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Continuity Equation and Reynolds 
Transport Theorem  

Chapter 4 
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4.1 Control Volume

4.2 The Continuity Equation for One-Dimensional Steady Flow

4.3 The Continuity Equation for Two-Dimensional Steady Flow

4.4 The Reynolds Transport Theorem

Objectives

- Apply the concept of the control volume to derive equations for the 

conservation of mass for steady one- and two-dimensional flows

- Derive the Reynolds transport theorem for three-dimensional flow

- Show that continuity equation can recovered by simplification of the 

Reynolds transport theorem
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4.1 Control Volume

Physical system 

~ is defined as a particular collection of matter or a region of space chosen for 

study

~ is identified as being separated from everything external to the system by 

closed boundary

• The boundary of a system: fixed vs. movable (moving) boundary

•Two types of system:  

- closed system (control mass) ~ consists of a fixed mass, no mass can cross 

its boundary

- open system (control volume) ~ mass and energy can cross the boundary of 

a control volume
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4.1 Control Volume
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4.1 Control Volume

A system-based analysis of fluid flow leads to the Lagrangian equations of 

motion in which particles of fluid are tracked.

However, a fluid system is mobile and very deformable. 

A large number of engineering problems involve mass flow in and out of a 

system.

→ This suggests the need to define a convenient object for analysis. 

→ control volume
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4.1 Control Volume

• Control volume 

~ a volume which is fixed in space and through whose boundary matter, 

mass, momentum, energy can flow

~ The boundary of control volume is a control surface. 

~ The control volume can be any size (finite or infinitesimal), any space.

~ The control volume can be fixed in size and shape.

→ This approach is consistent with the Eulerian view of fluid motion, in which 

attention is focused on particular points in the space filled by the fluid rather 

than on the fluid particles.
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4.2 Continuity Equation for One-Dimensional Steady Flow

• Principle of conservation of mass

The application of principle of conservation of mass to a steady flow in a 

streamtube results in the continuity equation.

• Continuity equation

~ describes the continuity of flow from section to section of the streamtube
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4.2 Continuity Equation for One-Dimensional Steady Flow

• One-dimensional steady flow

Consider the element of a finite streamtube

- no net velocity normal to a streamline

- no fluid can leave or enter the stream tube except at the ends

- Now, define the control volume as marked by the control surface that 

bounds the region between sections 1 and 2.

→ To be consistent with the assumption of one-dimensional steady flow, 

the velocities at sections 1 and 2 are assumed to be uniform.

→ The control volume comprises volumes I and R.

→ The control volume is fixed in space, but in the system moves 

downstream.
dt
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4.2 Continuity Equation for One-Dimensional Steady Flow
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4.2 Continuity Equation for One-Dimensional Steady Flow

From the conservation of system mass

( ) ( )I R t R O t tm m m m +∆+ = + (1)

For steady flow, the fluid properties at points in space are not functions of 

time, 0m
t

∂
=

∂

( ) ( )R t R t tm m +∆→ = (2)

Substituting (2) into (1) yields

( ) ( )I t O t tm m +∆=
Inflow Outflow

(3)
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4.2 Continuity Equation for One-Dimensional Steady Flow

Express inflow and outflow in terms of the mass of fluid moving across 

the control surface in time dt

1 1 1( )I tm A dsρ=

2 2 2( )O t tm A dsρ+∆ = (4)

Substituting (4) into (3) yields

1 1 1 2 2 2A ds A dsρ ρ=

Dividing by dt gives

1 1 1 2 2 2m AV A Vρ ρ= =

1
1

ds V
dt

=

(4.1)

→ Continuity equation
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4.2 Continuity Equation for One-Dimensional Steady Flow

In steady flow, the mass flow rate, m
passing all sections of a stream tube is constant.

m AVρ= = constant (kg/sec)

( ) 0d AVρ =

→ ( ) ( ) ( ) 0d AV dA V dV Aρ ρ ρ+ + =

(4.2b)

(4.2a)

(5)

Dividing (a) by AVρ results in

0d dA dV
A V

ρ
ρ

+ + =

→ 1-D steady compressible fluid flow
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4.2 Continuity Equation for One-Dimensional Steady Flow

→ 

Set

For incompressible fluid flow; constant density 

0d
t
ρρ ∂

= 0, =
∂

(4.3)

From Eq. (4.2a) 

( ) 0d AVρ =

( ) 0d AV =

Q = volume flowrate (m3/s, cms)

Then (6) becomes

1 1 2 2const.Q AV AV A V= = = =

(4.4)

(4.5)

(6)
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4.2 Continuity Equation for One-Dimensional Steady Flow

→

For 2-D flow, flowrate is usually quoted per unit distance normal to the 

plane of the flow, b
q = flowrate per unit distance normal to the plane of flow ( )3m s m⋅

Q AVq hV
b b

= = =

1 1 2 2hV h V=

(4.6)

(4.7)

[Re] For unsteady flow

+ inflow outflowt t tmass mass+∆ = −

( ) ( ) ( ) ( )R t t R t I t O t tm m m m+∆ +∆− = −



15/47

4.2 Continuity Equation for One-Dimensional Steady Flow

Divide by dt
( ) ( ) ( ) ( )R t t R t

I t O t t
m m m m

dt
+∆

+∆
−

= −

Define 

( ) ( ) ( )R t t R tm m m vol
t dt t

ρ+∆∂ − ∂
= =

∂ ∂

Then
( ) ( ) ( )I t O t t

vol m m
t

ρ
+∆

∂
= −

∂
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4.2 Continuity Equation for One-Dimensional Steady Flow

• Non-uniform velocity distribution through flow cross section

No slip
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4.2 Continuity Equation for One-Dimensional Steady Flow

Eq. (4.5) can be applied. However, velocity in Eq. (4.5) should be the mean 

velocity.
QV
A

=
A A

Q dQ vdA= =∫ ∫
1

A
V vdA

A
∴ = ∫

•The product remains constant along a streamline in a fluid of constant density.AV

→ As the cross-sectional area of stream tube increases, the velocity must 

decrease.

→ Streamlines widely spaced indicate regions of low velocity, streamlines 

closely spaced indicate regions of high velocity.

1 1 2 2 1 2 1 2:AV A V A A V V= > → <
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4.2 Continuity Equation for One-Dimensional Steady Flow

[IP 4.3] p. 113

The velocity in a cylindrical pipe of radius R

is represented by an axisymmetric parabolic distribution (laminar flow).

What is V in terms of maximum velocity, ?cv
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4.2 Continuity Equation for One-Dimensional Steady Flow

r

← equation of paraboloid

dr

dA=2πrdr
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4.2 Continuity Equation for One-Dimensional Steady Flow

2

2 20

1 1 1 2
R

cA

Q rV v dA v r dr
A A R R

π
π

 
= = = − 

 
∫ ∫

3 2 4 2 2

2 2 2 2 20
0

2 2 2
2 4 2 4 2

R
R

c c c cv v v vr r r R Rr dr
R R R R R

     
= − = − = − =     

     
∫ → Laminar flow

[Cf] Turbulent flow  

→ logarithmic velocity distribution
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4.2 Continuity Equation for One-Dimensional Steady Flow
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4.3 Continuity Equation for Two-Dimensional Steady Flow

(1) Finite control volume Area of parallelogram = 
( cos )ds dAθ
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Consider a general control volume, and apply conservation of mass

( ) ( )I R t R O t tm m m m +∆+ = + (a)

For steady flow: ( ) ( )R t R t tm m +∆+

Then (a) becomes

( ) ( )I t O t tm m +∆= (b)

ⅰ) Mass in O moving out through control surface 

. .
( ) ( cos )O t t C S out
m ds dAρ θ+∆ = ∫

mass area 1 cosvol ds dAρ ρ ρ θ= = × × =
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4.3 Continuity Equation for Two-Dimensional Steady Flow

• Displacement along a streamline is 

ds vdt=
Substituting (c) into (b) gives

. .
( ) ( cos )O t t C S out
m v dAdtρ θ+∆ = ∫

(c)

(d)

By the way, cosv θ = normal velocity component normal to C.S. at dA

n


dA ( )1n =


Set  = outward unit normal vector at 
cosnv v n v θ∴ = ⋅ =

 

← scalar or dot product (e)

Substitute (e) into (d)

. . . .
( )O t t C S out C S out
m dt v ndA dt v dAρ ρ+∆ = ⋅ = ⋅∫ ∫

   

dA ndA=
 

where =directed area element

(4.8)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

[Cf] Tangential component of velocity does not contribute to flow through the C.S. 

→ It contributes to circulation
ⅱ) Mass flow into CV

. .
( ) ( cos )I t C S in
m ds dAρ θ= ∫

. . . .
( cos ) ( )

C S in C S in
v dAdt dt v n dAρ θ ρ= ⋅ −∫ ∫

 

90 cos 0θ θ> → <

{ } { }. . . .C S in C S in
dt v ndA dt v dAρ ρ= − ⋅ = − ⋅∫ ∫

   

For steady flow, mass in = mass out

{ }. . . .C S out C S in
dt v dA dt v dAρ ρ⋅ = − ⋅∫ ∫

   

Divide by 

. . . .C S in C S out
v dA v dAρ ρ− ⋅ = ⋅∫ ∫
   

dt
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4.3 Continuity Equation for Two-Dimensional Steady Flow

where integral around the control surface in the counterclockwise direction

→ Continuity equation for 2-D steady flow of compressible fluid

Combine C.S. in and C.S. out

. . . .
0

C S C S
v dA v ndAρ ρ⋅ = ⋅ =∫ ∫
   

 

Integral form

. .C S
=∫

[Cf] For unsteady flow

( . .)mass inside c v
t
∂
∂

= mass flowrate in – mass flowrate out 

. . . .
0

C S out C S in
v dA v dAρ ρ⋅ + ⋅ =∫ ∫
   

(f)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

(2) Infinitesimal control volume
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Expand to first-order accuracy 

Apply (4.9) to control volume ABCD

0
AB BC CD DA

v ndA v ndA v ndA v ndAρ ρ ρ ρ⋅ + ⋅ + ⋅ + ⋅ =∫ ∫ ∫ ∫
       

(f)

2 2AB

dy v dyv ndA v dx
y y
ρρ ρ  ∂ ∂

⋅ ≅ − − −  ∂ ∂  
∫

 

2AB
dx

x
ρρ ρ ∂

≈ −
∂

2
v dyv n v
y

 ∂
⋅ = − − ∂ 

 

(g)

2 2BC

dx u dxv ndA u dy
x x
ρρ ρ ∂ ∂  ⋅ ≅ + +  ∂ ∂  ∫

 

2 2CD

dy v dyv ndA v dx
y y
ρρ ρ

  ∂ ∂
⋅ ≅ + +  ∂ ∂  

∫
 

2 2DA

dx u dxv ndA u dy
x x
ρρ ρ ∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Substitute (g) to (f), and expand products, and then retain only terms of lowest 

order (largest order of magnitude)
2( )

2 2 4
v dy dy v dyvdx dx v dx dx
y y y y

ρ ρρ ρ ∂ ∂ ∂ ∂
− + + −

∂ ∂ ∂ ∂
2( )

2 2 4
v dy dy v dyvdx dx v dx dx
y y y y

ρ ρρ ρ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂
2( )

2 2 4
u dx dx u dxudy dy u dy dy
x x x x

ρ ρρ ρ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂
2( ) 0

2 2 4
u dx dx v dxudy dy u dy dy
x x x x

ρ ρρ ρ ∂ ∂ ∂ ∂
− + + − =

∂ ∂ ∂ ∂

0v udxdy v dxdy dxdy u dxdy
y y x x

ρ ρρ ρ∂ ∂ ∂ ∂
∴ + + + =

∂ ∂ ∂ ∂
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4.3 Continuity Equation for Two-Dimensional Steady Flow

0v uv u
y y x x

ρ ρρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

( ) ( ) 0u v
x y
ρ ρ∂ ∂

+ =
∂ ∂

Point form

→ Continuity equation for 2-D steady flow of compressible fluid

(4.10)

ρ =

• Continuity equation of incompressible flow for both steady and unsteady 

flow (       const.)

0u v
x y
∂ ∂

+ =
∂ ∂ (4.11)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

For steady 3-D flow of incompressible fluid

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

Continuity equation for unsteady 3-D flow of compressible fluid

( ) ( ) ( ) 0u v w
t x y z
ρ ρ ρ ρ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
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4.3 Continuity Equation for Two-Dimensional Steady Flow

• Continuity equation for polar coordinates 
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4.3 Continuity Equation for Two-Dimensional Steady Flow

Apply (4.9) to control volume ABCD

0
AB BC CD DA

v ndA V ndA V ndA V ndAρ ρ ρ ρ⋅ + ⋅ + ⋅ + ⋅ =∫ ∫ ∫ ∫
       

2 2
t

tAB

d v dV ndA v drρ θ θρ ρ
θ θ
∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫

 

( )
2 2

r
rBC

dr v drV ndA v r dr d
r r
ρρ ρ θ∂ ∂  ⋅ ≅ + + +  ∂ ∂  ∫

 

2 2
t

tCD

d v dV ndA v drρ θ θρ ρ
θ θ
∂  ⋅ ≅ + +  ∂ ∂  ∫

 

2 2
r

rDA

dr v drV ndA v rd
r r
ρρ ρ θ∂ ∂  ⋅ ≅ − − −  ∂ ∂  ∫
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4.3 Continuity Equation for Two-Dimensional Steady Flow

2( )
2 2 4

t t
t t

v d d v dv dr dr v dr drθ ρ θ ρ θρ ρ
θ θ θ θ
∂ ∂ ∂ ∂

− + + −
∂ ∂ ∂ ∂

2( )
2 2 4

t t
t t

v d d v dv dr dr v dr drθ ρ θ ρ θρ ρ
θ θ θ θ
∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂

2 2
r r

r r
v dr v drv rd v drd rd drd
r r

ρ θ ρ θ ρ θ ρ θ∂ ∂
+ + + +

∂ ∂
2 2

2 2 2 2
r r

r r
dr dr dr v dr vv rd v drd rd drd

r r r r r r
ρ ρ ρ ρθ θ θ θ∂ ∂ ∂ ∂ ∂ ∂   + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

2

0
2 2 2

r r
r r

v dr dr v drv rd rd v rd rd
r r r r

ρ ρρ θ ρ θ θ θ∂ ∂ ∂ ∂  − + + − = ∂ ∂ ∂ ∂  

t r
t r

v vd dr v d dr rdrd v rdrd
r r

ρ ρρ θ θ ρ θ θ
θ θ
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂

2 2 31 1 1( ) ( ) ( ) 0
2 2 2

r r
r r

v vv drd dr d v dr d dr d
r r r r

ρ ρρ θ ρ θ θ θ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂



35/47

4.3 Continuity Equation for Two-Dimensional Steady Flow

Divide by drdθ
1 1 1 0
2 2 2

t r r r
t r r r

v v v vv v r v dr v dr dr
r r r r r r

ρ ρ ρ ρρ ρ ρ ρ
θ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + + + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

0r t
r r t

v vr v r v v
r r

ρ ρρ ρ ρ
θ θ

∂ ∂ ∂ ∂
∴ + + + + =

∂ ∂ ∂ ∂

Divide by r

0r r t
r t

v v vv v
r r r r r

ρ ρρ ρ ρ
θ θ

∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂
( )( ) 0tr r vv v

r r r
ρρ ρ
θ

∂∂
∴ + + =

∂ ∂ (4.12)

For incompressible fluid

0tr r vv v
r r r θ

∂∂
+ + =
∂ ∂

(4.13)
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4.3 Continuity Equation for Two-Dimensional Steady Flow

ethQ ethV

[IP 4.4] p. 117

A mixture of ethanol and gasoline, called "gasohol," is created by pumping

the two liquids into the "wye" pipe junction. Find and

3691.1 kg mmixρ =

1.08 m smixV =

3 330 / 30 10 m /sgasQ l s −= = ×

3680.3 kg mgasρ =

3788.6 kg methρ =
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4.3 Continuity Equation for Two-Dimensional Steady Flow
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4.3 Continuity Equation for Two-Dimensional Steady Flow

[Sol] 
2 2

1 (0.2) 0.031m
4

A π
= = 2

2 0.0079mA = 2
3 0.031mA =

3
1 30 10 / 0.031 0.97 m/sV −= × =

1 2 3
0v n dA v n dA v n dAρ ρ ρ⋅ + ⋅ + ⋅ =∫ ∫ ∫

     

1
680.3 0.97 0.031 20.4 kg/sv n dAρ ⋅ = − × × = −∫

 

2 22
788.6 0.0079 6.23v n dA V Vρ ⋅ = − × × = −∫

 

3
691.1 1.08 0.031 23.1 kg/sv n dAρ ⋅ = × × =∫

 

2.
20.4 6.23 23.1 0

c s
v ndA Vρ∴ ⋅ = − − + =∫
 



2 0.43 m/sV =
3 3

2 2 (0.43)(0.0079) 3.4 10 m /s 3.4 /sethQ V A l−→ = = = × =
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4.4 The Reynolds Transport Theorem

• Reynolds Transport Theorem (RTT)

~ A general relationship that converts the laws such as mass conservation 

and Newton’s 2nd law from the system to the control volume

Most principles of fluid mechanics are adopted from solid mechanics, 

where the physical laws dealing with the time rates of change of extensive 

properties are expressed for systems. 

→ There is a need to relate the changes in a control volume to the changes 

in a system. 

Osborne Reynolds (1842-1912); 
English engineer
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4.4 The Reynolds Transport Theorem

• Two types of properties

Extensive properties ( E ):  total system mass, momentum, energy

Intensive properties ( i ):  mass, momentum, energy per unit mass
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4.4 The Reynolds Transport Theorem

system momentum, 

E i

m

mv


2( )m v
v


2( )v


system mass, 

system energy, 

1

system system
E i dm i dvolρ= =∫∫∫ ∫∫∫ (4.14)
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4.4 The Reynolds Transport Theorem

▪ Derivation of RTT
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4.4 The Reynolds Transport Theorem

Consider time rate of change of a system property

(a)

(b.1)

(b.3)

(b.2)

(b.4)

0( ) ( )t dt t R t dt R I tE E E E E E+ +− = + − +

0 . .
( )t dt c s out
E dt i v dAρ+ = ⋅∫∫

 

( ). .
( )I t c s in
E dt i v dAρ= − ⋅∫∫

 

( )( )R t dt R t dt
E i dvolρ+

+
= ∫∫∫

( )( )R t R t
E i dvolρ= ∫∫∫
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4.4 The Reynolds Transport Theorem

dtSubstitute (b) into (a) and divide by 

( ) ( ){ }1t dt t
R Rt dt t

E E i dvol i dvol
dt dt

ρ ρ+

+

−
∴ = −∫∫∫ ∫∫∫

. . . .c s out c s in
i v dA i v dAρ ρ+ ⋅ + ⋅∫∫ ∫∫
   

( ) ( ). . . . . .

∂
= = + ⋅

∂∫∫∫ ∫∫∫ ∫ ∫
 

 c v c v c s

dE d i dvol i dvol i v dA
dt dt t

ρ ρ ρ (4.15)
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4.4 The Reynolds Transport Theorem

dE
dt

( ). .c v
i dvol

t
ρ∂

∂ ∫∫∫

. .c s
i v dAρ ⋅∫ ∫
 

 

E

E

① = time rate of change of  in the system

② = time rate change within the control volume → unsteady term

③ = fluxes of  across the control surface

▪ Application of RTT to conservation of mass

For application of RTT to the conservation of mass, 

in Eq. (4.15),           ,        and            because mass is conserved.E m= 1i = 0dm
dt

=

( ) ( ). . . . . . . .c v c s c s out c s in
dvol v dA v dA v dA

t
ρ ρ ρ ρ∂

∴ = − ⋅ = − ⋅ + ⋅
∂ ∫∫∫ ∫ ∫ ∫∫ ∫∫

     

 

(4.16)

Unsteady flow: mass within the control volume

may change if the density changes
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4.4 The Reynolds Transport Theorem

For one-dimensional flow

For flow of uniform density or steady flow, (4.16) becomes

. . . .
0

c s out c s in
v dA v dAρ ρ⋅ + ⋅ =∫∫ ∫∫
   

~ same as Eq. (4.9)

2 2 2. .c s out
v dA V Aρ ρ⋅ =∫∫
 

1 1 1. .c s in
v dA V Aρ ρ⋅ = −∫∫
 

1 1 1 2 2 2AV A Vρ ρ∴ =

• In Ch. 5 & 6, RTT is also used to derive the work-energy, 

impulse-momentum, and moment of momentum principles.

(4.1)
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4.4 The Reynolds Transport Theorem

Homework Assignment # 4

Due:  1 week from today

Prob. 4.9

Prob. 4.12

Prob. 4.14

Prob. 4.20

Prob. 4.31
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