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〮 가슴지느러미 (pectoral fin):  헤엄치는 데 사용하는 골질 부속지. 안정감, 방향 감각, 정지, 체
온 조절에 이용된다.
〮 등지느러미 (dorsal fin):  헤엄치는 데 사용하는 등 중간의 부속지. 매우 촘촘한 섬유질 조직이
며 안정감과 체온 조절을 담당한다.
〮 꼬리지느러미 / 미기 (caudal fin):  힘차게 헤엄치는 데 사용되는 부속지. 단단한 연골로 이루
어진 2개의 엽으로 갈라져 몸체의 뒤쪽 말단부에 수직으로 자리잡고 있으며, 추진 기능이 있다.
〮 꼬리 (tail):  돌고래 몸의 말단 부분. 이 꼬리에 의해 수직 동작으로 전진할 수 있다. 척추에 붙
은 강력한 근육으로 꼬리를 움직인다.

[Morphology of a dolphin] (브리태니커 비주얼사전)
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Objectives

- Learn how to begin to interpret fluid flows

- Introduce concept of model study for the analysis of the flow 

phenomena that could not be solved by analytical (theoretical) methods

- Study laws of similitude which provide a basis for interpretation of 

model results

- Study dimensional analysis to derive equations expressing a physical 

relationship between quantities 
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Why we need to model the real system?

Most real fluid flows are complex and can be solved only approximately.
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▪ Three dilemmas in planning a set of physical or numerical experiments

1) Number of possible and relevant variables or physical parameters in 

real system is huge and so the potential number of experiments is 

beyond our resources.

2) Many real flow situations are either too large or far too small for 

convenient experiment at their true size. → When testing the real thing 

(prototype) is not feasible, a physical model (scaled version of the 

prototype) can be constructed and the performance of the prototype 

simulated in the physical model.

3) The numerical models must be calibrated and verified by use of 

physical models or measurements in the prototype.
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▪ Model study 

Physical models have been used for over a hundred years.

Models began to be used to study flow phenomena that could not be solved 

by analytical (theoretical) methods.

▪ Laws of similitude

- provide a basis for interpretation of physical and numerical model results 

and crafting both physical and numerical experiments

▪ Dimensional analysis

- derive equations expressing a physical relationship between quantities
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[Example] 

Civil and environmental engineering:  models of hydraulic structures, 

river sections, estuaries and coastal bays and seas

Mechanical engineering:  models of pumps and turbine, automobiles

Naval architect:  ship models

Aeronautical engineering:  model test in wind tunnels

▪ Justification for models

1) Economics:  A model, being small compared to the prototype, costs 

little.

2) Practicability:  In a model, environmental and flow conditions can be 

rigorously controlled.
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한강(미사리~잠실수중보) 
수리모형 (서일원 , 1995)
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8.1 Similitude and Physical Models

Similitude of flow phenomena not only occurs between a prototype and 

its model but also may exist between various natural phenomena.

There are three basic types of similitude; all three must be obtained if 

complete similarity is to exist between fluid phenomena.

Geometrical similarity (기하학적 상사성)

Kinematic similarity (운동학적 상사성)

Dynamic similarity (동력학적 상사성)
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1) Geometrical similarity

~ Flow field and boundary geometry of model and of the prototype have 

the same shape. 

→ The ratios between corresponding lengths in model and prototype are 

the same.

( )r rl d>

[Cf] Distorted model

~ not geometrically similar

~ The flows are not similar and the models have to be calibrated and 

adjusted to make them perform properly.

~ used models of rivers, harbor, estuary 

~ Numerical models are usually used in their place.
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For the characteristic lengths we have

• Area

• Volume
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8.1 Similitude and Physical Models

2) Kinematic similarity 

In addition to the flowfields having the same shape, the ratios of 

corresponding velocities and accelerations must be the same through the flow.

→ Flows with geometrically similar streamlines are kinematically similar.

1 2

1 2

p p
r

m m

V V
V

V V
= =

 

 

3 4

3 4

p p
r

m m

a a
a

a a
= =
 

  (8.1)
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3) Dynamic similarity 

In order to maintain the geometric and kinematic similarity between 

flowfields, the forces acting on corresponding fluid masses must be related 

by ratios similar to those for kinematic similarity.

1 2 3 4

41 2 3

p p p p p
r

m mm m m

F F F M a
F

M aF F F
= = = =

  



  



IF M a=




Consider gravity, viscous and pressure forces, and apply Newton’s 2nd law

Define inertia force as the product of the mass and the acceleration

(8.2)
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4) Complete similarity 

~ requires simultaneous satisfaction of geometric, kinematic, and dynamic 

similarity. 

→ Kinematically similar flows must be geometrically similar.

→ If the mass distributions in flows are similar, then kinematic similarity 

(density ratio for the corresponding fluid mass are the same) guarantees 

complete similarity from Eq. (8.2).

1 2 3 4p p p p pF F F M a+ + =
  



1 2 3 4m m m m mF F F M a+ + =
  



From Fig. 8.1, it is apparent that

(a)

(b)
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If the ratios between three of the four corresponding terms in Eq.(a) and 

Eq.(b) are the same, the ratio between the corresponding fourth terms be 

the same as that the other three. Thus, one of the ratio of Eq.(8.2) is 

redundant. If the first force ratio is eliminated,

4 4

2 22 2

p p m m I I

p m p m

M a M a F F
F FF F

   
= ⇒ =   

   





 

4 4

3 33 3

p p m m I I

p m p m

M a M a F F
F FF F

   
= ⇒ =   

   





 

(8.3)

(8.4)
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( ) 2
pF p A pl= ∆ = ∆

2
3 2 2

I
VF M a l V l
l

ρ ρ
 

= = = 
 

3
GF M g l gρ= =

2
V

dv VF A l V l
dy l

µ µ µ   = = =     
2

EF EA E l= =

TF lσ=

▪ Forces affecting a flow field

Inertia force:

Gravity force (→ Froude No.): 

Viscosity force (→ Reynolds No.):

Elasticity force (→ Cauchy No.):     

Surface tension (→ Weber No.):

Here l and V are characteristic length and velocity for the system.

Pressure force (→ Euler No.):
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[Re] Other forces

Coriolis force of rotating system → Rossby number

Buoyant forces in stratified flow → Richardson number

Forces in an oscillating flow → Strouhal number
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▪ Dynamic similarity

To obtain dynamic similarity between two flowfields when all these forces 

act, all corresponding force ratios must be the same in model and 

prototype.

(i) 
2 2

I I

p p p mp m

F F V V
F F p p

ρ ρ       
= = =           ∆ ∆      

(8.5)

2
Eu V

p
ρ

=
∆

p mEu Eu=

Define Euler number, 
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(ii)  I I

V V p mp m

F F V l V l
F F

ρ ρ
µ µ

       
= = =       

      
(8.6)

Define Reynolds number, V lRe
ν

=

p mRe Re= → Reynolds law 

(iii) 
2 2

I I

G G p mp m

F F V V
F F g l g l

       
= = =       

      

VFr
g l

=Define Froude number, 

p mFr Fr= → Froude law

(8.7)
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(iv) 
2 2

I I

E E p mp m

F F V V
F F E E

ρ ρ       
= = =       

      

(8.9)

2VCa
E
ρ

=

p mCa Ca=

Define Cauchy number,  

VMa Ca
E ρ

= =

p mMa Ma=

[Cf] Define Mach number,   

(v) 
2 2

I I

T T p mp m

F F lV lV
F F

ρ ρ
σ σ

       
= = =       

      
2lVWe ρ

σ
=

p mWe We=

Define Weber number,  

(8.8)
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Only four of these equations are independent. → One equation is redundant 

according to the argument leading to Eq. (8.3) & (8.4). → If four equations are 

simultaneously satisfied, then dynamic similarity will be ensured and fifth 

equation will also be satisfied.

In most engineering problems (real world), some of the forces above (1) may 

not act, (2) may be of negligible magnitude, or (3) may oppose other forces in 

such a way that the effect of both is reduced.

→ In the problem of similitude a good understanding of fluid phenomena is 

necessary to determine how the problem may be simplified by the elimination 

of the irrelevant, negligible, or compensating forces.
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1. Reynolds similarity 

~ used for flows in pipe, viscosity-dominant flow

For low-speed submerged body problem, there are no surface tension 

phenomena, negligible compressibility effects, and gravity does not affect 

the flowfield.

→ Three of four equations are not relevant to the problem.

→ Dynamic similarity is obtained between model and prototype when the 

Reynolds numbers (ratio of inertia to viscous forces) are the same.
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Drag

(i) low-speed submerged body 
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Reynolds similarity

p m
p m

V l V lRe Re
ν ν

   = = =   
   

(8.10)

Ratio of any corresponding forces will also be the same.
2 2D C V lρ=

I Ip m

D D
F F

   
=   

   

2 2 2 2
p m

D D
V l V lρ ρ

   
=   

   

Consider drag force, 
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(ii) Flow of incompressible fluids in pipes
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( ) ( )2 1 2 1p md d d d=

1 1p m

l l
d d

   
=   

   

Geometric similarity:  

Assume roughness pattern is similar, surface tension and elastic effect 

are nonexistent. 

Gravity does not affect the flow fields

Accordingly dynamic similarity results when Reynolds similarity, Eq. 

(8.10) is satisfied.

p mRe Re=
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Eq. (8.11) is satisfied automatically.

1 2 1 2
2 2

I I

P P p mp m

F F p p p pEu
F F V Vρ ρ

       − −
= = → =       

      
(8.11)

p mRe Re= 1 , 1p
r

m

Re
Re

Re
 

= = 
 

1 pm m m

mp m p p p m

p

dVd Vd V
dV d
d

ν ν
ν ν ν ν

   = → = =   
   

1

If m m
m p

p p

V d
V d

ν ν
−

 
= → =   

 

◈ Reynolds law

① Velocity:
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Q VA=

2 2
1m m m m m m m

mp p p p p p p

p

Q d V d d
dQ d V d d
d

ν ν
ν ν

   
= = =      
   

2
1 1

m

pm m m m m m

p m mp p p p m p

p pp

l
t V l l d l

l Vt l l d l
VV

ν
ν ν
ν

 
= = = =   

 

② Discharge:  

③ Time:
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( )
( )

( )
( )

22 3 2

2 3 2
m m m m m m m pm m

p p mp p p p p p p

M l t l l tF
F M l t l l t

ρ ρµ
µ ρρ

   
= = =        

2 2
m p pm

p m mp

lP
lP

µ ρ
µ ρ

    
=     
    

④ Force:

⑤ Pressure:
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0 C 31.781 10 Pa spµ
−= × ⋅

399.8 kg/mpρ =
3

6 21.781 10 1.78 10 m /s
998.8pv

−
−×

= = ×

75mm, 3m/s, 14 kPa, 10mp p pd V p l= = ∆ = =

[IP 8.1] p. 298 Water flow in a horizontal pipeline

Water flows in a 75 mm horizontal pipeline at a mean velocity of 3 m/s.

Prototype:  Water 

20 C
42.9 10 Pa smµ
−= × ⋅

30.68 998.8 679.2 kg/mmρ = × =
7 24.27 10 m /smv −= ×

25mmmd =

Model:  Gasoline (Table A 2.1)
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Re Rep m=
1

m m m

p p p

V v d
V v d

−
 

=   
 

7

6
4.27 10 25/ 0.753
1.78 10 75

−

−

×  = = ×  

0.753(3) 2.26m/smV∴ = =

p mEu Eu=

2 2
p m

p p
eV eV
∆ ∆   =   

   

2 2

14
[998.8 (3) ] [679.2 (2.26) ]

mp∆
=

× ×

5.4 kPamp∴∆ =

[Sol] Use Reynolds similarity; 
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2. Froude similarity 

~ open channel flow, free surface flow, gravity-dominant flow.

For flow field about an object moving on the surface of a liquid such as ship 

model (William Froude, 1870)

~ Compressibility and surface tension may be ignored.

~ Frictional effects are assumed to be ignored. 

p m
p m

V V
Fr Fr

g l g l
   

= = =   
   

m m m

p p p

V g l
V g l

=
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(i) ship model

drag
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m m m

p p p

V g l
V g l

=

lt
V

=

p p p pm m m m

p p m p m m m p

V g l gt l l l
t l V l g l g l
= = =

Q VA=

2 2 0.5 2.5
m m m mm m m m

p p p pp p p p

l l g lQ V g l
l l g lQ V g l

       
= = =       

       

◈ Froude law

① Velocity 

② Time 

③ Discharge 



40/79

8.1 Similitude and Physical Models

④ Force    

⑤ Pressure  

3
m mm

p pp

lF
lF

ρ
ρ

  
=   
  

m mm

p pp

lP
lP

ρ
ρ

  
=   
  

120 mpl = 3 mml = 56 km h 15.56 /pV m s= = 9 NmD =

[IP 8.2] p. 301 ship model (free surface flow)

,

,  Find model velocity and prototype drag.
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p m

V V
g l g l

   
=   

   

3 1
120 40

m
r

p

ll
l

= = =

( )
( )

1 2356 10 3 2.46 m s
3600 120

m
m p

p

g l
V V

g l
×  = = = 

 

[Sol] Use Froude similarity 

2 2 2 2
p m

D D
V l V lρ ρ

   =   
   

( )
( )

2 2 2 23

2 2

12056 10 36009 575.8 kN
32.46

p
p m

m

V l
D D

V l

ρ

ρ
 ×  = = × × =     

• Drag force ratio
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[Re] Combined action of gravity and viscosity 

For ship hulls, the contribution of wave pattern and frictional action to the 

drag are the same order.

→ Frictional effects cannot be ignored.

→ This problem requires both Froude similarity and Reynolds similarity.

m m m
p m

p p pp m

v v V g lFr Fr
g l g l V g l

   
= = = → =   

   

pm m
p m

p m p p m

lVV l V lR e R e
V l

ν
νν ν

   = = = → =   
   

(a)

(b)
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Combine (a) and (b)       

pm m m

p p p m

lg l
g l l

ν
ν

= →
0.5 1.5

m mm

p pp

g l
g l

ν
ν

   
=    
   

This requires 

(a) A liquid of appropriate viscosity must be found for the model test.

(b) If same liquid is used, then model is as large as prototype.
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m pg g=
1.5 1.5

m mm
m p

ppp

l l
ll

ν ν ν
ν

   
= → =   

  

1
10 31.6

m
m

p

l
l

νν= → =

For 

If  

3 41.0 10 Pa s 0.32 10 Pa sµ − −= × ⋅ → × ⋅

40.21 10 Pa sµ −= × ⋅

Water: 

Hydrogen: 

~ choose only one equation → Reynolds or Froude law

~ correction (correcting for scale effect) is necessary. 
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[I.P.8.3] p. 301 Model of hydraulic overflow structure → spillway model

3600 m spQ =

1
15

m
r

p

ll
l

= =

0.5 2.5
m mm

p pp

g lQ
g lQ

   
=    
   

2.5 2.51600
15

m
m p

p

l
Q Q l

   = =      
30.69 m s 690 l/s= =

[Sol] Since gravity is dominant, use Froude similarity.
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3. Mach similarity 

Similitude in compressible fluid flow 

~ gas, air

~ Gravity and surface tension are ignored.

~ Combined action of resistance and elasticity (compressibility)

p p m
p m

m m p

V lR e R e
V l

ν
ν

= → =

p m
p m

V VMa Ma
a a

   = = =   
   

(a) 
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sonic velocity Ewhere a
ρ

= =

p p

m m

V a
V a

= (b) 

Combine (a) and (b)

p mp

pmm

al
al

ν
ν
  

=   
  

→ gases of appropriate viscosity are available for the model test.
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pm m m

p p p m

V a E
V a E

ρ
ρ

= =

p pm m m m

p p m m p p

V ET l l
T l V E l

ρ
ρ

= =

2 2
m mp pm m

p pp m m p

l lV EQ
l lQ V E

ρ
ρ

   
= =   
   

• Velocity 

• Time 

• Discharge 
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4. Euler Similarity 

~ Modeling of prototype cavitation

~ For cavitation problem, vapor pressure must be included.

[Ex.1] cavitating hydrofoil model in a water tunnel 

Here gravity, compressibility, and surface tension are neglected.

Dynamic similitude needs Reynolds similarity and Euler similarity.
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p m
p m

V l V lRe Re
ν ν

   = = =   
   

0 0
2 2

0 0

v v
p m

p m

p p p p
V V

σ σ
ρ ρ
− −   

= = =   
   

0
2

vp p
V

σ
ρ
−

=

0p

vp

= cavitation number

= absolute pressure

= vapor pressure

~ Virtually impossible to satisfy both equation.

~ Cavitation number must be the same in model and prototype.
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Dimensional analysis 

~ mathematics of the dimensions of quantities

~ is closely related to laws of similitude

~ based on Fourier′s principle of dimensional homogeneity (1882)

→ An equation expressing a physical relationship between quantities must 

be dimensionally homogeneous.

→ The dimensions of each side of equation must be the same.
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8.2 Dimensional Analysis

~ cannot produce analytical solutions to physical problems.

~ powerful tool in formulating problems which defy analytical solution 

and must be solved experimentally. 

~ It points the way toward a maximum of information from a minimum 

of experiment by the formation of dimensionless groups, some of which 

are identical with the force ratios developed with the laws of similitude.

▪ Four basic dimension 

~ directly relevant to fluid mechanics

~ independent fundamental dimensions



57/79

8.2 Dimensional Analysis

L

M F

t
T

length, 

mass, or force, 

time, 

thermodynamic temperature 

Newton′s 2nd law

2

M LF M a
t

= =

~ There are only three independent fundamental dimensions.
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P
, , TQ Eγ

(1) Rayleigh method

Suppose that power,    , derived from hydraulic turbine is dependent on 

Suppose that the relation between these four variables is unknown but it 

is known that these are the only variables involved in the problem.

( ), , TP f Q Eγ=

Q

γ

TE

= flow rate 

= specific weight of the fluid

= unit mechanical energy by unit weight of fluid (Fluid system → turbine)

(a)
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Principle of dimensional homogeneity 

→ Quantities involved cannot be added or subtracted since their dimensions 

are different.

a b c
TP C Q Eγ=

C

, ,a b c

Eq. (a) should be a combination of products of power of the quantities. 

where    = dimensionless constant ~ cannot be obtained by 

dimensional methods 

= unknown exponents

(b)
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(c)

( ) ( ) ( ) ( )Dimensions ofDimensions of Dimensions of Dimensions of
ca b

TEP Q γ=

( )
2 3

3 2 2

a b
cML ML Lt L tt

   =      

Eq. (b) can be written dimensionally as

Using the principle of dimensional homogeneity, the exponent of each of 

the fundamental dimensions is the same on each side of the equation.

: 1M b=

: 2 3 2L a b c= − +

: 3 2t a b− = − −
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1, 1, 1a b c= = =

TP C Q Eγ=

Solving for a, b, and c yields

Resubstituting these values Eq. (b) gives 
(d)

C =

, , , TP Q Eγ

dimensionless constant that can be obtained from

① a physical analysis of the problem

② an experimental measurement of 

Rayleigh method ~ early development of a dimensional analysis
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(2) Buckingham theorem

~ generalized method to find useful dimensionless groups of variables to 

describe process (E. Buckingham, 1915)

Π

n
k ( ), , ,a b c 

k n

▪ Buckingham′s - theorem

1. variables are functions of each other 

→ Then  equations of their exponents                      can be written. 

= largest number of variables among  variables which cannot be 

combined into a dimensionless group 

[Example] 

Drag force on ship:  ( ), , , , , 0 6f D l V g nρ µ = → =
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k m2. In most cases,   is equal to the number  of independent dimensions 

(M, L, t ) k m≤

( )n k−
3. Application of dimensional analysis allows expression of the functional 

relationship in terms of    distinct dimensionless groups.

6, 3 3 groupsn k m n k= = = → − =

1 2 2
D
l V

π
ρ

=

2 e
VlR ρπ
µ

= =

3 r
VF
gl

π = =

[Ex] 
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[Ex] Drag on a ship

( ), , , , , 0f D l V gρ µ =

, ,

, ,

V l

t L M

ρ
  

, ,D gµ

Three basic variables = repeating variables

Other variables          appear only in the unique group describing the 

ratio of inertia force to force related to the variable.
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Π

3 and , andm V lρ=

• Procedure:

1. Find the largest number of variables which do not form a dimensionless 

- group. 

For drag problem, No. of independent dimensions is     

cannot be formed into a  - group, so Π 3k m= =

Π 6, 3n k m= = =

Π 3n k− =

2. Determine the number of   - groups to be formed: 

∴ No. of  - group = 

Π

3. Combine sequentially the variables that cannot be formed into a 

dimensionless group, with each of the remaining variables to form the 

requisite  - groups.
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8.2 Dimensional Analysis

( )1 1 , , ,f D V lρΠ =

( )2 2 , , ,f V lµ ρΠ =

( )3 3 , , ,f g V lρΠ =

4. Determine the detailed form of the dimensionless groups using principle 

of dimensional homogeneity.

1Π

1
a b c dD V lρΠ =

ⅰ)

1ΠSince  is dimensionless, writing Eq. (a) dimensionally

(a)

(b)( )0 0 0
2 3

a b c
dML M LM L t L

t L t
     =      
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8.2 Dimensional Analysis

The following equations in the exponents of the dimensions are obtained 

: 0M a b= +

: 0 3L a b c d= − + +

: 0 2t a c= − −

Solving these equations in terms of a gives

, 2 , 2b a c a d a= − = − = −

2 2
1 2 2

a
a a a a DD V l

l V
ρ

ρ
− − −  

Π = =  
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8.2 Dimensional Analysis

The exponent may be taken as any convenient number other than zero.

If then

1 2 2
D
l Vρ

Π = (c)

2Π

2
a b c dV lµ ρΠ =

( )0 0 0
3

a b c
dM M LM L t L

Lt L t
     =      
     

: 0M a b= +

: 0 3L a b c d= − − + +

: 0t a c= − −

ⅱ)

1,a =
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8.2 Dimensional Analysis

Solving these equations in terms of a gives

, ,b a c a d a= − = − = −

2

a
a a a aV l

lV
µµ ρ

ρ
− − −  

Π = =  
 

If then

(d)2 ReV lρ
µ

Π = =

1,a = −
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8.2 Dimensional Analysis

3Π

3
a b c dg l VρΠ =

0 0 0
2 3

a c d
bL M LM L t L

t L t
     =      
     

: 0M c=

: 0 3L a b c d= + − +

: 0 2t a d= − −

ⅲ)

Solving these equations in terms of a gives

, 0, 2b a c d a= = = −

2
3 2

a
a a a g lg l V

V
−  Π = =  

 
(e)
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8.2 Dimensional Analysis

If a = -1/2, then

3 FrV
g l

Π = =

Combining these three equations gives

2 2 , Re, Fr 0Df
l Vρ

 ′ = 
 

( )2 2 Re, FrD f
l Vρ

′′=
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8.2 Dimensional Analysis

2 2 , Re and FrD l Vρ

Dimensional analysis

~ no clue to the functional relationship among 

~ arrange the numerous original variables into a relation between a 

smaller number of 

dimensionless groups of variables. 

~ indicate how test results should be processed for concise presentation

[Problem 8.48] p. 320 Head loss in a pipe flow

( ), , , , , , 0Lf h D l V gρ µ =

Pipe diameter
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8.2 Dimensional Analysis

, ,l VρRepeating variables: 

( )1 1 , , ,Lf h l VρΠ =

( )2 1 , , ,f D l VρΠ =

( )3 3 , , ,f l Vµ ρΠ =

( )4 4 , , ,f g l VρΠ =

1
a b c d
Lh l VρΠ =

0 0 0
3

c d
a b M LM L t L L

L t
   =    
   

: 0M c=

(i) 
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8.2 Dimensional Analysis

: 0M c=

: 0 3L a b c d= + − +

: 0t d= −

b a= −

1

a
Lh
l

 ∴ Π =  
 

1:If a = 1
Lh
l

Π =
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8.2 Dimensional Analysis

2
a b c dD l VρΠ =

0 0 0
3

c d
a b M LM L t L L

L t
   =    
   

: 0M c= ①

: 0 3L a b c d= + − + ②

: 0t d= − ③

② : 0 a b= + b a= −

2

aD
l

 ∴ Π =  
 

1If a = 2: D
l

Π =

(ii) 
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8.2 Dimensional Analysis

3
a b c dl Vµ ρΠ =

0 0 0
3

a c d
bM M LM L t L

LT L t
     =      
     

: 0M a c= + ① c d c a→ = → = −

: 0 3L a b c d= − + − + ②

: 0t a d= − − → d a= − ③

② 3 0d b d d+ − + = b d b a= → = −

3
a a a al Vµ ρ− − −∴ Π =

1If a = − 3 Rel Vρ
µ

∴ Π = =

(iii) 
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8.2 Dimensional Analysis

4
a b c dg l VρΠ =

0 0 0
2 3

a c d
bL M LM L t L

t L t
     =      
     

: 0M c= ①

: 0 3L a b c d= + − + ②

: 0 2t a d= − − ③

(iv) 

③ 2d a= −

② 0 0 2a b a= + − − b a→ =
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8.2 Dimensional Analysis

, , Re, Fr 0Lh lf
l D

  = 
 

, Re, FrLh lf
l D

 ′=  
 

2
4 2

al
a a a gg l V

V
−  

Π = =  
 

2
:1If a = − 4 FrV

g l
Π = =
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8.2 Dimensional Analysis

Homework Assignment # 8

Due:  1 week from today

Prob. 8.6

Prob. 8.10

Prob. 8.14

Prob. 8.20

Prob. 8.24

Prob. 8.30

Prob. 8.56

Prob. 8.59
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