## **Chapter 6**

# The Impulse-Momentum Principle







### **Chapter 6 The Impulse-Momentum Principle**

#### Contents

- 6.0 Introduction
- 6.1 The Linear Impulse-Momentum Equation
- 6.2 Pipe Flow Applications
- 6.3 Open Channel Flow Applications
- 6.4 The Angular Impulse-Momentum Principle

### Objectives

-Develop impulse - momentum equation, the third of three basic equations of

fluid mechanics, added to continuity and work-energy principles

-Develop linear and angular momentum (moment of momentum) equations





### 6.0 Introduction

• Three basic tools for the solution of fluid flow problems

Continuity principle

Work-energy principle (Bernoulli equation)

Impulse - momentum equation (Momentum equation)

- Impulse momentum equation
- ~ derived from Newton's 2nd law in vector form

$$\sum \vec{F} = m\vec{a}$$

Multiply by *dt* 

$$\left(\Sigma \vec{F}\right) dt = m\vec{a}dt = d(m\vec{v_c})$$
$$\Sigma \vec{F} = \frac{d}{dt}(m\vec{v_c})$$





### 6.0 Introduction

where  $\overrightarrow{v_c}$  = velocity of the center of mass of the system of mass  $\overrightarrow{mv_c}$  = <u>linear momentum</u>  $m = \int_{sys} dm$   $v_c = \frac{1}{m} \int_{sys} v dm$  $(\Sigma F) dt$  = impulse in time dt





- Define the fluid system to include <u>all the fluid in a specified control volume</u> whereas the Euler equations was developed for a small fluid system
- Restrict the analysis to steady flow
- This equation will apply equally well to <u>real fluids</u> as well as ideal fluids even though shear stress is not explicitly included.
- Develop linear and angular momentum (moment of momentum) equations
- Linear momentum equation: calculate <u>magnitude and direction of resultant</u> <u>forces</u>
- Angular momentum equation: calculate <u>line of action</u> of the resultant forces, rotating fluid machinery (pump, turbine)











Use the same control volume previously employed for conservation of mass and work-energy.

For the individual fluid system in the control volume,

$$\sum \vec{F} = m\vec{a} = \frac{d}{dt}m\vec{v} = \frac{d}{dt}\rho\vec{v}dvol$$
 (a)

Sum them all

$$\sum F_{ext} = \iiint_{sys} \frac{d}{dt} (\rho \vec{v} dvol) = \frac{d}{dt} \iiint_{sys} (\rho \vec{v} dvol) \\ E = \iiint_{system} i \ dm = \iiint_{system} i \rho \ dvol$$

Use <u>Reynolds Transport Theorem</u> for steady flow to evaluate RHS

$$\frac{dE}{dt} = \frac{d}{dt} \iiint_{system} i\rho \ dvol = \frac{\partial}{\partial t} \left( \iiint_{c.v.} i\rho \ dvol \right) + \oint \oint_{c.s.} i\rho \ \vec{v} \cdot \vec{dA}$$
  
Steady flow





$$\frac{d}{dt} \iiint_{sys} (\rho \vec{v} dV) = \frac{dE}{dt} = \iint_{c.s.} i \rho \vec{v} \cdot d\vec{A} = \iint_{c.s.out} \rho \vec{v} (\vec{v} \cdot d\vec{A}) + \iint_{c.s.in} \rho \vec{v} (\vec{v} \cdot d\vec{A})$$
(b)  
$$\vec{i} = \vec{v} \text{ for momentum/mass}$$

where  $E = \underline{\text{momentum}}$  of fluid system in the control volume  $i = \vec{v} = \underline{\text{momentum}}$  per unit mass

Because the streamlines are straight and parallel at Sections 1 and 2, velocity is uniform over the cross sections. The cross-sectional area is normal to the velocity vector over the entire cross section. Thus, integration of terms in Eq. (b) are written as





$$\int_{c.s.out} \vec{v} \left( \rho \vec{v} \cdot dA \right) = \int_{c.s.out} \rho \vec{v} \left( \frac{\vec{v} \cdot \vec{n}}{\nu} dA \right) = \int_{c.s.out} \rho \vec{v} \frac{v dA}{Q} = \rho_2 \vec{V}_2 Q_2$$

$$\int_{c.s.in} \vec{v} \left( \rho \vec{v} \cdot d\vec{A} \right) = \int_{c.s.in} \rho \vec{v} \left( \frac{\vec{v} \cdot \vec{n}}{\nu} dA \right) = -\rho_1 \vec{V}_1 Q_1$$
Flux in through  
Section 2
Flux in through  
Section 1

By Continuity eq:  $Q_1 \rho_1 = Q_2 \rho_2 = Q \rho$  $\therefore$  RHS of (b)  $= Q \rho (\vec{V}_2 - \vec{V}_1)$  (c)

Substitute (c) into (a)

$$\sum \vec{F} = Q\rho \left( \vec{V_2} - \vec{V_1} \right)$$

(6.1)



In 2-D flow,

$$\sum F_{x} = Q\rho (V_{2x} - V_{1x})$$
(6.2a)  
$$\sum F_{z} = Q\rho (V_{2z} - V_{1z})$$
(6.2b)

General form in case momentum <u>enters and leaves the control volume</u> at more than one location:

$$\sum \vec{F} = \left(\sum Q \rho \vec{v}\right)_{out} - \left(\sum Q \rho \vec{v}\right)_{in}$$
(6.3)

- The external forces include both <u>normal (pressure)</u> and <u>tangential (shear)</u> forces on the fluid in the control volume, as well as the <u>weight of the fluid</u> inside the control volume at a given time.





- Advantages of impulse-momentum principle
- ~ Only flow conditions at inlets and exits of the control volume are needed for successful application.
- ~ Detailed flow processes within the control volume need not be known to apply the principle.





Forces exerted by a flowing fluid on a pipe bend, enlargement, or contraction in a pipeline may be computed by an application of the impulse-momentum principle.

Case 1: The reducing pipe bend

Knowns: flowrate, Q; pressures,  $p_1$ ,  $p_2$ ; velocities,  $V_1$ ,  $V_2$ 

Find: force exerted by the bend on the fluid, F

= equal & opposite of the force exerted by the fluid on the bend)





#### *13/60*

### 6.2 Pipe Flow Applications







#### • Pressures:

For streamlines essentially straight and parallel at Section 1 and 2, the forces  $F_1$ , and  $F_2$  result from <u>hydrostatic pressure distributions</u>. If <u>mean pressure</u>  $P_1$  and  $P_2$  are large, and the pipe areas are small, then  $F_1 = p_1 A_1$  and  $F_2 = p_2 A_2$ , and assumed to act at the <u>centerline of the pipe</u> instead of the <u>center of pressure</u>.  $h_c$ 

[Cf] Resultant force

(2.12): 
$$F = \gamma h_c A$$
  
 $p_c = \gamma h_c$ 





- Body forces:
- = total weight of fluid, W

- Force exerted by the bend on the fluid, F
- = resultant of the pressure distribution over the entire interior of the bend between Sections 1 and 2.
  - ~ distribution is unknown in detail
  - ~ resultant force can be predicted by impulse-momentum eq.





Now apply impulse-momentum equation, Eq. (6.2) (i) *x*-direction:

$$\sum F_x = p_1 A_1 - p_2 A_2 \cos \alpha - F_x \tag{a}$$

$$Q\rho\left(V_{2x} - V_{1x}\right) = Q\rho\left(V_2\cos\alpha - V_1\right)$$
 (b)

Combining the two equations to develop an expression for  $F_x$ 

$$p_{1}A_{1} - p_{2}A_{2}\cos\alpha - F_{x} = Q\rho(V_{2}\cos\alpha - V_{1})$$

$$F_{x} = p_{1}A_{1} - p_{2}A_{2}\cos\alpha + Q\rho(V_{1} - V_{2}\cos\alpha)$$
(6.4a)





(ii) z-direction

$$\Sigma F_{z} = -W - p_{2}A_{2}\sin\alpha + F_{z}$$

$$Q\rho \left(V_{2z} - V_{1z}\right) = Q\rho \left(V_{2}\sin\alpha - 0\right)$$

$$-W - p_{2}A_{2}\sin\alpha + F_{z} = Q\rho V_{2}\sin\alpha$$

$$F_{z} = W + p_{2}A_{2}\sin\alpha + Q\rho V_{2}\sin\alpha$$
(6.4b)

[IP 6.1] p.193 Water flow through <u>vertical reducing pipe bend</u> 300 l/s of water flow through the <u>vertical</u> reducing pipe bend.

Calculate the force exerted by the fluid on the bend if the volume of the bend is  $0.085 \text{ m}^3$ .





*18/60* 

### **6.2 Pipe Flow Applications**







Given: 
$$Q = 300 \text{ l/s} = 0.3 \text{ m}^3/\text{s}$$
; Vol. of bend = 0.085  $m^3$   
 $A_1 = \frac{\pi}{4} (0.3)^2 = 0.071 \text{ m}^2$ ;  $A_2 = \frac{\pi}{4} (0.2)^2 = 0.031 \text{ m}^2$   
 $p_1 = 70 \text{ kPa} = 70 \times 10^3 \text{ N/m}^2$ 

Now, we apply three equations to solve this problem.

1) Continuity Eq.

$$Q = A_1 V_1 = A_2 V_2$$

$$V_1 = \frac{0.3}{0.071} = 4.24 \text{ m/s}$$

$$V_2 = \frac{0.3}{0.031} = 9.55 \text{ m/s}$$
(6.5)





2) Bernoulli Eq. between 1 and 2

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2$$
$$\frac{70 \times 10^3}{9,800} + \frac{(4.24)^2}{2(9.8)} + 0 = \frac{p_2}{9,800} + \frac{(9.55)^2}{2(9.8)} + 1.5$$
$$p_2 = 18.8 \text{ kPa}$$

3) Momentum Eq.

Apply Eqs. 6.4a and 6.4b

$$F_{x} = p_{1}A_{1} - p_{2}A_{2}\cos\alpha + Q\rho(V_{1} - V_{2}\cos\alpha)$$
$$F_{z} = W + p_{2}A_{2}\sin\alpha + Q\rho V_{2}\sin\alpha$$





$$F_{1} = p_{1}A_{1} = 4,948 \text{ N}$$

$$F_{2} = p_{2}A_{2} = 18.8 \times 10^{3} \times 0.031 = 590.6 \text{ N}$$

$$W = \gamma(\text{volume}) = 9800 \times 0.085 = 833 \text{ N}$$

$$F_{x} = 4,948 - (590.6) \cos 120^{\circ} + (998 \times 0.3)(4.24 - 9.55 \cos 120^{\circ}) = 7,942 \text{ N}$$

$$F_{z} = 833 + (590.6) \sin 120^{\circ} + (998 \times 0.3)(9.55 \sin 120^{\circ} - 0) = 3,820 \text{ N}$$

$$F = \sqrt{F_{x}^{2} + F_{z}^{2}} = 8,813 \text{ N}$$

$$\theta = \tan^{-1} \frac{F_{z}}{F_{x}} = 25.7^{\circ}$$





#### Case 2: Abrupt enlargement in a closed passage ~ real fluid flow

The impulse-momentum principle can be employed to predict the fall of the energy line (energy loss due to a rise in the internal energy of the fluid caused by <u>viscous dissipation</u>) at an abrupt axisymmetric enlargement in a passage.

Consider the control surface *ABCD* assuming a one-dimensional flow

i) Continuity Eq.

$$Q = A_1 V_1 = A_2 V_2$$











ii) Momentum Eq.

Result from hydrostatic pressure distribution over the area

 $\rightarrow$  For area *AB* it is an approximation because of the

dynamics of eddies in the "dead water" zone.

$$\sum F_{x} = p_{1}A_{2} - p_{2}A_{2} = Q\rho(V_{2} - V_{1})$$

$$(p_{1} - p_{2})A_{2} = \frac{V_{2}A_{2}}{g}\gamma(V_{2} - V_{1})$$

$$\therefore \frac{p_{1} - p_{2}}{\gamma} = \frac{V_{2}}{g}(V_{2} - V_{1})$$

(a)

iii) Bernoulli Eq.

$$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + \Delta H$$
$$\frac{p_1 - p_2}{\gamma} = \frac{V_2^2}{2g} - \frac{V_1^2}{2g} + \Delta H$$

(b)





Combine (a) and (b)

$$\frac{V_2(V_2 - V_1)}{g} = \frac{V_2^2}{2g} - \frac{V_1^2}{2g} + \Delta H$$
$$\Delta H = \frac{2V_2^2 - 2V_1V_2}{2g} - \frac{V_2^2}{2g} + \frac{V_1^2}{2g} = \frac{(V_1 - V_2)^2}{2g}$$





Applications impulse-momentum principle for open channel flows:

- computation of forces exerted by flowing water on overflow or underflow structures (weirs or gates)
- hydraulic jump
- wave propagation

#### Case 1: Flow under the sluice gate

Consider a control volume that has uniform flow and straight and parallel streamlines at the entrance and exit











Apply first Bernoulli and continuity equations to find values of depths  $y_1$  and

 $y_2$  and flowrate per unit width q

Then, apply the impulse-momentum equation to find the force the water exerts on the sluice gate

Discharge per  $\sum F_{v} = Q\rho(V_2 - V_1)$ unit width  $\sum F_{x} = F_{1} - F_{2} - F_{x} = Q\rho(V_{2} - V_{1}) = q\rho(V_{2} - V_{1})$  $\mathbf{\Omega}$  $V_{2}$ 

where 
$$q = \frac{Q}{W}$$
 = discharge per unit width =  $y_1V_1 = y_2$ 





Assume that the pressure distribution is hydrostatic at Sections 1 and 2, and replace *V* with q/y

$$\frac{\gamma y_1^2}{2} - \frac{\gamma y_2^2}{2} - F_x = q^2 \rho \left(\frac{1}{y_2} - \frac{1}{y_1}\right)$$
(6.6)

[Re] Hydrostatic pressure distribution

$$F_{1} = \gamma h_{c} A = \gamma \frac{y_{1}}{2} (y_{1} \times 1) = \frac{\gamma y_{1}^{2}}{2}$$
$$l_{p} - l_{c} = \frac{I_{c}}{l_{c} A} = \frac{\frac{1(y_{1})^{3}}{12}}{\frac{y_{1}}{2}(y_{1} \times 1)} = \frac{1}{6} y_{1}$$

$$c_p = \frac{1}{2} y_1 - \frac{1}{6} y_1 = \frac{1}{3} y_1$$



For ideal fluid (to a good approximation for a real fluid), the force tangent to the gate is zero.

- $\rightarrow$  shear stress is neglected.
- $\rightarrow$  Hence, the resultant force is normal to the gate.

$$F = F_x / \cos \theta$$

We don't need to apply the impulse-momentum equation in the z-direction.

[Re] The impulse-momentum equation in the z-direction

$$\sum F_z = Q\rho(V_{2_z} - V_{1_z})$$
  
$$\sum F_z = F_{OB} - W - F_z = Q\rho(0 - 0)$$
  
$$F_z = W - F_{OB}$$

Non-uniform pressure distribution





#### Case 2: The two-dimensional overflow structure

[IP 6.2] p.197 Calculate the horizontal component of the resultant force the fluid exerts on the structure

• Continuity Eq.

$$q = 5V_1 = 2V_2 \tag{6.7}$$

• Bernoulli's equation between (1) and (2)

$$0 + 5 \,\mathrm{m} + \frac{V_1^2}{2g} = 0 + 2 \,\mathrm{m} + \frac{V_2^2}{2g}$$

(6.8)











#### Combine two equations

$$V_1 = 3.33 \text{ m/s}$$
  
 $V_2 = 8.33 \text{ m/s}$   
 $q = 5(3.33) = 16.65 \text{ m}^3/\text{s} \cdot \text{m}$ 

• Hydrostatic pressure principle  $(\gamma = 9.8 \text{ kN/m}^3)$ 

$$F_{1} = \gamma h_{c} A = \gamma \frac{y}{2} y = 9.8 \frac{(5)^{2}}{2} = 122.5 \text{ kN/m}$$
$$F_{2} = 9.8 \frac{(2)^{2}}{2} = 19.6 \text{ kN/m}$$





• Impulse-Momentum Eq. (  $\rho = 1,000 \text{ kg/m}^3$  )

$$\Sigma F_x = 122,500 - F_x - 19,600 = (1,000 \times 16.65)(8.33 - 3.33)$$
  
 $F_x = 19.65 \text{ kN/m}$ 

[Cf] What is the force if the gate is closed?























#### Case 2: Hydraulic Jump

When liquid at high velocity discharges into a zone of lower velocity, a rather abrupt rise (a standing wave) occurs in water surface and is accompanied by violent turbulence, eddying, air entrainment, surface undulation.

- $\rightarrow$  such as a wave is known as a hydraulic jump
- → induce a large head loss (energy dissipation)











Apply impulse-momentum equation to find the relation between the depths for a given flowrate

Construct a control volume enclosing the hydraulic jump between Sections 1 and 2 where the streamlines are straight and parallel

$$\sum F_x = F_1 - F_2 = \frac{\gamma y_1^2}{2} - \frac{\gamma y_2^2}{2} = q \rho (V_2 - V_1)$$

where q = flowrate per unit width

Substitute the continuity relations

$$V_1 = \frac{q}{y_1}; \quad V_2 = \frac{q}{y_2}$$





Rearrange (divide by  $\gamma$ )

$$\frac{q^2}{gy_1} + \frac{y_1^2}{2} = \frac{q^2}{gy_2} + \frac{y_2^2}{2}$$

Solve for  $y_2/y_1$ 

$$\frac{y_2}{y_1} = \frac{1}{2} \left[ -1 + \sqrt{1 + \frac{8q^2}{gy_1^3}} \right] = \frac{1}{2} \left[ -1 + \sqrt{1 + \frac{8V_1^2}{gy_1}} \right]$$

Set  $Fr_1 = \frac{V_1}{\sqrt{gy_1}}$  $Fr_2 = \frac{V_2}{\sqrt{gy_1}}$ 

$$r_2 = \sqrt{gy_2}$$







Then, we have

$$\frac{y_2}{y_1} = \frac{1}{2} \left[ -1 + \sqrt{1 + 8Fr_1^2} \right]$$

#### **Jump Equation**

(a)  $Fr_1 = 1$ : critical flow

$$\rightarrow \frac{y_2}{y_1} = \frac{1}{2} \Big[ -1 + \sqrt{1+8} \Big] = 1$$
  $y_1 = y_2 \rightarrow \text{No Jump}$ 





(b)  $Fr_1 > 1$ : super-critical flow

$$\rightarrow \frac{y_2}{y_1} > 1$$
  $y_2 > y_1 \rightarrow$  hydraulic jump

(c)  $Fr_1 < 1$ : sub-critical flow

$$\rightarrow \frac{y_2}{y_1} < 1$$
  $y_2 < y_1 \rightarrow$  physically impossible

( $\because$  rise of energy line through the jump is impossible)

Conclusion: For a hydraulic jump to occur, the upstream conditions must be such that

$$V_1^2/gy_1>1$$





[IP 6.3] p. 199 Water flows in a horizontal open channel.

$$y_1 = 0.6 \text{ m}$$
  
 $q = 3.7 \text{ m}^3/\text{s} \cdot \text{m}$ 

Find  $\mathcal{Y}_2$ , and power dissipated in hydraulic jump.

[Sol]

(i) Continuity

$$q = y_1 V_1 = y_2 V_2$$
  

$$V_1 = \frac{3.7}{0.6} = 6.17 \text{ m/s}$$
  

$$Fr_1 = \frac{V_1}{\sqrt{gy_1}} = \frac{6.17}{\sqrt{9.8(0.6)}} = 2.54 > 1 \rightarrow \text{ hydraulic jump occurs}$$





(ii) Jump Eq.

$$y_2 = \frac{y_1}{2} \left[ -1 + \sqrt{1 + 8Fr_1^2} \right]$$

$$=\frac{0.6}{2}\left[-1+\sqrt{1+8(2.54)^2}\right]$$

=1.88 m

$$V_2 = \frac{3.7}{1.88} = 1.97 \ m/s$$





(iii) Bernoulli Eq. (Work-Energy Eq.)

$$y_1 + \frac{V_1^2}{2g} = y_2 + \frac{V_2^2}{2g} + \Delta E$$

$$0.6 + \frac{(6.17)^2}{2(9.8)} = 1.88 + \frac{(1.97)^2}{2(9.8)} + \Delta E$$

 $\therefore \Delta E = 0.46 \text{ m}$ 

Power =  $\gamma Q \Delta E = 9,800(3.7)(0.46) = 16.7 \text{ kW/meter of width}$ 

 $\rightarrow$  The hydraulic jump is excellent energy dissipater (used in the spillway).











|                | Classificati                | on of hydrau                | lic jumps                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|-----------------------------|-----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Source: U.S. E              | Bureau of Reclar            | nation (1955).                       | mainter annual to a second of the second of the                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | Upstream<br>Fr <sub>1</sub> | Depth<br>Ratio<br>$y_2/y_1$ | Fraction of<br>Energy<br>Dissipation | Description                                                                                                                                                                                               | Surface<br>Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | <1                          | 1                           | 0                                    | Impossible jump. Would violate the second law of thermodynamics.                                                                                                                                          | hou house the second house of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 1–1.7                       | 1–2                         | <5%                                  | Undular jump (or standing wave). Small rise in surface level. Low energy dissipation. Surface rollers develop near $Fr = 1.7$ .                                                                           | NI VISIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.1.           | 1.7–2.5                     | 2-3.1                       | 5-15%                                | Weak jump. Surface rising smoothly, with small rollers. Low energy                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ulsatin<br>imp | g                           |                             |                                      | dissipation.                                                                                                                                                                                              | and the second se |
|                | 2.5-4.5                     | 3.1–5.9                     | 15–45%                               | Oscillating jump. Pulsations caused by<br>entering jets at the bottom generate<br>large waves that can travel for miles<br>and damage earth banks. Should be<br>avoided in the design of stilling basins. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | 4.5–9                       | 5.9–12                      | 45-70%                               | Steady jump. Stable, well-balanced,<br>and insensitive to downstream<br>conditions. Intense eddy motion and<br>high level of energy dissipation within<br>the jump. Recommended range<br>for dorign       | - 133-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | >9                          | >12                         | 70-85%                               | Strong jump. Rough and intermittent.<br>Very effective energy dissipation, but<br>may be uneconomical compared to<br>other designs.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |





#### Case 4: Wave Propagation

The velocity (celerity) of small gravity waves in a body of water can be calculated by the impulse-momentum equation.

- Small gravity waves
- ~ appears as a small localized rise in the liquid surface which propagate at a velocity a
- ~ extends over the full depth of the flow
- [Cf] small surface disturbance (ripple)
- ~ liquid movement is restricted to a region near the surface







As seen by a stationary observer



As seen by an observer moving with the wave





For the steady flow, assign the velocity under the wave as a' From continuity

$$ay = a'(y + dy)$$

From impulse-momentum

$$\frac{\gamma y^2}{2} - \frac{\gamma (y+dy)^2}{2} = (ay)\rho(a'-a)$$

Combining these two equations gives

$$a^2 = g\left(y + dy\right)$$

Letting *dy* approach zero results in

$$a = \sqrt{gy}$$

 $\rightarrow$  The celerity of the samll gravity wave depends only on the depth of flow.





The angular impulse-momentum equation can be developed using moments of the force and momentum vectors

Take a moment of forces and momentum vectors for the small individual fluid system about 0

$$\sum \vec{r} \times \vec{F} = \frac{d}{dt} (\vec{r} \times m\vec{v}) = \frac{d}{dt} (\vec{r} \times \rho \, d \, Vol \, \vec{v}) \tag{6.9}$$

Sum this for control volume

$$\sum \vec{r} \times \overrightarrow{F_{ext}} = \frac{d}{dt} \iiint_{sys} (\vec{r} \times \vec{v}) \rho d \, Vol.$$
 (a)











Use Reynolds Transport Theorem to evaluate the integral

$$\frac{dE}{dt} = \frac{d}{dt} \iiint_{sys} (\vec{r} \times \vec{v}) \rho d \, Vol. = \iint_{C.S.} i\rho \vec{v} \cdot \vec{dA}$$
(6.10)

$$= \iint_{C.S.out} (\vec{r} \times \vec{v}) \rho \vec{v} \cdot \vec{dA} + \iint_{C.S.in} (\vec{r} \times \vec{v}) \rho \vec{v} \cdot \vec{dA}$$
(b)

where  $E = \underline{\text{moment of momentum}}$  of fluid system  $\vec{i} = \vec{r} \times \vec{v} = \underline{\text{moment of momentum per unit mass}}$ 

Restrict to control volume where the fluid enters and leaves at sections where the streamlines are straight and parallel and with the velocity normal to the cross-sectional area

$$\frac{d}{dt} \iiint_{sys}(\vec{r} \times \vec{v}) \rho dVol. = \iint_{C.S.out}(\vec{r} \times \vec{v}) \rho dQ - \iint_{C.S.in}(\vec{r} \times \vec{v}) \rho dQ \quad (6.11)$$



Because velocity is uniform over the flow cross sections

$$\frac{d}{dt} \iiint_{sys}(\vec{r} \times \vec{v}) \rho dVol. = Q\rho(\vec{r_{out}} \times \vec{V_{out}}) - Q\rho(\vec{r_{in}} \times \vec{V_{in}})$$
(6.12)
$$= Q\rho[(\vec{r} \times \vec{V})_{out} - (\vec{r} \times \vec{V})_{in}]$$
(6)

where  $\vec{r}$  = position vector from the moment center to the centroid of entering or leaving flow cross section of the control volume Substitute (c) into (a)

$$\Sigma(\vec{r} \times \overrightarrow{F_{ext}}) = \Sigma \overrightarrow{M_0} = Q\rho \left[ (\vec{r} \times \vec{V})_{out} - (\vec{r} \times \vec{V})_{in} \right]$$
(6.13)





In 2-D flow,

$$\sum M_0 = Q\rho(r_2 V_{2t} - r_1 V_{1t})$$
(6.14)

where  $V_t$  = component of velocity normal to the moment arm r.

In rectangular components, assuming V is directed with positive components in both x and z-direction, and with the moment center at the origin of the x-z coordinate system, for clockwise positive moments,

$$\sum M_0 = Q\rho \left[ (z_2 V_{2x} - x_2 V_{2z}) - (z_1 V_{1x} - x_1 V_{1z}) \right]$$
(6.15)

where  $x_1$ ,  $z_1$  = coordinates of centroid of the entering cross section  $x_2$ ,  $z_2$  = coordinates of centroid of the leaving cross section





For the fluid that enter or leave the control volume at more than one cross-section,

$$\sum M_0 = (\sum Q\rho r V_t)_{out} - (\sum Q\rho r V_t)_{in}$$
(6.16)

[IP 6.6] p. 206 Water flowing on the pipe bend

Compute the location of the resultant force exerted by the water on the pipe bend.

Assume that center of gravity of the fluid is 0.525 m to the right of section

1, and the forces  $F_1$  and  $F_2$  act at the centroid of the sections rather than at the center of pressure.

Take moments about the center of section 1











$$\sum M_0 = Q \rho \left[ (z_2 v_{2x} - x_2 v_{2x}) - (z_1 v_{1x} - x_1 v_{1x}) \right]$$

For this case,

$$\sum T = -r(8,813) + 0.525(833) + 1.5(590\cos 60^\circ) - 0.6(-590\sin 60^\circ)$$
$$= (0.3 \times 998) \left[ 1.5(-9.55 \cdot \cos 60^\circ) - 0.6(9.55 \cdot \sin 60^\circ) \right]$$
$$\therefore r = 0.59 \text{ m}$$

[Re] Torque for rotating system

$$\vec{T} = \sum(\vec{r} \times \vec{F}) = \frac{d}{dt}(\vec{r} \times m\vec{v}_c)$$





Where  $\vec{T}$  = torque  $\vec{T} dt$  = torque impulse  $\vec{r} \times m\vec{v_c}$  = angular momentum (moment of momentum)

r = radius vector from the origin 0 to the point of application of a force

[Re] Vector product (cross product)

$$\vec{V} = \vec{F} \times \vec{G}$$

-Magnitude:

$$\left| \vec{V} \right| = \left| \vec{F} \right| \left| \vec{G} \right| \sin \phi$$

-Direction: perpendicular to the plane of  $\vec{F}$  and  $\vec{G}$  (right-hand rule) If  $\vec{F}, \vec{G}$  are in the plane of *x* and *y*, then the  $\vec{V}$  is in the *z* plane.





Homework Assignment #6

Due: 1 week from today

| Prob. 6.1  | Prob. 6.34 |
|------------|------------|
| Prob. 6.6  | Prob. 6.36 |
| Prob. 6.14 | Prob. 6.40 |
| Prob. 6.16 | Prob. 6.55 |
| Prob. 6.30 | Prob. 6.60 |



