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Chapter 4

Continuity Equation and Reynolds
Transport Theorem
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Contents —

4.1 Control Volume
4.2 The Continuity Equation for One-Dimensional Steady Flow
4.3 The Continuity Equation for Two-Dimensional Steady Flow

4.4 The Reynolds Transport Theorem

Objectives

- Apply the concept of the control volume to derive equations for the
conservation of mass for steady one- and two-dimensional flows

- Derive the Reynolds transport theorem for three-dimensional flow

- Show that continuity equation can recovered by simplification of the

Reynolds transport theorem
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4.1 Control Volume

g
Physical system

~ is defined as a particular collection of matter or a region of space chosen for

study

~ is identified as being separated from everything external to the system by

closed boundary

* The boundary of a system: fixed vs. movable (moving) boundary

*Two types of system:

- closed system (control mass) ~ consists of a fixed mass, no mass can cross
its boundary

- open system (control volume) ~ mass and energy can cross the boundary of

a control volume
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4.1 Control Volume

boundary
FIGURE 1-24
A closed system with a moving
boundary.
FIGURE 1-25
Imaginary A control volume may involve fixed,
boundary Real boundary moving, real, and imaginary
\}K boundaries.
| Ty 3 i
! l \Moving !
! [
T cv e boundary |
: (a nozzle) J' |
| e Ccv
| I
/ Fixed ;
| v boundary}
oL il ety )

(a) A control volume (CV) with real and (b) A control volume (CV) with fixed and
imaginary boundaries moving boundaries
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4.1 Control Volume
E————————————————————— .

A system-based analysis of fluid flow leads to the Lagrangian equations of

motion in which particles of fluid are tracked.

However, a fluid system is mobile and very deformable.
A large number of engineering problems involve mass flow in and out of a
system.

— This suggests the need to define a convenient object for analysis.

— control volume
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4.1 Control Volume

g

« Control volume
~ a volume which is fixed in space and through whose boundary matter,

mass, momentum, energy can flow

~ The boundary of control volume is a control surface.
~ The control volume can be any size (finite or infinitesimal), any space.

~ The control volume can be fixed in size and shape.

— This approach is consistent with the Eulerian view of fluid motion, in which

attention is focused on particular points in the space filled by the fluid rather

than on the fluid particles.
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

* Principle of conservation of mass
The application of principle of conservation of mass to a steady flow in a

streamtube results in the continuity equation.

 Continuity equation

~ describes the continuity of flow from section to section of the streamtube
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4.2 Continuity Equation for One-Dimensional Steady Flow

g

* One-dimensional steady flow
Consider the element of a finite streamtube
- no net velocity normal to a streamline

- no fluid can leave or enter the stream tube except at the ends

- Now, define the control volume as marked by the control surface that
bounds the region between sections 1 and 2.
— To be consistent with the assumption of one-dimensional steady flow,

the velocities at sections 1 and 2 are assumed to be uniform.

— The control volume comprises volumes /and R.

— The control volume is fixed in space, butin 4t the system moves

downstream.
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4.2 Continuity Equation for One-Dimensional Steady Flow

Control surface and
system boundary at time ¢

e

)
-

Lttty bttty ffyd
mh

System boundary
at time ¢ + dr
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

From the conservation of system mass
(m| U mR)t = (mR u mO)t+At (1)

For steady flow, the fluid properties at points in space are not functions of

time, a_mzo
ot
—> (mR)t — (mR)t+At (2)

Substituting (2) into (1) yields

(ml )t — (mO)t+At (3)
7 N

Inflow Outflow
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

Express inflow and outflow in terms of the mass of fluid moving across

the control surface in time dt

(M, ), = p,Ads,

(Mg )1, s = P2 A0S, (4)
Substituting (4) into (3) yields

piAds, = p,Ads,

Dividing by dt gives | ds, _,,
dt

m=p AV, = p,AV, (4.)

— Continuity equation
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

In steady flow, the mass flow rate, M

passing all sections of a stream tube is constant.

M = p AV = constant (kg/sec)

d(pAV)=0 (4.22)
~ dp(AV) +dA(pV ) +dV (pA) = 0 (5)
Dividing (a) by pAV results in
dp [ OA &V _y (4.2b)
o AV

— 1-D steady compressible fluid flow
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4.2 Continuity Equation for One-Dimensional Steady Flow

g

For incompressible fluid flow; constant density

ap
dp=0, p =0 (4.3)
From Eq. (4.2a)
pd(AV)=0 (4.4)
d(AV)=0 (6)

Set Q = volume flowrate (m?3/s, cms)

Then (6) becomes

Q= AV =const.= AV, = AV, (4.5)
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

For 2-D flow, flowrate is usually quoted per unit distance normal to the

plane of the flow, b
— ( = flowrate per unit distance normal to the plane of flow (m3/s-m)

Q AV
i =hV (4.6)

hlvl = h2V2 (4.7)

[Re] For unsteady flow

mass,, . = mass,+ inflow —outflow

t+At

(mR)t+At - (mR)t — (ml )t - (mO)t+At




15/47
4.2 Continuity Equation for One-Dimensional Steady Flow

#

Divide by dt

(mR)t+At - (mR)t _
dt - (m| )t

_ (mO)t+At

Define

om _ (Mg )i, —(Mg), _ O(pvol)

ot dt ot

Then
XX _ (),

o (mO)t+At

ot
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4.2 Continuity Equation for One-Dimensional Steady Flow

é

* Non-uniform velocity distribution through flow cross section

No slip
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4.2 Continuity Equation for One-Dimensional Steady Flow

g
Eq. (4.5) can be applied. However, velocity in Eq. (4.5) should be the mean

velocity.

V-2 Q-] do-] s

V:%LWA

*The productAV remains constant along a streamline in a fluid of constant density.
— As the cross-sectional area of stream tube increases, the velocity must

decrease.

— Streamlines widely spaced indicate regions of low velocity, streamlines

closely spaced indicate regions of high velocity.
A1V1 = szz: Al >A2_)V1 <V2
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4.2 Continuity Equation for One-Dimensional Steady Flow

é
[IP 4.3] p. 113

The velocity in a cylindrical pipe of radius R

is represented by an axisymmetric parabolic distribution (laminar flow).

Whatis V interms of maximum velocity, V., ?
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4.2 Continuity Equation for One-Dimensional Steady Flow

dA=2nrrdr
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4.2 Continuity Equation for One-Dimensional Steady Flow

g

2
v=2_21 vaa=— [y [1-L 2zrar
AT AR AR R

_2VC_[R r—r—3 dr—2v° rz— s R—ZVC RZ—RZ =% Laminar flow
0 R®| 2 4R*| R°| 2 4] 2

[Cf] Turbulent flow

— logarithmic velocity distribution
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4.2 Continuity Equation for One-Dimensional Steady Flow

* Turbulent
f=0.025
Eq. 9.17—
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4.3 Continuity Equation for Two-Dimensional Steady Flow

(1) Finite control volume Area of parallelogram =
(dscos&)dA

System boundary
at time t+dt

Control surface and
system boundary
at time ¢
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é

Consider a general control volume, and apply conservation of mass

(ml + mR)t — (mR + mO)t+At (a)

For steady flow: (Mmg), +(My)...,

Then (a) becomes
(ml )t = (mO)t+At (b)

i) Mass in O moving out through control surface
(Mg)ine = p(dscosf)dA

C.S.out

N

mass = p vol = pxareax1= pdsdAcosd
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4.3 Continuity Equation for Two-Dimensional Steady Flow

g

 Displacement along a streamline is
ds = vdt (c)
Substituting (c) into (b) gives

(Mo)esae = p(vcosd)dAdt (d)

C.S.out

By the way, vcosé = normal velocity component normal to C.S. at dA

Set N = outward unit normal vector at dA ([fi|=1)

VAR V-N=Vvcosé « scalar or dot product (e)
Substitute (e) into (d)
=d v-ndA=d v-dA (4-8)
(Mg )y o0 =0t csonPY MOA= tJ.c.s.out'OV.

where dA=ndA =directed area element
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4.3 Continuity Equation for Two-Dimensional Steady Flow

[Cf] Tangential component of velocity does not contribute to flow through the C.S.

— |t contributes to circulation
i) Mass flow into CV

(m,), = L .. p(dscosd)dA /7 6>90"—>cos <0

jc __p(vcosf)dAdt=dt| _ pv-(-n)dA

C.S.in

- dt{_jc S.in '0\7 . ﬁdA} - dt{_.[c S.in ,0\7 . d_A}
For steady flow, mass in = mass out

dtjc.s.outpv'ﬁ:dt{_jc p\_;d—A}

.S.in

Divide by dt
- pV.ﬂ:JCSoutpg.ﬁ

C.S.in
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4.3 Continuity Equation for Two-Dimensional Steady Flow

jC.S.outpv.aA+."C.S.inpv.aﬁ\:O (f)

Combine C.S. in and C.S. out ﬁ Integral form
/

C,’Sc.s.p\q/.d—Az qsc.s.pv.ﬁdA: 0

where qSC . = integral around the control surface in the counterclockwise direction

— Continuity equation for 2-D steady flow of compressible fluid

[Cf] For unsteady flow

0 .
P (mass inside c.v.) = mass flowrate in — mass flowrate out
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4.3 Continuity Equation for Two-Dimensional Steady Flow

#

(2) Infinitesimal control volume
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é
Apply (4.9) to control volume ABCD

IABpV-ﬁdA+IBCp\7-ﬁdA+J-CDpV-ﬁdA+IDAp\7-ﬁdA:O (f)

Expand to first-order accuracy dp dx
/ Pas = P “ox 2

¥ ~ - ov d
I N ﬁdAz( +a_p%j(u iu%jdy v n:—( ___y]
s’ =P X 2 OX 2 %y 2

- - op dy ov dy
LD pV-ndA = (p + —7j(v + —?] dx (9)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Substitute (g) to (f), and expand products, and then retain only terms of lowest

order (largest order of magnitude)

—&(+p—ﬂdx vapdyd 6p8v}/d/y) dx

oy 2 oy gy 4

+0 dX+p@ﬂdX VapddeJrap&y/dy) dx
y2 oy 2  oypy 4
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4.3 Continuity Equation for Two-Dimensional Steady Flow

0
—+V—+p—+U—=0 '
p 6y ay IO 6X a)(/ POInt form

0 0
o 9 () = (4.10)
™ (pu)+—(pv)=0

— Continuity equation for 2-D steady flow of compressible fluid

 Continuity equation of incompressible flow for both steady and unsteady

flow ( p = const.)

—+—=0 (4.11)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

g

Continuity equation for unsteady 3-D flow of compressible fluid

(’3,0 0
5t

o (P E(W) + —(pW) 0

For steady 3-D flow of incompressible fluid

Guﬁvﬁw

axay o7
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4.3 Continuity Equation for Two-Dimensional Steady Flow

 Continuity equation for polar coordinates
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é
Apply (4.9) to control volume ABCD

-“Apr.ﬁdA_l_J‘Bva.ﬁdA+J‘CDp\7'ﬁdA+..‘DA'0\7°ﬁdA:O
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4.3 Continuity Equation for Two-Dimensional Steady Flow

g
2
v do 6pd«9dr_8pﬁvt (d6) i
0 2 ‘00 2 00 00
ov, d@ opdo  dpdv, (w)
+pV ar + ——dr+ —dr +
pf/ P02 Vo0 2 M o000 aC
ov, dr oV, dr

+pvrdl + pv.drd6 +

2
w P9 oy a”O"rd o+ a"(d{ a" d9+5p(drj Ve drdo

“or 2 “or 2

—pV d9+p?—£rd9 Z’Odr de—apav (\%\j rdé =0

»p M dodr 1, a—pdedmpa"r rdrd6 +v. 2P rdrde
P50 ae or T

5,08V 1

+pv.drdé +
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é
Divide by drd@

,oﬁvt +V, 8p+pavr +V, a'0r+,ovr +p6vr£dr+vra—p1dr +8_p8vr£dr:0
06 06 or or or 2 or 2 or or 2
oV, op oV, op
r+v.——r+pv + +V,—=
o rar P TP o
Divide by I
oV, op 5 oV, v P op
or "or r "re0 ‘roo
o(pv,) . pv,  9(pV,)
4L+ =0
or r roé (4.12)
For incompressible fluid
Ve Mo O (4.13)

r ar r@&
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é

[IP4.4]p. 117
A mixture of ethanol and gasoline, called "gasohol," is created by pumping

the two liquids into the "wye" pipe junction. Find Qu, and V,
o =691.1kg/m?
V.. =1.08m/s
Qe =301/5=30x10"m’/s
Pyas = 680.3 kg/m?

Py = 788.6 kg/m’
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Dimensional Steady Flow

SE

o
e [ e
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4.3 Continuity Equation for Two-
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4.3 Continuity Equation for Two-Dimensional Steady Flow

é
Sol
=0l A =%(0.2)2 =0.031m* A, =0.0079 m* A = 0.031m?
V, =30 x107°/0.031=0.97 m/s

.1pv-ndA+Lpv-ndA+.[3pV-ndA=O

'1 ov-ndA=-680.3x0.97 x0.031=—20.4 kg/s

[ pv-ndA=-788.6xV, x0.0079 =—6.23V,
J2

'3 ov-ndA=691.1x1.08x0.031=23.1 kg/s
b pv-ndA=—-20.4-6.23V, +23.1=0

V, =0.43 m/s
— Q. =V, A =(0.43)(0.0079) =3.4x10"° m°/s=3.4 I/s
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4.4 The Reynolds Transport Theorem
—

* Reynolds Transport Theorem (RTT) Osborne Reynolds (1842-1912):
English engineer

~ A general relationship that converts the laws such as mass conservation

and Newton’s 2" law from the system to the control volume

Most principles of fluid mechanics are adopted from solid mechanics,
where the physical laws dealing with the time rates of change of extensive
properties are expressed for systems.

— There is a need to relate the changes in a control volume to the changes

in a system.




40/47

4.4 The Reynolds Transport Theorem

» Two types of properties
Extensive properties ( E ): total system mass, momentum, energy

Intensive properties (1 ): mass, momentum, energy per unit mass
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4.4 The Reynolds Transport Theorem

e

E 1
system mass, M 1
system momentum, mv \7
system energy, m(V)’ (V)?

E =t @M= 1 o (414




42/47

4.4 The Reynolds Transport Theorem

= Derivation of RTT

5 System boundary
at time t+dt

EN

NN

-_ ol 4
Control surface and
system boundary
at time ¢
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4.4 The Reynolds Transport Theorem
—

Consider time rate of change of a system property

E.a—E = (Eg + Eo)t+dt —(Eq +E )t (a)
(E )t+dt - dt.” sout (b-1)
(E)), —dt( L S_inipv°ﬁ) (b.2)
(Er)eea = (_U |pdvol )t+dt (b.3)

(Ex). =([[[ ipdvol | (b.4)
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4.4 The Reynolds Transport Theorem
—

Substitute (b) into (a) and divide by dt

. tdét = dt{(ﬂ ipdvol) ([T, .pdvm)}

+J.jCSOUtI V dA_I_J:‘CSIﬂ d_'Al

s gL o) S tpwor) o ipv-ah | @19
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4.4 The Reynolds Transport Theorem

g

dE
® gt =time rate of change of E in the system

@ %(mcv ipdvol) = time rate change within the control volume - unsteady term

® <f>95 ipv-dA = fluxes of E across the control surface

= Application of RTT to conservation of mass

For application of RTT to the conservation of mass,

in Eq. (4.15), E=m, i=1 and C;—T:O because mass is conserved.

R o), (o ) w1

Unsteady flow: mass within the control volume

may change if the density changes
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4.4 The Reynolds Transport Theorem
—

For flow of uniform density or steady flow, (4.16) becomes

jjc.s.outpv.ﬁ+j c.s.ian.d_AZO ~ Same as Eq (49)

For one-dimensional flow

JJC.s.out p\_; . d_A’ - p2V2A2
JJc.s.in ,0\7 . EAI N _pllei
S oAV = P AV, (4.1)

*In Ch. 5 & 6, RTT is also used to derive the work-energy,

impulse-momentum, and moment of momentum principles.
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4.4 The Reynolds Transport Theorem
—

Homework Assignment # 4

Due: 1 week from today

Prob. 4.9

Prob. 4.12
Prob. 4.14
Prob. 4.20
Prob. 4.31
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