
1/60

Chapter 6 
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Chapter 6 The Impulse-Momentum Principle
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Objectives

-Develop impulse - momentum equation, the third of three basic equations of 

fluid mechanics, added to continuity and work-energy principles

-Develop linear and angular momentum (moment of momentum) equations
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6.0 Introduction

• Three basic tools for the solution of fluid flow problems

Continuity principle 

Work-energy principle (Bernoulli equation)

Impulse - momentum equation (Momentum equation)

• Impulse - momentum equation 

~ derived from Newton's 2nd law in vector form

F ma∑ =
 

Multiply by dt

( ) ( )cF dt madt d mvΣ = =
  

( )c
dF mv
dt

∑ =
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6.0 Introduction

cv =


cmv =


where    velocity of the center of mass of the system of mass

linear momentum

sys
m dm= ∫

1
c sys

v vdm
m

= ∫
( )F dt∑ = dtimpulse in time 
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6.0 Introduction

- Define the fluid system to include all the fluid in a specified control volume

whereas the Euler equations was developed for a small fluid system

- Restrict the analysis to steady flow

- This equation will apply equally well to real fluids as well as ideal fluids even 

though shear stress is not explicitly included.

- Develop linear and angular momentum (moment of momentum) equations

- Linear momentum equation: calculate magnitude and direction of resultant 

forces

- Angular momentum equation: calculate line of action of the resultant forces, 

rotating fluid machinery (pump, turbine)
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6.1 The Linear Impulse – Momentum Equation
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6.1 The Linear Impulse – Momentum Equation

(a)

Use the same control volume previously employed for conservation of

mass and work-energy.

For the individual fluid system in the control volume,
d dF ma mv vdvol
dt dt

ρ= = =∑


  

Sum them all
( ) ( )ext

sys sys

d dF vdvol vdvol
dt dt

ρ ρ= =∑ ∫∫∫ ∫∫∫
 

Use Reynolds Transport Theorem for steady flow to evaluate RHS

system system
E i dm i dvolρ= =∫∫∫ ∫∫∫

( ). . . .

∂
= = + ⋅

∂∫∫∫ ∫∫∫ ∫ ∫
 

 system c v c s

dE d i dvol i dvol i v dA
dt dt t

ρ ρ ρ

Steady flow
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6.1 The Linear Impulse – Momentum Equation

( ) ( ) ( )
. . . . . .

= = ⋅ = ⋅ + ⋅∫∫∫ ∫∫ ∫∫ ∫∫
  

     

sys c s c s out c s in

d dEvdV i v dA v v dA v v dA
dt dt

ρ ρ ρ ρ

for momentum/massi v=


i v= =


where E = momentum of fluid system in the control volume

momentum per unit mass

Because the streamlines are straight and parallel at Sections 1 and 2,

velocity is uniform over the cross sections. The cross-sectional area is

normal to the velocity vector over the entire cross section. Thus,

integration of terms in Eq. (b) are written as

(b)
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6.1 The Linear Impulse – Momentum Equation

( )
 . . . . . . 2 2 2c s out c s out c s out

v Q
v v dA v v n dA v vdA V Qρ ρ ρ ρ ⋅ = ⋅ = = 

 ∫ ∫ ∫


     

( )
. . . . 1 1 1c s in c s in

v
v v dA v v n dA V Qρ ρ ρ

−

 ⋅ = ⋅ = − 
 ∫ ∫

 

    

Flux out through
Section 2

Flux in through
Section 1

1 1 2 2Q Q Qρ ρ ρ= =

( )2 1Q V Vρ= −
 

By Continuity eq:

∴ RHS of (b)

Substitute (c) into (a)

( )2 1F Q V Vρ= −∑
  

(c)

(6.1)
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6.1 The Linear Impulse – Momentum Equation

In 2-D flow,

( )2 1x x xF Q V Vρ= −∑
( )2 1z z zF Q V Vρ= −∑ (6.2b)

(6.2a)

General form in case momentum enters and leaves the control volume

at more than one location:

( ) ( )out in
F Q v Q vρ ρ= −∑ ∑ ∑


 

- The external forces include both normal (pressure) and tangential (shear) 

forces on the fluid in the control volume, as well as the weight of the fluid

inside the control volume at a given time.

(6.3)
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6.1 The Linear Impulse – Momentum Equation

▪ Advantages of impulse-momentum principle

~ Only flow conditions at inlets and exits of the control volume are 

needed for successful application.

~ Detailed flow processes within the control volume need not be 

known to apply the principle.
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6.2 Pipe Flow Applications

Knowns:  flowrate, Q ; pressures,       ; velocities, 

Find:  force exerted by the bend on the fluid, F

= equal & opposite of the force exerted by the fluid on the bend)

Forces exerted by a flowing fluid on a pipe bend, enlargement, or 

contraction in a pipeline may be computed by an application of the 

impulse-momentum principle.

Case 1:  The reducing pipe bend

1 2,p p
1 2,V V



13/60

6.2 Pipe Flow Applications
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6.2 Pipe Flow Applications

1 1 1F p A= 2 2 2F p A=

ch

ph

1p 2p

• Pressures:

For streamlines essentially straight and parallel at Section 1 and 2, the 

forces F1, and F2 result from hydrostatic pressure distributions.

If mean pressure and        are large, and the pipe areas are small, then 

and                , and assumed to act at the centerline of the pipe

instead of the center of pressure.

[Cf] Resultant force

(2.12): cF h Aγ=

c cp hγ=
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6.2 Pipe Flow Applications

W

• Body forces: 

= total weight of fluid, 

F• Force exerted by the bend on the fluid, 

= resultant of the pressure distribution over the entire interior of the bend 

between Sections 1 and 2.

~ distribution is unknown in detail

~ resultant force can be predicted by impulse-momentum eq.
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6.2 Pipe Flow Applications

Now apply impulse-momentum equation, Eq. (6.2)

(i) x-direction:

1 1 2 2 cosx xF p A p A Fα∑ = − −

( ) ( )2 1 2 1cosx xQ V V Q V Vρ ρ α− = −

(a)

(b)

Combining the two equations to develop an expression for Fx

1 1 2 2 2 1cos ( cos )− − = −xp A p A F Q V Vα ρ α

1 1 2 2 1 2cos ( cos )xF p A p A Q V Vα ρ α= − + − (6.4a)
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6.2 Pipe Flow Applications

(ii) z-direction

2 2 sinz zF W p A Fα∑ = − − +

( ) ( )2 1 2 sin 0z zQ V V Q Vρ ρ α− = −

2 2 2sin sin− − + =zW p A F Q Vα ρ α

2 2 2sin sinzF W p A Q Vα ρ α= + +

[IP 6.1] p.193 Water flow through vertical reducing pipe bend 300 l/s of water 

flow through the vertical reducing pipe bend. 

Calculate the force exerted by the fluid on the bend if the volume of the bend 

is 0.085 m3.

(6.4b)
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6.2 Pipe Flow Applications

Fx

Fz
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6.2 Pipe Flow Applications

Given: 3300 l s s;0.3 mQ = = 3Vol. of bend 0.085 m=

2 2
1 (0.3) 0.071 m

4
;A π

= = 2 2
2 (0.2) 0.031 m

4
A π

= =

3 2
1 70 kPa 70 10 N mp = = ×

Now, we apply three equations to solve this problem.

1) Continuity Eq.

(6.5)1 1 2 2Q AV A V= =

1
0.3 4.24 m/s

0.071
V = =

2
0.3 9.55 m/s

0.031
V = =
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6.2 Pipe Flow Applications

2) Bernoulli Eq. between 1 and 2
2 2

1 1 2 2
1 22 2

p V p Vz z
g g

+ + = + +
γ γ

3 2 2
270 10 (4.24) (9.55)0 1.5

9,800 2(9.8) 9,800 2(9.8)
p×

+ + = + +

2 18.8 kPap =

3) Momentum Eq.

Apply Eqs. 6.4a and 6.4b

1 1 2 2 1 2cos ( cos )xF p A p A Q V Vα ρ α= − + −

2 2 2sin sinzF W p A Q Vα ρ α= + +
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6.2 Pipe Flow Applications

1 1 1 4,948 N= =F p A
3

2 2 2 18.8 10 0.031 590.6 NF p A= = × × =

(volume) 9800 0.085 833 NW = γ = × =

4,948 (590.6)cos120 (998 0.3)(4.24 9.55cos120 ) 7,942 NxF = − + × − = 

833 (590.6)sin120 (998 0.3)(9.55sin120 0) 3,820 NzF = + + × − = 

2 2 8,813 Nx zF F F= + =

1tan 25.7z

x

F
F

θ −= = 
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6.2 Pipe Flow Applications

Case 2:  Abrupt enlargement in a closed passage ~ real fluid flow

The impulse-momentum principle can be employed to predict the fall of 

the energy line (energy loss due to a rise in the internal energy of the fluid 

caused by viscous dissipation) at an abrupt axisymmetric enlargement in 

a passage.

Consider the control surface ABCD assuming a one-dimensional flow

i) Continuity Eq.

1 1 2 2Q AV A V= =
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6.2 Pipe Flow Applications
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6.2 Pipe Flow Applications

ii) Momentum Eq.

1 2 2 2 2 1( )xF p A p A Q V Vρ∑ = − = −

2 2
1 2 2 2 1( ) ( )V Ap p A V V

g
γ− = −

1 2 2
2 1( )p p V V V

g
−

∴ = −
γ (a)

Result from hydrostatic pressure distribution over the area 

→ For area AB it is an approximation because of the 

dynamics of eddies in the “dead water” zone.

iii) Bernoulli Eq.
2 2

1 1 2 2

2 2
p V p V H

g g
+ = + + ∆

γ γ
2 2

1 2 2 1

2 2
p p V V H

g g
−

= − + ∆
γ

(b)
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6.2 Pipe Flow Applications

H∆ =

Jean-Charles de Borda (1733~1799):  French 

mathematician

Nicolas Leonard Sadi Carnot (1796~1832):  French 

military engineer

where  Borda-Carnot head loss

Combine (a) and (b)

2 2
2 2 1 2 1( )

2 2
V V V V V H

g g g
−

= − + ∆

2 2 2 2
2 1 2 2 1 1 22 2 ( )

2 2 2 2
V VV V V V VH

g g g g
− −

∆ = − + =
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6.3 Open Channel Flow Applications

Case 1:  Flow under the sluice gate

Consider a control volume that has uniform flow and straight and parallel 

streamlines at the entrance and exit

Applications impulse-momentum principle for open channel flows:

- computation of forces exerted by flowing water on overflow or 

underflow structures (weirs or gates) 

- hydraulic jump

- wave propagation
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6.3 Open Channel Flow Applications
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6.3 Open Channel Flow Applications

Apply first Bernoulli and continuity equations to find values of depths y1 and 

y2 and flowrate per unit width q

Then, apply the impulse-momentum equation to find the force the water 

exerts on the sluice gate

Discharge per
unit width2 1( )xF Q V Vρ∑ = −

( )1 2 2 1 2 1( )
x xx xF F F F Q V V q V Vρ ρ∑ = − − = − = −

Qq
W

= =
1 1 2 2y V y V= =where    discharge per unit width 
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6.3 Open Channel Flow Applications

Assume that the pressure distribution is hydrostatic at Sections 1 and 2, 

and replace V with q/y
2 2

21 2

2 1

1 1( )
2 2 x
y y F q

y y
ργ γ

− − = − (6.6)

[Re] Hydrostatic pressure distribution
2

1 1
1 1( 1)

2 2c
y yF h A y γγ γ= = × =

3
1

1
1

1

1( )
112
6( 1)

2

c
p c

c

y
Il l yyl A y

− = = =
×

1 1 1
1 1 1
2 6 3pc y y y= − =
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6.3 Open Channel Flow Applications

For ideal fluid (to a good approximation for a real fluid), the force tangent 

to the gate is zero.

→ shear stress is neglected.

→ Hence, the resultant force is normal to the gate.

cosxF F θ=

We don’t need to apply the impulse-momentum equation in the z-direction.

[Re] The impulse-momentum equation in the z-direction

Non-uniform pressure
distribution

2 1( )
z zzF Q V Vρ∑ = −

(0 0)z OB zF F W F Qρ∑ = − − = −

z OBF W F= −
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6.3 Open Channel Flow Applications

Case 2:  The two-dimensional overflow structure

[IP 6.2] p.197 Calculate the horizontal component of the resultant force the 

fluid exerts on the structure

• Continuity Eq.

1 25 2q V V= = (6.7)

• Bernoulli's equation between (1) and (2)
2 2

1 20 5m 0 2 m
2 2
V V

g g
+ + = + + (6.8)
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6.3 Open Channel Flow Applications
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6.3 Open Channel Flow Applications

• Hydrostatic pressure principle 

Combine two equations

1 3.33 m sV =

2 8.33 m sV =

35(3.33) 16.65 m s mq = = ⋅

( )39.8 kN mγ =

2

1
(5)9.8 122.5 kN m

2 2c
yF h A yγ γ= = = =

2

2
(2)9.8 19.6 kN m

2
F = =
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6.3 Open Channel Flow Applications

[Cf] What is the force if the gate is closed?

• Impulse-Momentum Eq. (                             )31,000 kg m=ρ

122,500 19,600 (1,000 16.65)(8.33 3.33)∑ = − − = × −x xF F

19.65 kN mxF =
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6.3 Open Channel Flow Applications
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6.3 Open Channel Flow Applications

Bucket roller
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6.3 Open Channel Flow Applications

Case 2:  Hydraulic Jump 

When liquid at high velocity discharges into a zone of lower velocity, a rather 

abrupt rise (a standing wave) occurs in water surface and is accompanied by 

violent turbulence, eddying, air entrainment, surface undulation.

→ such as a wave is known as a hydraulic jump

→ induce a large head loss (energy dissipation)
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6.3 Open Channel Flow Applications
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6.3 Open Channel Flow Applications

Apply impulse-momentum equation to find the relation between the depths 

for a given flowrate

Construct a control volume enclosing the hydraulic jump between Sections 

1 and 2 where the streamlines are straight and parallel 
2 2
1 2

1 2 2 1( )
2 2x
y yF F F q V Vγ γ ρ∑ = − = − = −

q =where   flowrate per unit width

Substitute the continuity relations 

1
1

;qV
y

= 2
2

qV
y

=



40/60

6.3 Open Channel Flow Applications

γRearrange (divide by  )
2 2 2 2

1 2

1 22 2
q y q y
gy gy

+ = +

2 1y ySolve for 

Set

2 2
2 1

3
1 1 1

1 8 1 81 1 1 1
2 2

y q V
y gy gy

   
= − + + = − + +   

      

1
1

1

VFr
gy

=

2
2

2

VFr
gy

=
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6.3 Open Channel Flow Applications

Fr = Inertia Force
Gravity Force

=where   Froude number V
gy

=

William Froude 
(1810~1879)

Then, we have

22
1

1

1 1 1 8
2

y Fr
y

 = − + +  Jump Equation

1 1Fr =(a) :  critical flow

2

1

1 1 1 8 1
2

y
y

 → = − + + =  1 2y y= → No Jump
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6.3 Open Channel Flow Applications

physically impossible

1 1Fr >(b)           :  super-critical flow

2

1

1y
y

→ > 2 1y y> → hydraulic jump

1 1Fr <(c)           :  sub-critical flow

2

1

1y
y

→ < 2 1y y< →

(∵ rise of energy line through the jump is impossible)

Conclusion:  For a hydraulic jump to occur, the upstream conditions 

must be such that 
2

1 1 1V gy >
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6.3 Open Channel Flow Applications

[IP 6.3] p. 199 Water flows in a horizontal open channel.

1 0.6 my =
33.7 m s mq = ⋅

2yFind , and power dissipated in hydraulic jump.

[Sol]

(i) Continuity

1 1 2 2q y V y V= =

1
3.7 6.17 m s
0.6

V = =

1
1

1

6.17 2.54 1
9.8(0.6)

VFr
gy

= = = > → hydraulic jump occurs
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6.3 Open Channel Flow Applications

(ii) Jump Eq.

21
2 11 1 8

2
yy Fr = − + + 

20.6 1 1 8(2.54)
2
 = − + + 

1.88 m=

2
3.7 1.97

1.88
V m s= =
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6.3 Open Channel Flow Applications

( )( ) meter of widthPower 9,800 16.7 kW3.7 0.46= ∆ = =Q Eγ

→ The hydraulic jump is excellent energy dissipater (used in the spillway).

(iii) Bernoulli Eq. (Work-Energy Eq.)

2 2
1 2

1 22 2
V Vy y E

g g
+ = + + ∆

2 2(6.17) (1.97)0.6 1.88
2(9.8) 2(9.8)

E+ = + + ∆

0.46 mE∴∆ =
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6.3 Open Channel Flow Applications
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6.3 Open Channel Flow Applications
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6.3 Open Channel Flow Applications

Case 4:  Wave Propagation

The velocity (celerity) of small gravity waves in a body of water can be 

calculated by the impulse-momentum equation.

• Small gravity waves

~ appears as a small localized rise in the liquid surface which propagate at 

a velocity a

~ extends over the full depth of the flow

[Cf] small surface disturbance (ripple)

~ liquid movement is restricted to a region near the surface
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6.3 Open Channel Flow Applications
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6.3 Open Channel Flow Applications

From impulse-momentum

For the steady flow, assign the velocity under the wave as a’
From continuity

( )'ay a y dy= +

( ) ( ) ( )
22

'

2 2
y dyy ay a a

γγ ρ
+

− = −

Combining these two equations gives
( )2a g y dy= +

a gy=

Letting dy approach zero results in 

→ The celerity of the samll gravity wave depends only on the depth of flow.
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6.4 The Angular Impulse-Momentum Principle

The angular impulse-momentum equation can be developed using 

moments of the force and momentum vectors

Take a moment of forces and momentum vectors for the small individual 

fluid system about 0

( ) ( )d dr F r mv r d Vol v
dt dt

ρ∑ × = × = ×
     

Sum this for control volume

( ) .ext sys

dr F r v d Vol
dt

ρ∑ × = ×∫∫∫
   

(6.9)

(a)
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6.4 The Angular Impulse-Momentum Principle

(x1, z1) (x2, z2)
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6.4 The Angular Impulse-Momentum Principle

Use Reynolds Transport Theorem to evaluate the integral

. .
( ) .

sys C S

dE d r v d Vol i v dA
dt dt

ρ ρ= × = ⋅∫∫∫ ∫∫
   

. . . .
( ) ( )

C S out C S in
r v v dA r v v dAρ ρ= × ⋅ + × ⋅∫∫ ∫∫
       

(6.10)

(b)

E =

i r v= ×
 

where    moment of momentum of fluid system

= moment of momentum per unit mass

Restrict to control volume where the fluid enters and leaves at sections 

where the streamlines are straight and parallel and with the velocity normal 

to the cross-sectional area

. . . .
( ) . ( ) ( )

sys C S out C S in

d r v dVol r v dQ r v dQ
dt

ρ ρ ρ× = × − ×∫∫∫ ∫∫ ∫∫
     

(6.11)
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6.4 The Angular Impulse-Momentum Principle

Because velocity is uniform over the flow cross sections

(c)

(6.12)( ) . ( ) ( )out out in insys

d r v dVol Q r V Q r V
dt

ρ ρ ρ× = × − ×∫∫∫
     

( ) ( )out inQ r V r Vρ  = × − × 
   

r =


where   position vector from the moment center to the centroid of 

entering or leaving flow cross section of the control volume

Substitute (c) into (a)

0( ) ( ) ( )ext out inr F M Q r V r Vρ  ∑ × = ∑ = × − × 
      

(6.13)
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6.4 The Angular Impulse-Momentum Principle

In 2-D flow,

0 2 2 1 1( )t tM Q rV rVρ∑ = − (6.14)

tV =where   component of velocity normal to the moment arm r.

In rectangular components, assuming V is directed with positive 

components in both x and z-direction, and with the moment center at the 

origin of the x-z coordinate system, for clockwise positive moments,

[ ]0 2 2 2 2 1 1 1 1( ) ( )x z x zM Q z V x V z V x Vρ∑ = − − −

1 1,x z =

2 2,x z =
where    coordinates of centroid of the entering cross section

coordinates of centroid of the leaving cross section

(6.15)
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6.4 The Angular Impulse-Momentum Principle

For the fluid that enter or leave the control volume at more than one 

cross-section,

0 ( ) ( )t out t inM Q rV Q rVρ ρ∑ = ∑ − ∑ (6.16)

[IP 6.6] p. 206 Water flowing on the pipe bend

Compute the location of the resultant force exerted by the water on the pipe 

bend.

Assume that center of gravity of the fluid is 0.525 m to the right of section 

1, and the forces F1 and F2 act at the centroid of the sections rather than at 

the center of pressure.

Take moments about the center of section 1
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6.4 The Angular Impulse-Momentum Principle 
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6.4 The Angular Impulse-Momentum Principle

[ ]0 2 2 2 2 1 1 1 1( ) ( )x x x xM Q z v x v z v x vρ∑ = − − −

For this case, 

(8,813) 0.525(833) 1.5(590cos60 ) 0.6( 590sin 60 )T r∑ = − + + − − 

(0.3 998) 1.5( 9.55 cos60 ) 0.6(9.55 sin 60 ) = × − ⋅ − ⋅ 
 

0.59 mr∴ =

[Re] Torque for rotating system

( ) ( )c
dT r F r mv
dt

= ∑ × = ×
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6.4 The Angular Impulse-Momentum Principle

T =


T dt =


cr mv× =
 

r =


Where   torque 

torque impulse

angular momentum (moment of momentum)

radius vector from the origin 0 to the point of application of a force

[Re] Vector product (cross product)

V F G= ×
  

-Magnitude:

sinV F G φ=
  

F


G


,F G
 

V
 zy

-Direction:   perpendicular to the plane of  and       (right-hand rule)

If   are in the plane of  x and , then the  is in the  plane.
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6.4 The Angular Impulse-Momentum Principle

Homework Assignment # 6

Due:  1 week from today

Prob. 6.1

Prob. 6.6

Prob. 6.14

Prob. 6.16

Prob. 6.30

Prob. 6.34

Prob. 6.36

Prob. 6.40

Prob. 6.55

Prob. 6.60
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