokes 

,τ µ

τ τ

• Remarks on Eq. (1.2)

① are independent of pressure. [Cf] friction between two moving

solids

② Shear stress (even smallest ) will cause flow (velocity gradient).
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1.6 Viscosity

0 0dv
dy

τ= → = µregardless of 

③ Shearing stress in viscous fluids at rest will be zero. 

dv
dy

≠ ∞ τ→ ≠ ∞④ At solid boundary, ( (no infinite shear))

→ Infinite shearing stress between fluid and solid is not possible.

⑤ Eq. 1.2 is limited to laminar (non-turbulent) fluid motion in which

viscous action is predominant.

[Cf] turbulent flow

ε
ε µ

dv
dy

τ ε=

where    = eddy viscosity
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1.6 Viscosity

⑥ Velocity at a solid boundary is zero.

→ No slip condition (continuum assumption)

• Newtonian and non-Newtonian fluids

i) Newtonian fluid ~ water

ii) Non-Newtonian fluid ~ plastic, blood, suspensions, paints, polymer

solutions → rheology
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1.6 Viscosity
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1.6 Viscosity

1
dv
dy

τ τ µ− =

n
dvK
dy

τ
 

=  
 

1τ

1n >

1n <

• Non-Newtonian fluid

1) plastic, = threshold

2) Shear-thickening fluid

Shear-thinning fluid

• Couette flow: laminar flow in which the shear stress is constant

thin fluid film between two large flat plates

thin fluid film between the surfaces of coaxial cylinders
dv V
dy h

=

V
h

τ µ∴ =

~ linear velocity gradient

~ constant
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1.6 Viscosity
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1.6 Viscosity

( ) dv
dy

τ µ ε= +

ε

• Turbulent flow 

= eddy viscosity = viscosity due to turbulent factor
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1.6 Viscosity

gas liquid

main cause of 

viscosity

exchange of molecule's momentum → 

interchange of molecules between 

the fluid layers of different velocities

intermolecular cohesion

effect of 

temperature

variation

temp↑ → molecular activity↑ 

→ viscosity↑ → shearing stress↑

temp↑ → cohesion↓ 

→ viscosity↓ → shear stress↓
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1.6 Viscosity

Two layers tend
to stick together
as if there is so
me viscosity be
tween two.

[Re] Exchange of momentum

fast-speed layer (FSL)

molecules from FSL speed up molecules in LSL

molecules from LSL slow down molecules in FSL

low-speed layer (LSL)
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1.6 Viscosity

mv

1) exchange of momentum : exchange momentum in either direction from

high to low or from low to high momentum due to random motion of

molecules

2) transport of momentum : transport of momentum from layers of high

mome

(high velocity, ) to layers of low momentum
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1.7 Surface Tension, Capillarity

nf

σ

• surface tension

- occur when the liquid surfaces are in contact with another fluid (air) or

solid

- (relative sizes of intermolecular cohesive and adhesive forces to

another body)

- as temp↑ → cohesion↓ → ↓ ☞ Table A2.4b, p. 694

• some important engineering problems related to surface tension

- capillary rise of liquids in narrow spaces

- mechanics of bubble formation

- formation of liquid drops

- small models of larger prototype → dam, river model
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1.7 Surface Tension, Capillarity

σ /F L• surface tension, ( , N/m)

- force per unit length

- force attracting molecules away from liquid

0F∑ = , , ,a b c d

0( ) 2 sin 2 sinip p dxdy dy dxσ α σ β− = +

Consider static equilibrium

(forces normal to the element )

where pi = pressure inside the curvature; po = pressure inside the

curvature
1

sin ,
2
dx
R

α =
2

sin
2
dy
R

β = [ ]12( sin )dx R α=

0
1 2

1 1
ip p

R R
σ
 

∴ − = + 
 

(1.4)



69/92

1.7 Surface Tension, Capillarity
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1.7 Surface Tension, Capillarity

• Cylindrical capillary tube

- due to both cohesion and adhesion

cohesion < adhesion → rise (water)

cohesion > adhesion → depression (mercury)
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1.7 Surface Tension, Capillarity
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1.7 Surface Tension, Capillarity

1 2R R R= = ≈

0p hγ= −

0ip =

For a small tube, given conditions are as follows

(liquid surface section of sphere) ← Ch. 2

(hydrostatic pressure)

(atmospheric) 

0
1 2

1 1
ip p

R R
σ
 

− = + 
 2h

R
γ σ∴ =

Substitute above conditions into Eq. 1.15:  (1.4)

cosr R θ=
2 2 cos

/ cos
h

r r
σ θγ σ

θ
∴ = =

2 cosh
r

σ θ
γ

=

By the way, 

(1.5)
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1.7 Surface Tension, Capillarity

h r h
θ
r ≤

in which = capillary rise → ↑ → ↓

= angle of contact

= radius of tube 2.5 mm for spherical form

12r > h
[Ex] water and mercury → Fig. 1.11

If mm, is negligible for water.
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1.7 Surface Tension, Capillarity

cohesion > adhesion

→ depression
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1.7 Surface Tension, Capillarity

• Pressure measurement using tubes in hydraulic experiments

→ Ch.2 manometer

~ capillarity problems can be avoided entirely by providing tubes large

enough to render the capillarity correction negligible.

• Fomation of curved surface, droplet

- At free liquid surface contacting the air, cohesive forces at the outer

layer are not balanced by a layer above.

→The surface molecules are pulled tightly to the lower layer.

→Free surface is curved.

[Ex] Surface tension force supports small loads (water strider).



76/92

1.7 Surface Tension, Capillarity
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1.7 Surface Tension, Capillarity

0 1.0ip p− =

0.0728σ =At 20°C, N/m ← App. 2

[IP 1.10] For a droplet of water (20 °C), find diameter of droplet

Given: kPa

0
1 2

1 1 2
ip p

R R R
σσ

 
− = + = 

 

∴
1
R
⋅

0.000146m 0.146mmR∴ = = 0.292d→ =

[Sol]

(1.4)

1×103 N/m2 = 2(0.0728)

mm
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1.7 Surface Tension, Capillarity

[IP 1.11] Find height of capillary rise in a clean glass tube of 1 mm

diameter if the water temperature is 10°C or 90°C.

[Sol]

From App. 2 Table A 2.4b;

σ γ

σ γ
@ 10°C =0.0742 N/m, = 9.804 kN/m3

@ 90°C =0.0608 N/m, = 9.466 kN/m3
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1.7 Surface Tension, Capillarity

Use Eq. 1.16

For water, 0θ = 

2 cosh
r

σ θ
γ

=

1̀0
2(0.0742)(1) 0.030m=30mm

9804(0.0005)
h∴ = =

90
2(0.0608)(1) 0.026m=26mm

9466(0.0005)
h = =

(1.5)
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1.8 Vapor Pressure

• vapor pressure = partial pressure exerted by ejected molecules of liquid

→ Table A2.1 and A2.4b

• liquids ~ tend to vaporize or evaporate due to molecular thermal

vibrations (molecular activity)

→ change from liquid to gaseous phase

temperature↑ → molecular activity↑ → vaporization↑ → vapor pressure↑
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1.8 Vapor Pressure

55.2 kPavp =

2.34 kPavp =

0.00017 kPavp =

• volatile liquids:

~ easy to vaporize → high vapor pressure

gasoline: at 20 °C

water: at 20 °C

mercury: at 15.6 °C

• mercury : low vapor pressure and high density = difficult to vaporize

→ suitable for pressure-measuring devices
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1.8 Vapor Pressure

In the interior and/or boundaries
of a liquid system

High velocity region

• Cavitation: App. 7 (p. 672)

In a flow fluid wherever the local pressure falls to the vapor pressure of

the liquid, local vaporization occurs.

→ Cavities are formed in the low pressure regions.

→ The cavity contains a swirling mass of droplets and vapor.

→ Cavities are swept downstream into a region of high pressure.

→ Then, cavities are collapses suddenly.
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1.8 Vapor Pressure

→ surrounding liquid rush into the void together

→ it causes erosion (pitting) of solid boundary surfaces in machines, and

vibration

→ boundary wall receives a blow as from a tiny hammer
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1.8 Vapor Pressure
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1.8 Vapor Pressure

• Prevention of cavitation

~ cavitation is of great importance in the design of high-speed hydraulic

machinery such as

turbines, pumps, in the overflow and underflow structures of high dams,

and in high-

speed motion of underwater bodies (submarines, hydrofoils).

→ design improved forms of boundary surfaces

→ predict and control the exact nature of cavitation → set limits

Body
cavitation
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1.8 Vapor Pressure
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1.8 Vapor Pressure

atm vp p≤

• Boiling:

= rapid rate of vaporization caused by an increase in temperature

= formation of vapor bubbles throughout the fluid mass

~ occur (whatever the temperature) when the external absolute pressure

imposed on the

liquid is equal to or less than the vapor pressure of the liquid

~ boiling point = f (imposed pressure, temp.)

→ boiling occurs
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1.8 Vapor Pressure

altitude 

(El. m)

Temp. 

(°C)

(kPa), 

absolute

(kPa), 

absolute

boiling point 

(°C)
remark

m.s.l. 100 101.3 101.3 100

12,000 60 19.9 19.4 60 undercooked

vp atmp

Table A
2.4b

Table A
2.5b
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1.8 Vapor Pressure

vp
• Evaporation: When the space surrounding the liquid is too large, the

liquid continues to

vaporize until the liquid is gone and only vapor remains at a pressure

less than or equal.

[IP 1.12] For a vertical cylinder of diameter 300 mm, find min. force that

will cause the water boil.
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1.8 Vapor Pressure

Patm=100 kpa

Water @ 70˚C
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1.8 Vapor Pressure

vp

'
vp p≤

' 100 31.16Fp
A

∴ = − =

2(0.3)(100 31.16) 4.87 kN
4

F π
∴ = − =

[Sol] From Table A2.4b;  =31.16 kPa at 70 °C

=31.16, For water to boil; 
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1.8 Vapor Pressure

Homework Assignment # 1

Due:  1 week from today

Prob. 1.2

Prob. 1.10

Prob. 1.27

Prob. 1.46

Prob. 1.49

Prob. 1.58

Prob. 1.69

Prob. 1.72

Prob. 1.82
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