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Chapter 4 Shear Flow Dispersion

Contents

4.1 Description of Dispersion in Shear Flow

4.2 Fickian Dispersion Model

4.3 Dispersion in Unsteady Shear Flow

4.4 Dispersion in Two Dimensions

4.5 Unified View of Diffusion and Dispersion

Objectives

- Describe the spreading of particles in shear flows

- Derive shear flow dispersion equation using Taylor’ analysis (1953, 1954)

for laminar flow in pipe and turbulent flow

- Extend dispersion analysis to unsteady flow and two-dimensional flow

Taylor, Geoffrey –
English fluid mechanician
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4.1 Description of Dispersion in Shear Flow

4.1.1 Introductory Remarks
∙ Dispersion - the spreading of particles in the direction of flow cause 

primarily by the velocity profile in the cross section

Flows with velocity gradients are often referred to as “shear flows.”

→ shear effect

However, Taylor developed a completely new method in analyzing the 

spread of dissolved contaminants both in laminar flow in pipe and in 

turbulent flow (1953, 1954). In this analysis, he derived a solution for mass 

flux in the flow direction, and relate it with Fick’s law.

This process can be described with the analysis of diffusion by continuous 

movements in turbulent flows (1921).
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4.1 Description of Dispersion in Shear Flow

Thus, we can classify analyses in two categories:

(i) Non-Fickian model: use random walk theory

(ii) Fickian model:  use Fick’s law

4.1.2 Non-Fickian Description of spreading of particles in shear flow

Consider laminar flow in pipe with velocity profile shown below.

1) Assume two molecules are being carried in the flow; one in the center 

and one near the wall.

Rate of separation caused by the difference in advective velocity

≫ separation by molecular motion in x-direction
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

1) Assume two molecules are being carried in the flow; one in the center 

and one near the wall.

Rate of separation caused by the difference in advective velocity

≫ separation by molecular motion in x-direction

2) Because of molecular diffusion in r-direction, given enough time, any 

single molecule would wander randomly throughout the cross section, 

and would sample at random all the advective velocities.

→ Therefore, if a long enough averaging time was available, a single 

molecule’s time-averaged velocity would be equal to the instantaneous 

cross-sectional average of all molecules’ velocities.
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4.1 Description of Dispersion in Shear Flow

3) After some long enough “forgetting time” its location is independent of 

the initial location, and therefore its velocity is independent of its initial 

velocity.

→ Thus, we can imagine that the motion of a single molecule is the sum of 

a series of independent steps of random length.

4) If we adopt a coordinate system moving at the mean velocity, the 

random steps are likely to be back and forward with respect to the moving 

coordinate system.

→ This motion is similar to the random walk, if the flow continues 

unchanged for a time much longer than the “forgetting time.”
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4.1 Description of Dispersion in Shear Flow

→ Fickian diffusion equation, Eq. (2.4) can describe the spread of particles 

along the axis of the pipes, except that since the step length and time 

increment are much different from those of molecular diffusion we expect to 

find a different value of diffusion coefficient.

→ dispersion coefficient

2
LU Tε =< >

Now, find the rate of spreading for laminar shear flow in pipe

For turbulent flow, the rate of spreading is described by a turbulent diffusion 

coefficient as

LTwhere U = velocity deviation; = Lagrangian time scale.
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4.1 Description of Dispersion in Shear Flow

The motion of a single molecule in laminar pipe flow is similar to the motion 

of a fluid particle in turbulent flow in that the velocity of the molecule is a 

stationary random function of time.

For laminar flow in pipe, the Lagrangian time scale is will be proportional to 

the time required to sample whole field of velocities, which is proportional to 

the time scale for cross sectional mixing as

2

L
aT
D

∝

where D is molecular diffusion coefficient.
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4.1 Description of Dispersion in Shear Flow

2U< >The mean square velocity deviation of the molecule,    results primarily 

wandering of the molecule across the cross section, during which it samples 

velocities ranging from zero at the wall to the peak velocity u0 at the centerline.
2 2

0U u< >∝

0uwhere = maximum velocity at the centerline of pipe

Thus, longitudinal dispersion coefficient due to combined action of shear 

advection and molecular diffusion is described, in the limit t >> TL, by the 

relation of the form
2

2 2
0L

aK U T u
D

=< > ∝
→ K is inversely proportional 
to molecular diffusion.

(4.1)



11/173

4.1 Description of Dispersion in Shear Flow

1 .u t

,iu t

▶Consider the x-position of a single molecule in the shear flow.

After the shear advection, its location in the x-direction is 

Then, after the molecular diffusion across the cross section, its location in 

the x-direction would be    because the molecular diffusion causes the 

molecule moving at random back and forth across the cross section.

→ This motion is similar to the random walk, if the flow continues unchanged 

for a time much longer than the “forgetting time.”

→ Thus, in the limit, the probability of the molecule being between  

and      approaches the normal distribution with mean    and a 

variance 

x
x x+ µ

2.σ
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

I. Spreading of a single particle
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

II. Spreading of a line source
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

4.1.3 Non-Fickian models of shear flow dispersion

Non-Fickian modeling of dispersion mechanism 

Consider mixing in a hypothetical river

Assumption:

1) A hypothetical river with 3 lanes of different velocities

2) Every tm seconds complete mixing occurs across the cross section of 

the river (but not longitudinally) occurs, after shear advection is completed.

→ sequential mixing process

0x
C

x x
ε∂ ∂ → ∂ ∂ 
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

Actually, time needed for complete cross-sectional mixing is very large 

which is given as
2

c
y

Wt
ε

≅

Now solve for an instantaneous injection of a line source at x =0

 10 ;mt s= 0.2 / ;au m s= 2 x m∆ =
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

(iii) t= 2 tm
-: After shear advection t= 2 tm

+: After lateral mixing

0  0  67  100  33  0 0  0  45  89  55  11  0

0  0  0   67  100  33                 0  0  45  89  55  11  0

0  0  67  100  33  0 0  0  45  89  55  11  0
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

· Longitudinal dispersion in two-lane river

α = 0 1α≤ ≤

Su u=

Fu u u= + ∆

u =

area fraction of river occupied by slow lane, 

cross-sectional mean velocity

( )( )1u u uα α= + − + ∆ (a)
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

Consider velocity deviations:

( )( )
( )

1

1
S Su u u u u u u

u u u u u u u

α α

α α α α

′ = − = − − − + ∆

= − − − ∆ + + ∆ = − − ∆

( )( )1F Fu u u u u u u u u u u
u

α α
α

′ = − = + ∆ − = + ∆ − − − + ∆

= ∆

mx u t∆ = ∆ ⋅
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4.1 Description of Dispersion in Shear Flow

(i) Before any processes
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4.1 Description of Dispersion in Shear Flow

(ii) Just before mixing (JBM) …. after advection only
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4.1 Description of Dispersion in Shear Flow

Now, concentration deviations are

( )
( )( )

1

1
S d d d u

d u

C C C C C C

C C

α α

α

′ = − = − − −

= − −

( )
( )

1F u u d u

d u

C C C C C C

C C

α α

α

′ = − = − − −

= − −

(iii) Just after mixing (JAM)

2dC C=

0SC′ =

0FC′ =
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

1
A

u C u C dA
A

′ ′ ′ ′= ∫

( ) ( ){ }
( ) ( )( ){ }

( ) ( )( ){ ( )[ ] ( )( ) }

( ) ( )

JBM JAM

2

1
2
1 1
2
1 1 1 1
2
1
2

S F

d u d u

d u

u C u C u C

u C u C

u C C u C C

u C C

α α

α α α α α α

α α

′ ′ ′ ′ ′ ′≅ +

′ ′ ′ ′= + −

   = − − ∆ − − + − ∆ − −      

= − ∆ −
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4.1 Description of Dispersion in Shear Flow

Now, introduce the gradient model

Cu C K
x

∂′ ′ =
∂

Then, the concentration gradient is

d u

m

C C C
x ut

∂ −
≈

∂ ∆

( ) ( )
( )

( )( )

2

22

1
2

1
2

d u

d u

m

m

u C Cu CK
C CC

utx

u t

α α

α α

− ∆ −′ ′
= − =

−∂
∆∂

= − ∆ (b)
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4.1 Description of Dispersion in Shear Flow

[Example] A three-lane river

3
;2α = .2;0u∆ = 10 secmt =

( )
2

21 2 2 0.2 0.0044
2 3 3 m mK t t
  = − =  

   

5mt =

0.0222K =

10 20 30

0.0444 0.0889 0.1333
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4.1 Description of Dispersion in Shear Flow

[Re] Taylor Model vs. Non-Fickian Model for Couette flow

(1)
2 2

120
=

U hK
D

( )( )221
2

= − ∆ mK u tα α (2)

Compare (1) and (2)

0.5;= ∆ =u Uα
2 2

21
8 120

=m
U hU t

D
2

15
=m

ht
D
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4.1 Description of Dispersion in Shear Flow

Homework Assignment No. 4-1

Due: Two weeks from today

A hypothetical river is 30 m wide and consists of three "lanes", each 10m in 

width. The two outside lanes move at 0.2 m/sec and the middle lane at 

0.4m/sec. Every tm seconds complete mixing across the cross section of the 

river (but not longitudinally) occurs, after the shear advection is completed. 

An instantaneous line injection of a conservative tracer results in a uniform 

of 100mg/ℓ in the water 2 m upstream and downstream of the injection point. 

The concentration is initially zero elsewhere. 
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4.1 Description of Dispersion in Shear Flow

As the tracer is carried downstream and is mixed across the cross-section 

of the stream, it also becomes mixed longitudinally, due to the velocity 

difference between lanes, even though there is no longitudinal diffusion 

within lanes. We call this type of mixing "dispersion".

1) Mathematically simulate the tracer concentration profile 

(concentration vs. longitudinal distance) as a function of time for 

several (at least four) values of tm including 10 sec.

2) Compare the profiles and decide whether you think the effective 

longitudinal mixing increases or decrease as tm increases.
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4.1 Description of Dispersion in Shear Flow
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4.1 Description of Dispersion in Shear Flow

This "scenario" represents the one-dimensional unsteady-state advection 

and longitudinal dispersion of an instantaneous impulse of tracer for which 

the concentration profile follow the Gaussian plume equation

( )2

( , )
44

 − = − 
  

x UtMC x t exp
KtKtπ

in which x = distance downstream of the injection point, M = mass injected 

width of the stream, K = longitudinal dispersion coefficient, U = bulk 

velocity of the stream (flowrate/cross-sectional area), t = elapsed time 

since injection.
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4.1 Description of Dispersion in Shear Flow

3) Using your best guess of a value for U, find a best-fit value for K for 

each and for which you calculated a concentration profile. Tabulate of plot 

the effective K as a function tm of and make a guess of what you think the 

functional form is.
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4.2 Fickian Dispersion Model 

4.2.1 A generalized model

Consider the 2-D laminar flow with velocity variation u(y) between walls 

Define the cross-sectional mean velocity as

0

1 h
u udy

h
= ∫ (4.2)

Then, velocity deviation is

( )'u u y u= − (4.3)
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4.2 Fickian Dispersion Model 
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4.2 Fickian Dispersion Model 

Let flow carry a solute with concentration C(x, y) and molecular diffusion

coefficient D.

Define the mean concentration at any cross section as

( )
0

1 , ( )
h

C Cdy C f x f y
h

= = ≠∫ (4.4)

Then, concentration deviation is

( )' ' ', ( , )C C y C C C x y= − = (4.5)
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4.2 Fickian Dispersion Model 

Now, use 2-D diffusion equation with only flow in x-direction (v =0)

2 2

2 2
C C C C Cu v D D
t x y x y

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
(1)

Substitute (4.2)~(4.4) into (1)

( )
2 2

' ' ' ' '
2 2( ) ( ) ( ) ( )C C u u C C D C C C C

t x x y
 ∂ ∂ ∂ ∂

+ + + + = + + + ∂ ∂ ∂ ∂ 
(4.5)

0C
y

∂
=

∂
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4.2 Fickian Dispersion Model 

Now, simplify (4.5) by a transformation of coordinate system whose origin 

moves at the mean flow velocity

1x ut u
x t
ξ ξξ ∂ ∂

= − → = = −
∂ ∂

0 1t
x t
τ ττ ∂ ∂

= → = =
∂ ∂

(4.6)

(4.7)

Chain rule

x x x
ξ τ

ξ τ ξ
∂ ∂ ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ ∂

u
t t t

ξ τ
ξ τ ξ τ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = − +

∂ ∂ ∂ ∂ ∂ ∂ ∂

(b)

(c)
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4.2 Fickian Dispersion Model 

Substitute Eq. (b)-(c) into Eq. (4.5)

( )
2 2 '

' ' ' ' '
2 2( ) ( ) ( ) ( ) Cu C C C C u u C C D C C

yξ τ ξ ξ
 ∂ ∂ ∂ ∂ ∂

− + + + + + + = + + ∂ ∂ ∂ ∂ ∂ 
2 2 '

' ' ' '
2 2( ) ( ) ( ) CC C u C C D C C

yτ ξ ξ
 ∂ ∂ ∂ ∂

+ + + = + + ∂ ∂ ∂ ∂ 
(4.8)

'u
→ view the flow as an observer moving at the mean velocity

→ is the only observable velocity as shown in Gig. 4.2 (b).
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4.2 Fickian Dispersion Model 

Now, neglect longitudinal diffusion because rate of spreading along the flow 

direction due to velocity difference greatly exceed that due to molecular 

diffusion.

2
' ' '

2( ) ( )u C C D C C
ξ ξ
∂ ∂

+ +
∂ ∂



' ' 2 '
' '

2

C C C C Cu u D
yτ τ ξ ξ

∂ ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂
(4.9)

'u→ This equation is still intractable because varies with y.

→ General solution cannot be found because a general procedure for

dealing with differential equations with variable coefficients is not available.
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4.2 Fickian Dispersion Model 

' ( )C y
Now introduce Taylor's assumption

→ discard three terms to leave the easily solvable equation for 

' ' 2 '
' '

2

C C C C Cu u D
yτ τ ξ ξ

∂ ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂

2 '
'

2
C Cu D

yξ
∂ ∂

=
∂ ∂ (4.10)

[Re] Derivation of Eq. (4.10) using order of magnitude analysis

Take average over the cross section of Eq. (4.9)

→ apply the operator 
0

1 ( )
h

dy
h ∫
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4.2 Fickian Dispersion Model 

' ' 2 '
' '

2

C C C C Cu u D
yτ τ ξ ξ

∂ ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂

Apply Reynolds rule of average, then we have

'
' 0C Cu

τ ξ
∂ ∂

+ =
∂ ∂

(4.11)

Subtract Eq.(4.11) from Eq.(4.9)

' ' ' 2 '
' ' '

2

C C C C Cu u u D
yτ ξ ξ ξ

∂ ∂ ∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂ ∂
(4.12)
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4.2 Fickian Dispersion Model 

',C C 'C C>>Assume are well behaved, slowly varying functions and

Then
' '

' ' ',C C Cu u u
ξ ξ ξ
∂ ∂ ∂

>>
∂ ∂ ∂

Thus we can drop 
' '

' 'C Cu and u
ξ ξ

∂ ∂
∂ ∂

' 2 '
'

2
C C CD u

yτ ξ
∂ ∂ ∂

= −
∂ ∂ ∂

(d)

' Cu
ξ
∂

−
∂

= source term of variable strength
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4.2 Fickian Dispersion Model 

'u→ Net addition by source term is zero because the average of is zero.

C
ξ
∂
∂

Assume that remains constant for a long time, so that the source is 

constant.

Then, Eq. (d) can be assumed as steady state.
'

0C
τ

→
∂

=
∂

Then (a) becomes

2 '
'

2
C Cu D

yξ
∂ ∂

=
∂ ∂

longitudinal
advective transport

cross-sectional
diffusive transport

(a) (b)
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4.2 Fickian Dispersion Model 

' ( )C y
→ same as Eq. (4.10)

→ The cross sectional concentration profile is established by a balance 

between longitudinal advective transport and cross sectional diffusive 

transport as shown in Fig. 4.3.

In balance, net transport = 0

( )
' ' '

' ' ' 0C C Cu Cdy u Cdy u C dxdy D dx D dx D dydx
x y y y y

   ∂ ∂ ∂ ∂ ∂  − + + − − − + − =     ∂ ∂ ∂ ∂ ∂      

( )
'

' 0Cu C dxdy D dydx
x y y

 ∂ ∂ ∂
− + = ∂ ∂ ∂ 

( )
'

' Cu C D
x y y

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

(4.13)
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4.2 Fickian Dispersion Model 
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4.2 Fickian Dispersion Model 

Integrate (e) twice w.r.t. y

Now, let’s find a solution of Eq. (4.10)

2 '
' '

2
( ) 1 1 ( )C y C Cu u y

y D D xξ
∂ ∂ ∂

= =
∂ ∂ ∂

(e)

( )' ' '

0 0

1( ) 0
y yCC y u dydy C

D x
∂

= +
∂ ∫ ∫ (4.14)
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4.2 Fickian Dispersion Model 
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4.2 Fickian Dispersion Model 

0

5

10

0 0.2 0.4 0.6 0.8 1
a

y

C(y)

a

b

c
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4.2 Fickian Dispersion Model 

Now, consider the rate of mass transport in the streamwise direction. 

The mass transport, relative to the moving coordinate axis, is given by

'
' '

0 0

h h

x
CM q dy u C D dy
x

  ∂
= = + −  ∂  
∫ ∫ (f)

Substitute (4.14) in (f)

' ' ' '

0 0 0 0

1h h y yCM u C dy u u dydydy
D x
∂

= =
∂∫ ∫ ∫ ∫

since

(4.15)

( ){ }' '

0
0 0

h
u C dy =∫ '

0
0

h
u dy =∫
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4.2 Fickian Dispersion Model 

→ Eq. (4.15) means that total mass transport in the streamwise direction is

proportional to the concentration gradient in that direction.

CM
x

∂
∝
∂

 (g)

→This is exactly the same result that we found for molecular diffusion.

C Cq D
x x

∂ ∂
∝ = −

∂ ∂
But Eq. (g) is the integral sense for diffusion due to whole field of flow.

Now define a bulk transport coefficient, or “dispersion” coefficient,

in analogy to the molecular diffusion coefficient, by the equation
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4.2 Fickian Dispersion Model 

1
M Cq K

h x
∂

= = −
× ∂



(h)

qwhere = rate of mass transport per unit area per unit time; h = depth =

area per unit width of flow

K = longitudinal dispersion coefficient (= bulk transport coefficient)

→ express as the diffusive property of the velocity distribution (shear flow)

Then, (h) becomes

CM hK
x

∂
= −

∂
 (4.16)
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4.2 Fickian Dispersion Model 

Comparing Eq. (4.15) and Eq. (4.16) we see that

' '

0 0 0

1 h y y
K u u dydydy

hD
= − ∫ ∫ ∫

1K
D

∝

(4.17)

Now, we can express this transport process due to velocity distribution as

a one-dimensional Fickian-type diffusion equation, following Eq. (2.4), in

moving coordinate system.

2

2
C CK
τ ξ

∂ ∂
=

∂ ∂
(4.18)
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4.2 Fickian Dispersion Model 

Return to fixed coordinate system

2

2
C C Cu K
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂
(4.19)

,C u
→ 1-D advection-dispersion equation

= cross-sectional average values

▪ Balance of advection and diffusion in Eq. (4.10) 

Suppose that at some initial time t = 0 a line source of tracer is deposited 

in the flow.

→ Initially, the line source is advected and distorted by the velocity profile 

(Fig. 4.4).
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4.2 Fickian Dispersion Model 

At the same time the distorted source begins to diffuse across the cross 

section.

→ Shortly we see a smeared cloud with trailing stringers along the boundaries 

(Fig. 4.4b).

During this period, advection and diffusion are by no means in balance.

→ Cross-sectional average concentration is skewed distribution (Fig. 4.4c).

→ Taylor’s assumption does not apply.

If we wait a much longer time, the cloud of tracer extends over a long distance

in the x direction.
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4.2 Fickian Dispersion Model 



62/173

4.2 Fickian Dispersion Model 

C C
x

∂
∂

'C

→ varies slowly along the channel, and    is essentially constant over 

a long period of time.

→ becomes small because cross-sectional diffusion evens out cross-

sectional concentration gradient.

u

Once the balance is established further longitudinal spreading follows Eq. 

(4.19), whose solution is normally distributed cloud moving at the mean 

speed   , and continuing to spread with 
2

2d K
dt
σ

=

2

0.4 ht
D

<

〮 Chatwin (1970) suggested

i) Initial period:

→ advection > diffusion
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4.2 Fickian Dispersion Model 

ii) Taylor period: 
2

0.4 ht
D

>

→ advection ≈ diffusion

→ can use Eq. (4.19) 

→ The initial skew degenerates into the normal distribution.
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4.2 Fickian Dispersion Model 
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4.2 Fickian Dispersion Model 
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4.2 Fickian Dispersion Model 



67/173

4.2 Fickian Dispersion Model 
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4.2 Fickian Dispersion Model 

region criteria

Chatwin (1970) Taylor period

Fischer et al. 

(1979)
Complete transverse mixing

, centerline injection

, side injection

2

0.4 ht
D

>

2

0.1>
t

Wx U
ε

2

0.4>
t

Wx U
ε
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4.2 Fickian Dispersion Model 

4.2.2 Laminar flows

(1) Laminar flow between two plates

Consider laminar flow between two plates → Couette flow

( ) yu y U
h

=

2

2

1 0
h

h
yu U dy

h h−
= =∫

'u u∴ =
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4.2 Fickian Dispersion Model 
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4.2 Fickian Dispersion Model 

2ht
D

>Suppose → tracer is well distributed → Taylor’s analysis can be

applied

From Eq. (4.14)

( )' ' '

0 0

1 (0)
y yCC y u dydy C

D x
∂

= +
∂ ∫ ∫ (4.20)

(a)'

2 2

1 ( )
2

y y
h h

C Uy hdydy C
D x h− −

∂
= + −

∂ ∫ ∫

2 '

2
2

1 ( )
2 2

y
y
h

h

C U hy dy C
D x h−

−

∂  = + − ∂  ∫
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4.2 Fickian Dispersion Model 

3
'

2

1 ( )
6 8 2

y

h

C Uy Uh hy C
D x h

−

 ∂
= − + − ∂  

3 2 2
'1 ( )

6 8 48 16 2
C Uy Uh Uh Uh hy C

D x h
 ∂

= − + − + − ∂  

3 2 3
'1

2 3 4 12 2
C U y h h hy C

D x h
 ∂  = − − + −  ∂   

2
'

2

1 ( )
2 8 2

y
h

C Uy Uh hdy C
D x h−

 ∂
= − + − ∂  

∫

(4.21)
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' 0 @ 0C y= =By symmetry

(4.22)

3
'10

2 12 2
C U h hC

D x h
 ∂  = − + −  ∂   

2
' 1

2 24
h C UhC

D x
∂ − =  ∂ 

3 2
' 1( )

2 3 4
C U y hC y y

D x h
 ∂

∴ = − ∂  

2
' 1@ ;

2 24
h C hy C U

D x
 ∂

= = − ∂  
→
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'

2

1 0.042
24

C D
C Uh
x

= − = −→
∂
∂

Dispersion coefficient K

' '2

2 22

( )

1 h y y
h hh

A

K u u dydydy
hD −

= − ∫ ∫ ∫


( ) ( )
'

' '( )
2

DC y hA C y C
C
x

  = − −  ∂   
∂

From (a):

' ' '2

2

1 ( )
2

h

h
D hu C y C dy
ChD
x

−

  = − − −  ∂   
∂

∫
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' ' ' '2 2

2 2

1
2

h h

h h
hu C dy C u dy

Ch
x

− −

  = − + −  ∂   
∂

∫ ∫

3 2
2

2

1 1( )
2 3 4

h

h
Uy C U y h y dy

C h D x hh
x

−

  ∂
= − −  ∂ ∂   

∂

∫

2 4 2 2
2

3
22 3 4

h

h
U y h y dy
h D −

 
= − − 

 
∫

2 5 2 3 2

3

2
2 15 12

h

h

U y h y
h D

−

 
= − − 

 
2 2

120
U h

D
= (4.23)
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1K
D

∝Note that 

'C→ Larger lateral mixing coefficient makes to be decreased.

(2) Laminar Flow in a Tube

Consider axial symmetrical flow in a tube → Poiseuille flow

Tracer is well distributed over the cross section.

( )
2

0 21 ru r u
a

 
= − 

 
→ paraboloid (a)
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Integrate u to obtain mean velocity

2dQ u rdrπ≅
2

0 20
2 1

a rQ r u dr
a

π
   ∴ = −  
   

∫
212

0 20
2 1r r ru a d

a a a
π

   = −   
  

∫
12 2

0 0
2 (1 )u a z z dzπ= −∫

12 2
2

0
0

2
2 4
z zu aπ

 
= − 

 
2

02
a uπ

= (4.24)
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4.2 Fickian Dispersion Model 

By the way, 2Q u aπ= ⋅

0

2
uu∴ = (4.25)

2-D advection-dispersion equation in cylindrical coordinate is

2 2 2

0 2 2 2
11C r C C C Cu D

t a x r r r x
   ∂ ∂ ∂ ∂ ∂

+ − = + +   ∂ ∂ ∂ ∂ ∂   
(b)

Shift to a coordinate system moving at velocity 

C
t

∂
∂

2

2
C

x
∂
∂

Neglect and as before
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4.2 Fickian Dispersion Model 

Decompose C, then (b) becomes

Let , ,rz x ut t
a
ξ τ= = − =

2 2 ' '
20

2
1 1( )
2

u a C C Cz
D z z zξ

∂ ∂ ∂
− = +

∂ ∂ ∂
'

0C
z

∂
=

∂
(4.26)1z =at 

Integrate twice w.r.t. z

2
' 2 40 1

8 2
u a CC z z const

D x
∂ = − +  ∂ 

(c)
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' '1

A

MK u C dA
C CA A
x x

= − = −
∂ ∂
∂ ∂

∫


(d)

Substitute (a), (c) into (d), and then perform integration

2 2
0

192
a uK

D
= (4.27)

[Example] Salt in water flowing in a tube
5 210 / secD cm−=

0 1 / secu cm=
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2a mm=

( )
6

(0.01) 0.004
40 2000

1 10e
udR
v −= = = <<

×

( ) ( )
( )

2 22 2
2 60

5

0.2 1
21 / sec 10

192 192 10
a uK cm D

D −
= = = ≈

→ laminar flow

☞ Initial period

( )
( )

22

0 5

0.4 0.2
0.4 1600sec 27min

10
at
D −

= = = =

0
0 0 02

ux ut t= =
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4.2 Fickian Dispersion Model 

( )( )0.5 1600 800cm= =

800 4,000
0.2

a= =

0x x> → 1-D dispersion model can be applied

4.2.3 Dispersion in Turbulent Shear Flow

Cross-sectional velocity profile in turbulent motion in the channel is different 

than in a laminar flow.

Consider unidirectional turbulent flow between parallel plates
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4.2 Fickian Dispersion Model 

Begin with 2-D turbulent diffusion equation

x y
C C C C Cu v
t x y x x y y

ε ε ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(a)

, ,C u v =
( )yε

where, time mean values; the cross-sectional mixing 

coefficient      is function of cross-sectional position.

0,v = ' 0v ≠Let turbulent fluctuation

Assume x
C Cu
x x x

ε∂ ∂ ∂
∂ ∂ ∂
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4.2 Fickian Dispersion Model 

Then (a) becomes

y
C C Cu
t x y y

ε
 ∂ ∂ ∂ ∂

+ =  ∂ ∂ ∂ ∂ 
(b)

Now, decompose C and u into cross-sectional mean and deviation

( ) ( )
'

' ' '( ) ( ) y
C C u u C C C C

t x y y
ε∂ + ∂ ∂ ∂

+ + + = +
∂ ∂ ∂ ∂

(c)

uTransform coordinate system into moving coordinate according to

' ' '
' '

y
C C C C Cu u

y y
ε

τ τ ξ ξ
∂ ∂ ∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂ ∂ ∂
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Now, introduce Taylor's assumptions (discard three terms)

'
'

y
C Cu

y y
ε

ξ
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
(4.28)

Solution of Eq. (4.28) can be derived by integrating twice w.r.t. y

' ' '

0 0

1 (0)
y y

y

CC u dydy C
ξ ε
∂

= +
∂ ∫ ∫ (4.29)

Mass transport in streamwise direction is

' ' ' '

0 0 0 0

1h h y y

y

CM u C dy u u dydydy
ξ ε
∂

= =
∂∫ ∫ ∫ ∫
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M Cq K
h ξ

∂
= = −

∂



' '

0 0 0

1 1h y y

y

K u u dydydy
h ε

= − ∫ ∫ ∫ (4.30)

4.2.4 Taylor's analysis of turbulent flow in pipe (1954)

Set
1r dzz

a dr a
= → =

Then, velocity profile is
*

0( ) ( )u z u u f z= − (a) (4.31)
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4.2 Fickian Dispersion Model 

*u = 0τ
ρ

=where shear velocity 

f(z) = logarithmic function

(4.32)

[Re] velocity defect law [Eq. (1.27)]

*
*

10
3 2.30 log
2

uu u u
a
ζ

κ κ
= + + (4.33)

κ
ς

in which = von Karman's constant ≈ 0.4

= distance from the wall
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* *
103.75 5.75 logu u u u

a
ζ

= + +

* 3.75 2.5lnu u
u a

ζ−
= + (4.34)

The cross-sectional mixing coefficient can be obtained from Reynolds analogy.

→ The mixing coefficients for momentum and mass transports are the same.

i) momentum flux through a surface

u
r

τ ε
ρ

∂
= −

∂
☜ Daily & Harleman (p. 56)

kinematic
eddy viscosity
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ⅱ) mass flux - Fickian behavior

Cq
r

ε ∂= −
∂
q
C u
r r

τε
ρ

∴ = =
∂ ∂

− −
∂ ∂

(b)                  (4.35)

For turbulent flow in pipe, shear stress is given

0 0
r z
a

τ τ τ= = (c)                  (4.36)
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Differentiate (a) w.r.t. r

* *( ) 1u df z dz dfu u
r dz dr dz a
∂

= − = −
∂

(d)                  (4.37)

Divide (c) by (d)

0

* 1
z

u dfu
r dz a

ττ
=

∂
−

∂

(e)
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( )2*uSubstitute (e) into (b)

*
0 0

* *

( / )( ) 1
z az azur u df df dfu u

r dz a dz dz

τ τ τ ρε
ρ ρ

∴ = − = = =
∂
∂

' ( ) ( ) , ( )u r u r u rε= −

' ( )C r ( )rε

Now, it is possible to tabulate (f)

And, numerically integrate Eq. (4.39) [Taylor’s equation in radial

coordinates] to obtain using obtained in (f)

2 ' '
'

2
1C C Cu

r r r
ε

ξ
 ∂ ∂ ∂

= + ∂ ∂ ∂ 
(4.39)
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Again, numerically integrate Eq. (4.30) to find K

*10.1K au= (4.40)

in which a = pipe radius

[Cf] For laminar flow in a tube, 
2 2

0

192
a uK

D
=

2
* 0auu

D
∝
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4.2.5 Elder's application of Taylor's method (1959) in open flows

Consider turbulent flow down an infinitely wide inclined plane of depth d

assuming von Karman logarithmic velocity profile

*
' '( ) (1 ln )uu y y

κ
= + (a)                  (4.41)

where
*

'
'

1 1du uu u u
dy y dκ

= − → = (b)

' /y y d=
0du

dy
=
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Parabolic 
profile

For open channel flow, shear stress is given

'
0 (1 )du y

dy
τ ρε τ= = −

' '
' *0 0

*

'

(1 ) (1 )( ) '(1 )
1 1

y yy y y dudu u
dy y d

τ τε κ
ρ ρ

κ

− −
= = = −

(c) (4.42)

(d) (4.43)

Substitute Eq. (a) and Eq. (d) into Eqs. (4.29) and (4.30) and integrate

(4.44)
'

2 2
1

1 ( ) 0.648n

n

C d d yC
x n dκ

∞

=

∂ − 
= − ∂  

∑

*
3

0.404K du
κ

= (4.45)
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Input 0.41κ =

*5.93K du= (4.46)

4.2.6 General form for the longitudinal dispersion coefficient
Introduce dimensionless quantities

' ' ',yy y hy dy hdy
h

= → = =

'
'' ' '' '2

2'

uu u u u
u

= → =

' 'E
E
εε ε ε= → = (c)

(b)

(a)
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where  E = cross-sectional average of ε
'u = velocity deviation from cross-sectional mean velocity

1
2'2 ' 2

0

1 ( )
h

u u dy
h

 =  
 ∫

= intensity of the velocity deviation (different from turbulent intensity)

~ measure of how much the turbulent averaged velocity deviates

throughout the cross section from its cross-sectional mean
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Substitute (a) ~ (c) into Eq. (4.30)

1 ' ''' '2 '' '2 3 ' ' '
'0 0 0

1 1y y
K u u u u h dy dy dy

h Eε
= − ∫ ∫ ∫

1 ' ''2 '2 3 '' '' ' ' '
'0 0 0

1 1 1y y
u u h u u dy dy dy

h E ε
= − ∫ ∫ ∫

'2 2 1 ' ''' '' ' ' '
'0 0 0

1y yu h u u dy dy dy
E ε

 = − 
 ∫ ∫ ∫ (d)

Set 
1 ' ''' '' ' ' '

'0 0 0

1y y
I u u dy dy dy

ε
= −∫ ∫ ∫ (4.47)
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Then (d) becomes

2 '2h uK I
E

=

0.054 ~ 0.10I = 0.10I→ ≅

(4.48)

4.2.7 Aris's Analysis

Aris (1956) proposed the concentration moment method in which he 

obtained Taylor’s main results without stipulating the feature of the 

concentration distribution.
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4.2 Fickian Dispersion Model 

Begin with 2-D advective-diffusion equation in the moving coordinate 

system to analyze the flow between two plates (Couette flow)

2 2
'

2 2
C C C Cu D

yτ ξ ξ
 ∂ ∂ ∂ ∂

+ = + ∂ ∂ ∂ ∂ 
(4.49)

(1) (2) (4)(3)

thpNow, define the moments of the concentration distribution

( ) ( ),p
PC y C y dξ ξ ξ

∞

−∞
= ∫ (4.50)
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Take the moment of Eq. (4.49) by applying the operator ( )P dξ ξ
∞

−∞∫

(1) pp p CC d Cdξ ξ ξ ξ
τ τ τ

∞ ∞

−∞ −∞

∂∂ ∂
= = =

∂ ∂ ∂∫ ∫ ← Leibnitz rule    (4.52)

[Re] Leibnitz formula: 1 1

0 0

u u

u u

f ddx fdx
dα α

∂
=

∂∫ ∫

' '(2) p pC Cu d u dξ ξ ξ ξ
ξ ξ

∞ ∞

−∞ −∞

∂ ∂
= =

∂ ∂∫ ∫

{ }' 1p pu C p C dξ ξ ξ
∞∞ −

−∞ −∞
 = −  ∫

u v’

0C
ξ =±∞

=

← integral by parts 
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' 1 '
1

p
ppu Cd pu Cξ ξ

∞ −
−−∞

= − = −∫

2

2(3) p pC CD d D dξ ξ ξ ξ
ξ ξ ξ

∞ ∞

−∞ −∞

 ∂ ∂ ∂
= =  ∂ ∂ ∂ 
∫ ∫

u v’

1p pC CD p dξ ξ ξ
ξ ξ

∞
∞ −

−∞
−∞

  ∂ ∂ = −  ∂ ∂   
∫

1p CDp dξ ξ
ξ

∞ −

−∞

∂
= −

∂∫

← integral by parts 

{ }1 2( 1)p pDp C C p dξ ξ ξ
∞∞− −

−∞ −∞
 = − − −  ∫

2
2( 1) ( 1)p

pDp p Cd Dp p Cξ ξ
∞ −

−−∞
= − = −∫
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2 2 2

2 2 2(4) p p PC CD d D Cd D
y y y

ξ ξ ξ ξ
∞ ∞

−∞ −∞

∂ ∂ ∂
= = =

∂ ∂ ∂∫ ∫

Applying these terms to Eq. (4.49) yields

2
'

1 2 2( 1)p P
p p

C Cpu C D p p C
yτ − −

∂  ∂
− = − + ∂ ∂ 

(4.53)

B.C. gives

0 0,PCD at y h
y

∂
= =

∂
← impermeable boundary
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Take cross-sectional average of Eq. (4.53)

2
'

1 2 2( 1)p P
p p

C Cpu C D p p C
yτ − −

 ∂ ∂ − = − + ∂ ∂  

2 2

2 2 0P P PC C C
y y y y

 ∂ ∂ ∂ ∂
= = = ∂ ∂ ∂ ∂ 

'
1 2( 1)p

p p

dM
pu C p p DM

dτ − −− = −

Aris’ analysis is more general than Taylor’s analysis in that it applies for 

low values of time.

Eq. (4.54) can be solved sequentially for p = 0, 1, 2, …
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→ molecular diffusion and shear flow dispersion are additive



111/173

4.3 Dispersion in Unsteady Shear Flow

Real environmental flows are often unsteady flow.

- reversing flow in a tidal estuary; wind driven flow in a lake caused by a 

passing storm

Suppose that unsteady flow = steady component + oscillatory component

Application of Taylor's analysis to an oscillatory shear flow

(A) Linear velocity profile with a sinusoidal oscillation

2siny tu U
h T

π =  
 

(1)

where T = period of oscillation
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4.3 Dispersion in Unsteady Shear Flow

yu U
h

=
yu U
h

− =

2
T

2( / )cT h D≈

▪'flip-flop' sort of flow

- reversing instantaneously between and after time 

interval 

→ after each reversal the concentration profile has to be reversed

→ substitute - y for y in Eq. (4.21)

→ but enough time bigger than mixing time is required before the 

concentration profile is completely adopted to a new velocity profile.

CT T>>(1) 

- concentration profile will have sufficient time to adopt itself to the velocity

profile in each direction
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4.3 Dispersion in Unsteady Shear Flow

- time required for to reach the profile given by Eq.(4.21) is short

compared to the time during which has that profile.

→ dispersion coefficient will be the same as that in a steady flow

→ dispersion as if flow were steady in either direction

CT T<<

'C
' 0.C =

(2) 

- period of reversal is very short compared to the cross-sectional mixing time

- concentration profile does not have time to respond to the velocity profile

- will oscillate around the mean of the symmetric limiting profiles, 

which is 

→ dispersion coefficient tends toward zero

→ no dispersion due to the velocity profile
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4.3 Dispersion in Unsteady Shear Flow

▪ Fate of an instantaneous line source when CT T<<

unsteady 
source term

Solution of Taylor’s equation by Carslaw and Jaeger (1959)

' 2 '
'

2
C C CD u

yτ ξ
∂ ∂ ∂

− = −
∂ ∂ ∂

Taylor’s
equation for
unsteady flow

' 2sin ( 0)y tu u U u
h T

π
= = =

B.C. 

I.C. 

'

0
2

C hat y
y

∂
= = ±

∂

'( ,0) 0C y =

(a)

(1)

(c)

(b)
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4.3 Dispersion in Unsteady Shear Flow

' Cu
ξ
∂
∂

0t t=

Replace unsteady source term by a source of constant strength by

setting

(d)

(e)

(f)

* 2 *
0

2

2sin( )tC C y CD U
y h x T

π
τ

∂ ∂ ∂
− = −

∂ ∂ ∂

*

0
2

C hat y
y

∂
= = ±

∂

* ( ,0) 0C y =

*Cwhere = distribution resulting from a suddenly imposed source 

distribution of constant strength
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As diagrammed in Fig. 2.8, the solution for a series of sources of variable 

strength can be obtained by

' *
0 0 00

( , ) ( , ; )
t

C y t C y t t t dt
t
∂

= −
∂∫ (g)

For large t

' *
0 0 0( , ) ( , ; )

t
C y t C y t t t dt

t−∞

∂
= −

∂∫ (h)

*C can be expressed by the sum 

*( , ) ( ) ( , )C y t u y w y t= + (i)
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( , )w y t can be solved by separation of variables and Fourier expansion.

Further integration of the result leads to

where

( )

2
'

23
1

2 ( 1) sin(2 1)
2 1

n

nc

Uh T C yC n
D T x hn

π
π

∞

=

∂ −
= −

∂ −
∑

( )
1

2 2

2 1
22 1 1 sin

2 n
c

T tn
T T

π π θ
−

−

    × − + +    
     

( )

1
2 2

21
2 1

1sin 2 1 1
2n

c

Tn
T

θ π

−

−
−

 
    = − − +   
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Average over the period of oscillation of K

' '2
0

2

1 /
hT

h
CK u C dy h dt

T x−

 ∂
= − ∂ 

∫ ∫

( )

122 22 2
2 2

4
1

2 1 (2 1) 1
2nc c

U h T Tn n
D T T

π
π

−

∞
−

=

      = − − +     
       

∑

2 2

0

, 0

1,
240

c

c

T T K

U hT T K
D

<< →
→  >> =


(4.56)

(4.55)
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[Re] Case of cT T>>

For a linear steady velocity profile, sinyu U
h

α=

2 2
21 sin

120st
U hK

D D
α

= (4.57)

2 2

0
1

240
U hK

D
→ = stK αis an ensemble average of over all values of

Intermediate behavior, Eq. (4.55) → Fig.4.18
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0

0

0

0.1 0.03

1 0.8

10

c

c

c

T K K
T
T K K
T
T K K
T

= → ≈

= → ≈

= → =

(4.58)

(B) Flow including oscillating and a steady component

→ pulsating flow found in blood vessel

( ) ( ) ( )1 2sin 2 /u y u y t T u yπ= +

1 2 /u u Uy h= = (4.59)
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4.3 Dispersion in Unsteady Shear Flow

Assume that the results by separate velocity profile are additive.

' ' '
1 2C C C= + ( )

' 2 '

2
C C Cu t
t x y

ε∂ ∂ ∂
+ =

∂ ∂ ∂
Let is solution to

1 'CThen is solution to the equation

' 2 '
1 1

1 2sin(2 / )C C Cu t T
t x y

π ε∂ ∂ ∂
+ =

∂ ∂ ∂

2 'CAnd is solution to the equation

' 2 '
2 2

2 2
C C Cu
t x y

ε∂ ∂ ∂
+ =

∂ ∂ ∂
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cycle-averaged dispersion coefficient

(4.60)

' '2
1 2 1 20

2

1 1 2sin ( )
hT

h
tK u u C C dydt

CT Th
x

π
−

 = − + + ∂  
∂

∫ ∫

' '2 2
1 1 2 20

2 2

1 1 2sin
h hT

h h
tu C dydt u C dy

C T Th
x

π
− −

 
= − + ∂  

∂

∫ ∫ ∫

1 2K K= +
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1K ( / )cf T T

2K

where = result of oscillatory profile = → Fig. 4.18

= result of steady profile

▪ Application to tidal rivers and estuaries

Consider shear effects in estuaries and tidal rivers

Flow oscillation - flow goes back and forth.

Consider effect of oscillation on the longitudinal dispersion coefficient

0 ( )K K f T ′= (4.61)

( )f T ′where is plotted in Fig. 4. 18.

/ cT T T′ = = dimensionless time scale for cross-sectional mixing



129/173

4.3 Dispersion in Unsteady Shear Flow

T =

CT = 2 / tW ε

0K = T Tc

tidal period ∼12 hrs

cross-sectional mixing time =

dispersion coefficient if

• For wide and shallow cross section with no density effects

2
0 CK Iu T′= (4.62)

0.1≈where I = dimensionless triple integral (Table 4.1)

Combine Eq. (4.61) and Eq. (4.62)

( ) ( )20.1 1/K u T T f T′ ′ ′=    (4.63)
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4.3 Dispersion in Unsteady Shear Flow

( ) ( )1/ T f T′ ′  Function             is plotted in Fig. 4.19

CT
2

C
t

WT
ε

=i) is small (narrow estuary)

1
C

TT
T

′ = >> K→ is small

CTii) is very large (very wide estuary)

1
C

TT
T

′ = << K→ is smallest

iii) ( ) ( )1 : 1/ 0.8CTT T f T
T

′ ′ ′= ≈ ≈  

2
max 0.08K u T′∴ =
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4.3 Dispersion in Unsteady Shear Flow

[Ex] 
Ch. 5

2 212.5 hrs, 0.3 m/s, 0.2T u u u′= = =

2
max 0.08 0.2(0.3) (12.5 3600)K = × × × 260 m /s≈
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4.4 Dispersion in Two Dimensions

In many environmental flows velocity vector rotates with depth

( ) ( )u iu z jv z= +
  

u = u


v = u


where component of velocity in the x direction

component of velocity in the y direction

• Taylor’s analysis applied to a skewed shear flow with velocity profiles in 

two directions

The 2-D form of Eq. (4.10) for turbulent flow is

'
' 'C C Cu v

x y z z
ε
 ∂ ∂ ∂ ∂

+ =  ∂ ∂ ∂ ∂ 
(4.64)
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4.4 Dispersion in Two Dimensions

'

0C
z

∂
=

∂
0,z h=at (water surface & bottom)

Integrate (4.64) w.r.t. z twice

( )' ' '

0 0

1z z C CC z u v dzdz
x yε

 ∂ ∂
= + ∂ ∂ 
∫ ∫ (4.65)

Bulk dispersion tensor can be defined by

(4.66a)' '

0

h

x xx xy
C CM u C dz hK hK
x y

∂ ∂
= = − −

∂ ∂∫

' '

0

h

y yx yy
C CM v C dz hK hK
x y

∂ ∂
= = − −

∂ ∂∫ (4.66b)
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4.4 Dispersion in Two Dimensions

Substitute (4.65) into (4.66)

(a): ' ' '

0 0 0

1h z z

xx xy
C C C Cu u v dzdzdz h K K
x y x yε

   ∂ ∂ ∂ ∂
+ = − −   ∂ ∂ ∂ ∂   

∫ ∫ ∫

' '

0 0 0

1 1h z z

xxK u u dzdzdz
h ε

= − ∫ ∫ ∫
' '

0 0 0

1 1h z z

xyK u v dzdzdz
h ε

= − ∫ ∫ ∫

(4.67a)

depend on the interaction of
the x and y velocity profiles

(4.67b)



137/173

4.4 Dispersion in Two Dimensions

(b): ' ' '

0 0 0

1h z z

yx yy
C C C Cv u v dzdzdz h K K
x y x yε

   ∂ ∂ ∂ ∂
+ = − −   ∂ ∂ ∂ ∂   

∫ ∫ ∫

' '

0 0 0

1 1h z z

yxK v u dzdzdz
h ε

= − ∫ ∫ ∫
' '

0 0 0

1 1h z z

yyK v v dzdzdz
h ε

= − ∫ ∫ ∫ (4.67d)

(4.67c)

The velocity gradient in the x direction can produce mass transport in the

y direction and vice versa.

xyK = x-dispersion coefficient due to velocity gradient in the y direction
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4.4 Dispersion in Two Dimensions

yxK = y-dispersion coefficient due to velocity gradient in the x direction

▪ Mean flow on a continental shelf (Fischer, 1978)

0v V= −
22

0 0 0
2

0 0 0

/ 120 5 /192

5 /192 /120

U U VdK
U V Vε

 
=   

 
(4.68)
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4.4 Dispersion in Two Dimensions

x (alongshare)

u 

y (offshore) 
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4.4 Dispersion in Two Dimensions

y

x
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4.4 Dispersion in Two Dimensions

[Re] Derivation of 2-D advection-dispersion equation

(i) Conservation of mass in moving coordinate system is

yx
x x y y

qC qx y q q x y q q y x
t x y

 ∂  ∂  ∂  ∆ ∆ = − + ∆ ∆ + − + ∆ ∆      ∂ ∂ ∂     

yx qC q
t x y

∂∂ ∂
∴ = − −

∂ ∂ ∂ (1)

(ii) Apply Taylor’s analysis on 2-D shear flow

( )' ' ' ' ' ' '

0

1h

x x
C Cq M u C h u C dz u u v dzdzdz
x yε

 ∂ ∂
= = = = + ∂ ∂ 

∫ ∫ ∫ ∫
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4.4 Dispersion in Two Dimensions

x

y
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4.4 Dispersion in Two Dimensions

xx xy
C CK K
x y

∂ ∂
= − −

∂ ∂

( )' ' ' ' ' ' '

0

1h

y y
C Cq M v c h v c dz v u v dzdzdz
x yε

 ∂ ∂
= = = = + ∂ ∂ 

∫ ∫ ∫ ∫

yx yy
C CK K
x y

∂ ∂
= − −

∂ ∂
(3)

(2)

(iii) Substitute (2) & (3) into (1)

xx xy yx yy
C C C C CK K K K
t x x y y x y

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − − − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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4.4 Dispersion in Two Dimensions

(iv) Return to fixed coordinate system containing mean advective velocities

xx xy yx yy
C C C C C C Cu v K K K K
t x y x x y y x y

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

(4.69)

xyK yxKIf x-axis is coincident with the flow direction, and can be neglected.

Then, 2-D depth-averaged transport equation becomes

L T
C C C C Cu v K K
t x y x x y y

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

where ;L xx T yyK K K K= =

(4.70)
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4.4 Dispersion in Two Dimensions

[Cf] 2-D depth-averaged scalar transport equation (ASCE, 1988; vol.114,

No.9)

( ) ( ) ( ) ( ) ( )
' ' ' '

1 1

1 1

x y

dispersion dispersion

HC HuC HvC
HJ HJ

t x y x y

u C dz v C dz
x y

ρ ρ

ρ ρ
ρ ρ

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
∂ ∂

+ +
∂ ∂∫ ∫

 

where ' '
x xJ u c dzρ= −∫

' '
y yJ u c dzρ= −∫

turbulent diffusion in x-dir

turbulent diffusion in y-dir
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4.4 Dispersion in Two Dimensions

'
x xu u u= −

'c c C= −

'u u u= −
'C C C= −

→ time fluctuation

→ time fluctuation

→ deviation from depth-averaged value

→ deviation from depth-averaged value
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4.5 Unified View of Diffusion and Dispersion

- Similarities among the various types of diffusion and dispersion are shown.

- Diffusion and dispersion are actually advective transport mechanisms.

4.5.1 Molecular Diffusion

2-D open-channel flow   

To write the mass balance equation, we need to know how many fluid

molecules and how many tracer molecules pass through and the direction

and spread of each molecule.

→ molecular approach → statistical manner
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4.5 Unified View of Diffusion and Dispersion

〮Continuum approach

- Assume fluid carries tracer through at a rate depending on the

concentration, c, and the fluid velocity, u.

- However, the fluid u, cannot completely represent the tracer movement

because the velocity, u, does not account for the movement of the

molecules which have directions and speeds different from u.

- Molecular diffusion accounts for the difference between the true molecular

motion and the manner chosen to represent the motion. (i.e., by u )

mu u u∆ = −
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4.5 Unified View of Diffusion and Dispersion

Thus, mass flux by this velocity difference is

j u c= ∆

Now, apply Fick' law

- transport called molecular diffusion is proportional to the concentration

gradient.

m
cj u c
x
∂

= ∆ ∝
∂

m m
cj D
x
∂

= −
∂

(a)
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4.5 Unified View of Diffusion and Dispersion

mD = constant of proportionality = molecular diffusivity

Now, consider advection by mean motion

x m
cj cu D
x
∂

= −
∂

(a)

Then, substituting (a) into 2D mass conservation equation yields 2-D

advection-diffusion equation as

2 2

2 2m m
c c c cu D D
t x x y
∂ ∂ ∂ ∂

+ = +
∂ ∂ ∂ ∂

(4.71)
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4.5 Unified View of Diffusion and Dispersion

c
t
∂
∂

cu
x
∂
∂

By mean
motion

2

2 ,m
cD

x
∂
∂

2

2m
cD

y
∂
∂

By velocity fluctuation

① = time rate of change of concentration at a point

② = advection of tracer with the fluid

③ = molecular diffusion
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4.5 Unified View of Diffusion and Dispersion

4.5.2 Turbulent Diffusion

Decompose velocity and concentration into mean and fluctuation

'u u u= +

'c c c= +

'v v=

(b)

(assume only fluctuation in y-direction)

,u c = time-averaged values of u and c

0

1 T
u udt

T
≡ ∫
' ' ' 0u v c= = =
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4.5 Unified View of Diffusion and Dispersion
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4.5 Unified View of Diffusion and Dispersion

where T = averaging time interval

0 210 10 sec

1 010 10 sec−


for open channel flow

for pipe flow

For 2-D flow, the advection-diffusion equation is

2 2

2 2m m
c uc vc c cD D
t x y x y
∂ ∂ ∂ ∂ ∂

+ + = +
∂ ∂ ∂ ∂ ∂

(4.72)

Conservative form



156/173
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4.5 Unified View of Diffusion and Dispersion

Substitute (b) into (4.72), then it becomes

( ) 2 2

2 2

' ( ')( ') '( ') ( ') ( ')
m m

u u c cc c v c c c c c cD D
t x y x y

∂ + +∂ + ∂ + ∂ + ∂ +
+ + = +

∂ ∂ ∂ ∂ ∂

2 2

2 2m m
c c cu c D D
t x x y

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂

' ( ') ( ' ) ( ' ')c u c u c u c
t x x x

∂ ∂ ∂ ∂
− − − −
∂ ∂ ∂ ∂

( ' ) ( ' ')v c v c
y y
∂ ∂

− −
∂ ∂

2 2

2 2

' '
m m

c cD D
x y

∂ ∂
+ +

∂ ∂
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4.5 Unified View of Diffusion and Dispersion

Integrate (average) w.r.t. time, and apply Reynolds rule

( ) 2 2

2 2m m

ucc c cD D
t x x y

∂∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂

'c
t

∂
−
∂

( ')u c
x

∂
+

∂
( ' )u c

x
∂

−
∂

' 'u c
x

∂
−

∂
'v c
y

∂
−

∂
' 'v c
y

∂
−

∂

2

2

'
m

cD
x

∂
+

∂

2

2

'
m

cD
y

∂
+

∂
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4.5 Unified View of Diffusion and Dispersion

[Re] Reynolds rules of averages (Schlichting; p. 460, 371)

f f=

f g f g+ = +

f g f g=

f f
s s
∂ ∂

=
∂ ∂

fds fds=∫ ∫
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4.5 Unified View of Diffusion and Dispersion

Drop all zero terms using Reynolds rules of averages

2 2

2 2

', ', '

( ' ') ( ' ')
m m

advective transport
due to u v and c

c c c c u c v cu D D
t x x y x y

∂ ∂ ∂ ∂ ∂ − ∂ −
+ = + + +

∂ ∂ ∂ ∂ ∂ ∂


It is assumed and confirmed experimentally that transport associated with the 

turbulent fluctuations is proportional to the gradient of average concentration.

' '  cu c
x
∂

≈
∂

→ ' ' x
cu c
x

ε ∂
= −

∂

' ' y
cv c
y

ε ∂
= −

∂
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4.5 Unified View of Diffusion and Dispersion

,xε yε = turbulent diffusion coefficient

( )' ' x
cu c

x x x
ε∂ ∂ ∂ − =  ∂ ∂ ∂ 

( )' ' y
cv c

y y y
ε ∂ ∂ ∂

− =  ∂ ∂ ∂ 

xε yεAssuming that and are constant, the mass balance equation for

turbulent flow is given as

2 2

2 2( ) ( )m x m y
c c c cu D D
t x x y

ε ε∂ ∂ ∂ ∂
+ = + + +

∂ ∂ ∂ ∂
(4.73)
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4.5 Unified View of Diffusion and Dispersion

Drop overbars, and neglect molecular diffusion terms

2 2

2 2x y
c c c cu
t x x y

ε ε∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂ (4.74)

For 3-D flow:

( ) ( ) ( )x y z
c c c c c c cu v w
t x y z x x y y z z

ε ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

, , x y z
c c c
x y z

ε ε ε∂ ∂ ∂
∂ ∂ ∂

(4.75)

☞ Remember,    and are actually advective transport.
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4.5 Unified View of Diffusion and Dispersion

4.5.3 Longitudinal Dispersion

Far-field
mixing

After the tracer is essentially completely mixed both vertically and laterally,

the primary variation of concentration is in just longitudinal direction.

→ one-dimensional equation

Decompose velocity and concentration into cross-sectional mean and 

deviation (fluctuation)

'' '' 0u U u u= + =

'' '' 0c C c c= + =

(c)
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4.5 Unified View of Diffusion and Dispersion

where U, C = cross-sectional average of the velocity and concentration

After substituting (c) into (4.74), averaging it over the cross-sectional area

yields

( ) ( ) ( ) ( )2 2

2 2

'' '' '' ''
( '') ( ) ( )m x m y

C c C c C c C c
U u D D

t x x y
ε ε

∂ + ∂ + ∂ + ∂ +
+ + = + + +

∂ ∂ ∂ ∂

By Reynolds rule

( )2 2

2 2

'' ''
( ) ( )m x m y

u cC C C CU D D
t x x y x

ε ε
∂∂ ∂ ∂ ∂

+ = + + + −
∂ ∂ ∂ ∂ ∂

(4.76)
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4.5 Unified View of Diffusion and Dispersion

2

2

C
y

∂
∂

( )0;C C C f y
y

∂
≈ = ≠

∂

Then neglect because after lateral mixing is completed, 

Then, Eq. (4.76) becomes

( )2

2

'' ''
( )m x

u cC C CU D
t x x x

ε
∂ −∂ ∂ ∂

+ = + +
∂ ∂ ∂ ∂

(4.77)

''uTaylor (1953, 1954) show that the advective transport associated with is

proportional to the longitudinal gradient of C.

'' '' Cu c
x

∂
− ∝

∂
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4.5 Unified View of Diffusion and Dispersion

'' '' Cu c K
x

∂
− =

∂

( )'' '' Cu c K
x x x
∂ ∂ ∂ − =  ∂ ∂ ∂ 

→ longitudinal dispersion

K = longitudinal dispersion coefficient

Substituting Eq. (4.78) into Eq. (4.77) yields

(4.78)

( )
2

2m x
C C CU D K
t x x

ε∂ ∂ ∂
+ = + +

∂ ∂ ∂

( ) '' ''m x
CD u c
x

ε ∂
+ << −

∂
1% 99%
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4.5 Unified View of Diffusion and Dispersion

2

2

C C CU K
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂

→ 1-D Dispersion Equation

(4.79)

''u
''c

Because the velocity distribution influences and the lateral diffusion 

plays a large role in determining the distribution of 

→ both velocity distribution and lateral diffusion contribute to longitudinal 

dispersion.
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4.5 Unified View of Diffusion and Dispersion

- Limitation of Taylor’s 1D model (Chatwin, 1970)

→ Taylor’s model should be applied after initial period.

→ Taylor period
20.4

t

Wt
ε

>

20.4

t

UWx
ε

> (4.80)
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4.5 Unified View of Diffusion and Dispersion

4.5.4 Summary

To investigate the relative importance of dispersion, use dimensionless

term as

1 (ln )
CKdispersion rate K C K CxH

advective rate UC U C x U x

∂
∂ ∂∂= = = =
∂ ∂

0.01cH H< ≈If → dispersive transport may be neglected

1) Diffusion

= transport associated with fluctuating components of molecular action and

with turbulent action
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4.5 Unified View of Diffusion and Dispersion

= transport in a given direction at a point in the flow due to the differences

between the true advection in that direction and the time average of the

advection in that direction

2) Dispersion

= transport associated with the deviations (variations) of the velocity across

the flow section

= transport in a given direction due to the difference between the true

advection in that direction and the spatial average of the advection in that

direction
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