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@RISK

An add-in that can be used to perform simulations in Excel.

• Sampling from various distributions
⇐ Additional functions for random variate generation

• Defining the simulation experiments
⇐ Specifying cells to observe and the number of replications

• Running the simulation and collecting data

• Analyzing the output data and displaying the results graphically

• Fitting a distribution to data
⇐ BestFit (part of @RISK) software
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Geometric Random Walk

A model for the price of a stock at a future point in time.

The log of the percentage increase in the stock price between now
and time t has a normal distribution.
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where Z denotes a standard normal random variable.
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Note: µ = Drift parameter; σ = Volatility parameter.
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@RISK Functions for Sampling from Distributions

uniform, beta, binomial, chi-square, exponential, gamma,
lognormal, normal, Poisson, and Weibull

extreme value, negative binomial, Pareto, Person types 5 and 6.

RiskNormal(), RiskBeta(), RiskExpon(), RiskGamma(),
RiskLognorm(), RiskPoisson(), RiskUniform(), etc.

Remark: Refer to @RISK help menu for a complete listing.
@RISK + Help + Distribution Functions. . .
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@RISK Toolbar Buttons

Simulation Settings: specifies the options for sampling from
distributions for input parameters; the number of iterations
(replications); etc. (Figs 3.3 and 3.4)

Add Output: specifies what cells to observe and record.

Run Simulation: actually performs the replications and produces
Summary Statistics window. (Figs 3.5 and 3.6)

Detailed Statistics: produces a window with more statistics, i.e.,
Detailed Statistics window. (Fig 3.7)

Data Window: accesses the output data corresponding to the
selected output.

Graph: produces a graph for the distribution of the selected
output (Figs 3.11 and 3.12).
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Simulation Settings

# Iterations: Corresponds to what we call replications.

# Simulations:

• Leave the value equal to 1.
• Used when a model is simulated multiple times with different

parameters.
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Simulation Settings

Sampling Type:

• Latin Hypercube: designed to more evenly distribute samples
• Monte Carlo: simple IID observations

Collect Distribution Samples: Whether to collect input data
(All; Marked only; None)

Standard Recalc: What to display in each cell containing a
formula that samples from a distribution

• Monte Carlo: displays the actual sampled values
• Expected Value: displays (the integer nearest to) the mean
• True EV: displays the mean even in the discrete case

Random Generator Seed: How the RNG is initialized
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Calculation of a Confidence Interval

1. Click the Run Simulation button.

2. Click the Detailed Statistics button.

3. Select the menu item Results + Report Settings... (Fig 3.8)

Tick the option “Generate Excel Reports Selected Below”.
Select “Detailed Statistics” and “Active Workbook”.

4. Click Generate Report Now.

Two new worksheets labeled Input (Output) Statistics Report
will be generated. (Fig 3.9)

5. Copy the sample mean and standard deviation to another
worksheet and compute the confidence interval. (Fig 3.10)
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Options and Futures: Definitions

Derivatives are securities whose value is derived from the value of
an underlying asset. Usually, the price or value of the underlying
asset is currently known but subject to considerable uncertainty in
the future.

Future: an agreement to buy a particular asset at a specified price
at a specified time in the future. A future involves the
obligation to purchase the asset.

Option: the right, but not the obligation, to buy (call option) or
sell (put option) an asset at a specified price sometime in the
future. → More flexible than futures; Often used as a hedge
against adverse events.

• European: must be exercised on the expiration date
• American: can be exercised on or before the expiration date
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Return from an Option

Call option: Earns money only if the stock price goes up.

On the expiration date, if the stock price PT is higher than the
strike price S, the holder of the call will buy the stock for S
and immediately sell it to realize a profit of PT − S per share.

RT =

{
0 if PT ≤ S

PT − S if PT > S

Put option: Earns money only if the stock price goes down.

On the expiration date, if the strike price S is higher than the
stock price PT , the holder will buy the stock at market and
immediately sell it at S to realize a profit of S − PT per share.
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Estimating the Price of an Option

The present value of the cash flow for an option is

R0 = RT e−rT

if r is the risk-free rate used to discount the cash flow.

Financial theory says that the fair price of the option is E(R0).

To compute E(R0), we must know the distribution of PT . Either
probability calculus or simulation can be used to estimate the
expected value.

Example: Option pricing with @RISK (Fig 3.13)
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Hedging Using Put Options

Definition “Risk”

• the variance or standard deviation of the return on investment,
i.e., a measure of the uncertainty in the return.

• the probability of an unfavorable outcome, e.g., downside risk.

If you buy a put option that allows you to sell the stock at a given
price, then the loss due to dropping prices can be limited.

(Figs 3.14 and 3.15) ⇒ Portfolio vs. Stock alone

• The mean returns on the two investments do not differ
significantly.

• The use of a put option as a hedge is effective to improve the
distribution of return without sacrificing the expected return.
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Dynamic Financial Models

Definition Dynamic models are those that observe a variable of
interest over time. (e.g., cash position model of an insurance
company; cash flow for an Asian option).

The stock price after a delay of δt

P (t + δt) = P (t) e

„
µ−σ2

2

«
δt + σ

√
δt Z

Implementation of the model with @RISK (Fig 3.16)
Remark: Use the absolute referencing in spreadsheet (see p. 94).

Pricing of an Asian option: The cash flow depends on the average
price over the term of the option. (Fig 3.21) Cell B7 has

=AVERAGE(’Stock Price’!E4:E30)
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Using BestFit to Fit a Distribution to Data

1. Select the range containing the data to be fitted.

2. (Optionally within the BestFit standalone program)
Click the Input Data Options button.

3. Click the Fit Distributions to Data button. (Fig 3.31)

4. You will be presented with the Fit Results window. (Fig 3.32)

Fitted Distributions: listed in order of best fit w.r.t. Rank by
Comparison: graph for fitting the distribution
Difference: difference between the density and the histogram
P-P: probability-probability plot
Q-Q: qualtile-quantile plot
Stats: parameter values for fitted distribution and input data
GOF: three goodness-of-fit tests (Ch-sq, A-D, K-S)
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Selecting Input Probability Distributions

Input modeling deals with determining which probability
distributions to use to model stochastic behavior in simulations.

No data available: Use distributions that “fit” the situation.
e.g.) exponential, normal, uniform, triangular, etc.

Data available: Use either one of the following approaches.

1. Use data values to define empirical distributions.
(a) Case 1: Individual data values
(b) Case 2: Grouped data

2. Use data values to fit a theoretical distribution.
(a) Hypothesizing the family of distribution
(b) Estimation of parameters
(c) Validation of the distribution (Goodness-of-fit test, etc.)
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Empirical Distributions (Individual)

Suppose we have data values {x1, x2, . . . , xn}.

(1) Sort data in increasing order. Let x(i) be the ith one in the
sorted list so that x(1) ≤ x(2) ≤ · · · ≤ x(n).

(2) The “cumulative” probability associated with x(i) is defined as

F (x(i)) =

(
i− 1

n− 1

)
. The cdf F (x) derived from interpolation

is given by

F (x) =





0 if x < x(1)

i−1
n−1 + 1

n−1

(
x−x(i)

x(i+1)−x(i)

)
if x(i) ≤ x < x(i+1)

1 if x ≥ x(n)
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Empirical Distributions (Individual): Example

The sample data set {2.4, 3.2, 4.1, 6.8, 8.2}. Calculate F (6).

F (2.4) =
1− 1

5− 1
= 0

F (3.2) =
2− 1

5− 1
=

1

4

F (4.1) =
3− 1

5− 1
=

1

2

F (6.8) =
4− 1

5− 1
=

3

4

F (8.2) =
5− 1

5− 1
= 1

Since 4.1 ≤ 6 < 6.8,

x(3) ≤ 6 < x(4) → i = 3.

F (6) =
3− 1

5− 1
+

1

5− 1

(
6− 4.1

6.8− 4.1

)

= 0.675
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Empirical Distributions (Individual): Algorithm

Using inverse transform, F (x) = u yields

x = ((n− 1)u− i + 1) (x(i+1) − x(i)) + x(i)

x
(i )

x
(i+1)x

F(x
(i )
)

F(x
(i +1))

u

We have to find i such that

x(i) ≤ x < x(i+1)

which is equivalent to

F (x(i)) ≤ u < F (x(i+1)).

Assignment: Show that i = ⌊(n− 1)u⌋+ 1.
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Empirical Distributions (Grouped Data)

Suppose we have grouped data consisting of k adjacent intervals
[a0, a1), [a1, a2), · · · , [ak−1, ak) such that the jth contains nj

observations. Let N = n1 + n2 + · · ·+ nk.

A reasonable empirical distribution G can be

G(a0) = 0, G(a1) =
n1

N
, · · · , G(aj) =

n1 + n2 + · · ·+ nj

N
.

The cdf G(x) derived from interpolation is given by

G(x) =

8
>><
>>:

0 if x < a0

G(aj−1) +
“

x−aj−1
aj−aj−1

”
[G(aj) − G(aj−1)] if aj−1 ≤ x < aj

1 if x ≥ ak
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Empirical Distributions (Group): Example

5 adjacent intervals [0, 2), [2, 4), [4, 6), [6, 8), [8, 10) which contains
10, 30, 50, 25, 6 observations, respectively. Calculate G(5.3).

G(0) = 0

G(2) =
10

121
= 0.08

G(4) =
10 + 30

121
= 0.33

G(6) =
10 + 30 + 50

121
= 0.74

G(8) =
10 + 30 + 50 + 25

121
= 0.95

Since 4 ≤ 5.3 < 6,

2
4

»
4 G(4) = 0.33

5.3 G(5.3)

–

6 G(6) = 0.74

3
5

5.3 − 4

6 − 4
=

G(5.3) − 0.33

0.74 − 0.33

G(5.3) = 0.33 +
5.3− 4

6− 4
(0.74− 0.33) = 0.60
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Empirical Distributions (Group): Algorithm

Using inverse transform, G(x) = u yields

x = aj−1 +

[
aj − aj−1

G(aj)−G(aj−1)

]
(u−G(aj−1))

x

u

a j 1 a j

G(a j)

G(a j 1)

We have to find j such that

aj−1 ≤ x < aj

which is equivalent to

G(aj−1) ≤ u < G(aj).

Assignment: Show that j holds that N u ∈
[

j−1∑

k=0

nk,

j∑

k=1

nk

)
.
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Fitting a Theoretical Distribution to Data (I)

“What distribution is this data likely to have come from?”

1. Hypothesizing the family of distribution

• Intrinsic property of distribution describing a certain situation
• General characteristics: e.g. range, continuous/discrete
• Summary statistics: e.g. mean (µ), median (µ̃), skewness (ν)
• Number of “shape” parameters

2. Estimation of parameters

• Method of maximum likelihood
• Method of moments

3. Validation of the distribution

• Expert opinion (so-called face validity)
• Graphing real data vs. fitted distribution
• Goodness-of-fit (χ2, Kolmogorov-Sminov, Anderson-Darling)
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Summary Statistics

Population

Parameter

Estimate

Statistics Function Distribution

Min, Max x(1), x(n) measure range C, D

Mean (µ)

n

x
x

i∑= measure central tendency
C, D

Median ( µ~ )







+= +

+

evenn
xx

oddnx

nx nn

n

2

)()(~
)1()(

)(

22

2
1

measure central tendency
C, D

Variance (σ 
2
)

n

xx
nS

i∑ −
=

2

2
)(

)( measure variability
C, D

Coefficient of Variation

CV = σ /µ )(

)(
)(

nx

nS
nCV =

∧ alternative measure of

variability

C

Lexis ratio

τ = σ 2
/µ )(

)(
)(ö

2

nx

nS
n =τ measure of variability

D

Skewness

2/32

3

)(

))((

σ
µυ −= xE 2/32

3

))((

/))((
ö

nS

nnxxi∑ −
=υ

measure of symmetry
C, D

Note:
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Guidelines using Summary Statistics

Summary Statistics:

Mean µ → x̄, Median µ̃ → x̃, Variance σ2 → s2,

• Coefficient of variation (Continuous) CV = σ
µ → ĈV

• Lexis ration (Discrete) τ = σ2

µ → τ̂

• Skewness ν = E((X−µ)2)

(σ2)3/2 → ν̂

Symmetrical (ν̂ = 0 or x̄ = x̃):
Normal, Uniform, Symmetric Triangular, Binomial (p = 1/2)

Skewed to right (ν̂ > 0 or x̄ > x̃):
Exponential, Gamma, LogNormal, Weibull, Triangular

Skewed to left (ν̂ < 0 or x̄ < x̃): Beta, Triangular
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General Characteristics of Parameters

Distributions have parameters that determine

• Location (e.g. mean)

• Scaling (e.g. standard deviation)

• Shape

Exponential Distribution: f(x) = 1
β e−x/β, x > 0

• µ = β, σ2 = β2 ⇒ CV = σ
µ = 1

• Skewed to right

• Single shape ⇒ No shape parameter

• Good for (independent) arrival process

• Not good for processing times

• Memoryless property
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Lifetime Distributions: Skewed to Right (I)

Gamma Distribution: f(x) =
xα−1 e−x/β

βα Γ(α)
, x > 0

Note: Γ(z) =

∫ ∞

0

tz−1 e−t dt yields

Γ(1) = 1, Γ(1/2) =
√

π, Γ(z + 1) = z Γ(z) = z!

• µ = α β, σ2 = α β2 ⇒ CV = σ
µ = 1√

α

(Note that CV < 1, if α > 1.)

• The parameter α is a shape parameter.

• If α = 1, Gamma becomes the exponential distribution.

• As α→∞, we get a normal (bell) shape.
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Gamma Density Functions

Gamma(α, 1) Density Functions
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Lifetime Distributions: Skewed to Right (II)

Weibull Distribution: f(x) =
α xα−1 e−(x/β)α

βα
, x > 0

• CV < 1, if α > 1.
• The parameter α is a shape parameter.
• If α = 1, Weibull becomes the exponential distribution.
• As α→∞, Weibull becomes degenerate at β. (Sharp peak)

LogNormal Distribution:

f(x) =
1

x
√

2πσ2
exp

[
−(lnx− µ)2

2σ2

]
, x > 0

• µ = eµ+σ2/2, σ2 = e2µ+σ2
(
eσ2 − 1

)
⇒ CV =

√
eσ2 − 1 > 1

• The parameter σ is a shape parameter.
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Weibull Density Functions

Weibull(α, 1) Density Functions
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LogNormal Density Functions

LN(0, σ2) Density Functions
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Comparison of Lifetime Distributions

Gamma Weibull LogNormal
Distribution Distribution Distribution

Parameters Simple Complex Complex

Generation of
Random Variates No closed-form Simple Simple

Coefficient of
Variation CV < 1 CV < 1 CV > 1
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Beta Distribution

Used as a rough model in the absence of data. The pdf is

f(x) =
xα1−1 (1− x)α2−1

B(α1, α2)
, 0 < x < 1,

where B(z1, z2) =
∫ 1

0
tz1−1 (1− t)z2−1 dt, whose properties are

B(z1, z2) = B(z2, z1), B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
, for any z1, z2 > 0.

• Two shape parameters α1 > 0 and α2 > 0.

• α1 = α2 implies symmetry (e.g., U(0, 1) = Beta(1, 1)).

• As α1, α2 → ∞, we get Gamma.

• As α1, α2 → 0, we get Bernoulli.
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Beta Density Functions

Beta(α1, α2) Density Functions
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Use of Lexis Ratio (Discrete Distribution)

Poisson: p(x) =
e−λ λx

x!
, x = 0, 1, 2, · · ·

µ = λ, σ2 = λ ⇒ τ = σ2

µ = λ
λ = 1

Binomial: p(x) =

(
n
x

)
px (1− p)n−x, x = 0, 1, · · ·

µ = n p, σ2 = n p (1− p) ⇒ τ = σ2

µ = (1− p) < 1

Negative Binomial: p(x) =

(
k + x− 1

x

)
pk (1− p)x,

x = 0, 1, · · ·

µ =
k(1− p)

p
, σ2 =

k(1− p)

p2
⇒ τ =

σ2

µ
=

1

p
> 1
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Review of Summary Statistics

Summary Statistic Indicates

x̄ ≈ x̃ Symmetric distributions (Normal, Uniform, Tri)

dCV ≈ 1 Exponential distribution
dCV > 1 and ν̂ > 0 LogNormal distribution
dCV < 1 and ν̂ > 0 Gamma or Weibull distribution with α > 1

τ̂ ≈ 1 Poisson distribution

τ̂ < 1 Binomial distribution

τ̂ > 1 Negative Binomial distribution

ν̂ ≈ 0 Symmetric distributions (Normal, Uniform, Tri)

ν̂ < 0 Skewed to left (Tri, Beta)

ν̂ > 0 Skewed to right (Exponential, LogNormal, or

Gamma and Weibull with α > 1)

406.311 Simulation Page 3–34, Y.-S. Hong c©



Fitting a Theoretical Distribution to Data (II)

“Which parameter value gives the highest probability of observing
the data set?”

1. Hypothesizing the family of distribution

• Intrinsic property of distribution describing a certain situation
• General characteristics: e.g. range, continuous/discrete
• Summary statistics: e.g. mean (µ), median (µ̃), skewness (ν)
• Number of “shape” parameters

2. Estimation of parameters

• Method of maximum likelihood
• Method of moments

3. Validation of the distribution

• Expert opinion (so-called face validity)
• Graphing real data vs. fitted distribution
• Goodness-of-fit (χ2, Kolmogorov-Sminov, Anderson-Darling)
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Method of Maximum Likelihood

Example: Suppose we have a sample {2, 3, 2, 7, 4, 8, 10, 5, 3, 4}
and we hypothesize that it comes from Binomial(n = 10).

b(n = 10, p, x) =

(
n

x

)
px (1− p)n−x, x = 0, 1, · · · , 10

What value of the parameter p is most likely to give rise to the
observed data set?

Suppose p = 0.2. What is the probability that we get the data set?

[(
10

2

)
0.220.88

] [(
10

3

)
0.230.87

]
· · ·

[(
10

4

)
0.240.86

]
= 4.5×10−23

p = 0.3 → 1.23× 10−15,
p = 0.4 → 4.03× 10−13, etc.

406.311 Simulation Page 3–36, Y.-S. Hong c©



Maximum Likelihood Estimator

The likelihood function

L(θ) = f(x1; θ) f(x2; θ) · · · f(xn; θ)

measures how likely the n observations x1, x2, · · · , xn are.

In case of a discrete distribution, L(θ) gives the probability of
observing the data set for various values of θ.

We estimate the parameter θ with the value that maximizes the
likelihood (probability) L(θ) of getting the observed data set.

dL(θ)

dθ
= 0 or

d lnL(θ)

dθ
= 0

gives the value of θ that maximizes L(θ) as a function of xi’s.

The corresponding statistic θ̂ = u1(X1,X2, · · · , Xn) is called the
maximum likelihood estimator (MLE) of θ.
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Example of MLEs

Exponential Distribution: f(x) =
1

β
e−x/β, x > 0

L(β) = f(x1;β) f(x2; β) · · · f(xn; β)

=

(
1

β
e−x1/β

) (
1

β
e−x2/β

)
· · ·

(
1

β
e−xn/β

)

=
1

βn
e−

P
xi/β ← Take log on both side.

l(β) = −n lnβ −
∑

xi

β
← Derivative w.r.t. β.

d l

dβ
= −n

β
+

∑
xi

β2
= 0 → β =

∑
xi

n
= x
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Summary of Some Easily Computed MLEs

Distribution Density function MLE

Uniform bxa
ab

xf ≤≤
−

= 1
)( maxmin

ö,ö xbxa ==

Exponential 0
1

)( >=
−

xexf
x

β

β
x=βö

Normal ℜ∈=





 −−

xexf

x
2

2

1

2

1
)( σ

µ

πσ
( ) 2

1
2

1
ö,ö











 −





 −== ∑

n

xx

n

n
x

iσµ
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2

1
)(

2
)ln(

2

1

>=






 −−

xe
x

xf

x

σ
µ

πσ
( ) 2

1
2

ö)ln(
ö,

)ln(
ö











 −
=Σ= ∑

n

x

n

x ii
µ

σµ

Bernoulli




=
=−

=
1

01
)(

xifp

xifp
xp xp =ö

Discrete Uniform



 +∈+−

=
otherwise

baaxab
xp

0

},,1,{)1(1
)(

K

maxmin
ö,ö xbxa ==

Binomial nxpp
x

n
xp xnx ,,1,0)1()( K=−





= − if n is known 

n

x
p =ö

Geometric K,1,0)1()( =−= xppxp
x

1

1
ö

+
=
x

p

Negative Binomial K,1,0)1(
1

)( =−




 −+
= xpp

x

xk
xp xk
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kx

k
p

+
=ö

Poisson K,2,1,0
!

)( ==
−

x
x

e
xp

xλλ
x=λö
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Method of Moments

MLE preferable, but difficult for Gamma, Weibull, Beta, etc.

k-th moment of distribution: E(Xk) =

∫ +∞

−∞
xk f(x) dx1

k-th moment of data: mk =

∑
xk

i

n

Suppose we need to estimate parameters θ1, θ2, · · · , θr.

Then, let E(Xk) = mk beginning with k = 1, continuing until
there are enough equations to provide unique solutions to
θ1, θ2, · · · , θr.

1E(Xk) =
P

xk
i p(xi) in case of discrete distribution.
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Examples of MOM

Exponential Distribution: f(x) =
1

β
e−x/β, x > 0

E(X) =

∫ ∞

0

x
1

β
e−x/β dx = β

m1 =

∑
xi

n
= x

Gamma Distribution: f(x) =
xα−1 e−x/β

βα Γ(α)
, x > 0

We can easily show that E(X) = αβ and E(X2) = αβ2(1 + α).

αβ =

∑
xi

n
and αβ2(1 + α) =

∑
x2

i

n
→ α =

x2

s2
and β =

s2

x
.

Assignment: Show above!
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Fitting a Theoretical Distribution to Data (III)

“How representative are the fitted distributions to the observed
data set?”

1. Hypothesizing the family of distribution

• Intrinsic property of distribution describing a certain situation
• General characteristics: e.g. range, continuous/discrete
• Summary statistics: e.g. mean (µ), median (µ̃), skewness (ν)
• Number of “shape” parameters

2. Estimation of parameters

• Method of maximum likelihood
• Method of moments

3. Validation of the distribution

• Expert opinion (so-called face validity)
• Graphing real data vs. fitted distribution
• Goodness-of-fit (χ2, Kolmogorov-Sminov, Anderson-Darling)
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Density/Histogram Overplots
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Frequency Comparison
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Distribution Function Differences Plots
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Probability Plots: Background

F̂ (x): Distribution function of the fitted (model) distribution
Fn(x): Empirical distribution function of the sample distribution

Fn(x) =
Number of xi’s ≤ x

n

Let x(i) be the ith smallest of the xj’s. Note that Fn(x(i)) = i
n.

F̃n(x): Adjusted empirical cdf so as to avoid Fn(x(n)) = 1:

F̃n(x(i)) = Fn(x(i))−
0.5

n
=

i− 0.5

n

A straightforward procedure would be to plot F̃n(x(i)) vs F̂ (x)
→ Difficult to identify similarities/differences.
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Probability Plots: Definitions (I)

Quantile-quantile (Q-Q) Plot

Let qi =
i− 0.5

n
for i = 1, 2, · · · , n, so that 0 < qi < 1.





qi-quantile of a fitted (model) distribution, xM
qi

= F̂−1(qi)

qi-quantile of the sample distribution, xS
qi

= F̃−1(qi) = x(i)

• Each ordinate value q → Two quantiles xM
q and xS

q

• The Q-Q plot will amplify the differences between the tails of
the distribution functions.
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Probability Plots: Definitions (II)

Probability-probability (P-P) Plot





The fitted (model) probability, F̂ (x(i))

The sample probability, F̃ (x(i)) = qi



 for i = 1, 2, · · · , n.

• Each abscissa value p → Two probabilities F̂ (p) and F̃n(p)

• The P-P plot will amplify the differences between the middles
of the distribution functions.
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Probability Plots: Intuitive Appeal
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Chi-square Goodness-of-Fit Tests

(1)

{
H0 : Data comes from the distribution with cdf F̂ (x)
H1 : Not H0

(2) Develop a histogram of data cells [b0, b1), · · · , [bk−1, bk).
Let oj = (observed) frequency of cell j.

(3) For each cell, compute the expected frequency ej assuming

H0 is correct: ej = n
(
F̂ (bj)− F̂ (bj−1)

)

(4) For each cell, compute
(ej − oj)

2

ej
.

(5) Compute χ2 =
k∑

j=1

(ej − oj)
2

ej
, which is χ2(k − 1) under H0.

(6) Reject H0 if χ2 > χ2
k−1,α−1
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Chi-square: Testing the Hypothesis
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Validation of the Fitted Distribution: Summary
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