The Enhanced Entity-Relationship (EER) Model 406.426 Design & Analysis of Database Systems

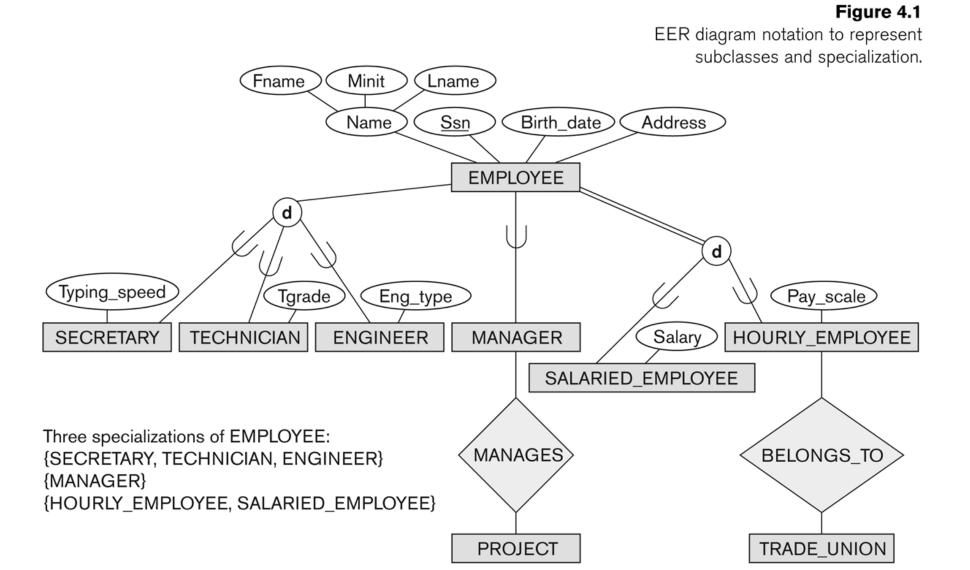
Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering Seoul National University

outline

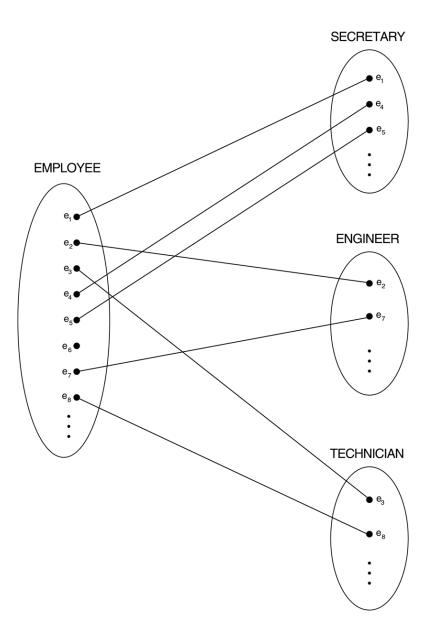
- EER model concepts
 - includes all modeling concepts of basic ER
 - additional concepts:
 - subclasses/superclasses
 - specialization/generalization
 - categories (UNION types)
 - attribute and relationship inheritance
 - these are fundamental to conceptual modeling
- the additional EER concepts are used to model applications more completely and more accurately
 - EER includes some object-oriented concepts, such as inheritance



subclasses, superclasses, and inheritance

- EER (Enhanced ER)
 - ER + subclass, superclass, specialization, generalization, category, attribute and relationship inheritance
- superclass / subclass relationship
 - example: SECRETARY, ENGINEER, MANAGER, ... -> a **subset** of the entities that belong to the EMPLOYEE entity set
 - an entity cannot exist in the DB merely by being a member of a subclass
 -> it must also be a member of the superclass
 - it is not necessary that every entity in a superclass be a member of some subclass
 - an entity that is a member of a subclass **inherits all the attributes** of the entity as a member of the superclass
 - the subclass entity also **inherits all the relationships** in which the superclass participates

EER diagram for subclasses and specialization



specialization

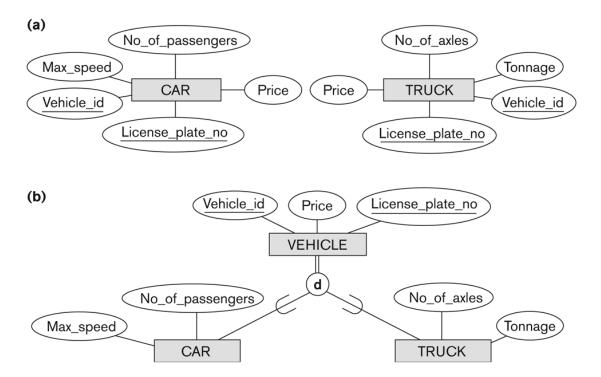
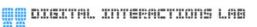
- specialization: process of **defining a set of subclasses** of an entity type
 - defined on the basis of some **distinguishing characteristic** of the entities in the superclass
- specific attributes
 - attributes that apply **only to entities of a particular subclass**
- specific relationship types
 - e.g., BELONGS_TO relationship type
- allows us to
 - define a set of **subclasses** of an entity type
 - establish additional specific attributes with each subclass
 - establish **additional specific relationship types** between each subclass and other entity types or other subclasses

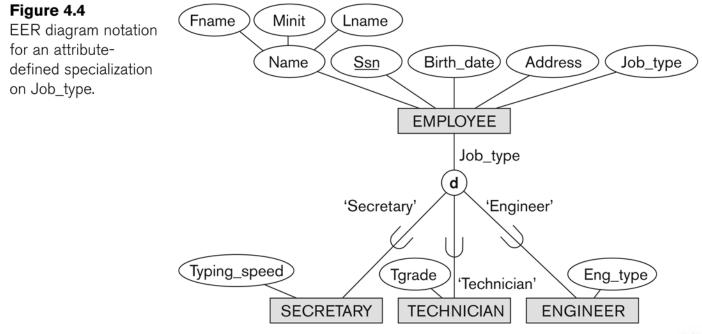
instances of a specialization

DIGITAL INTERACTIONS LAB

generalization

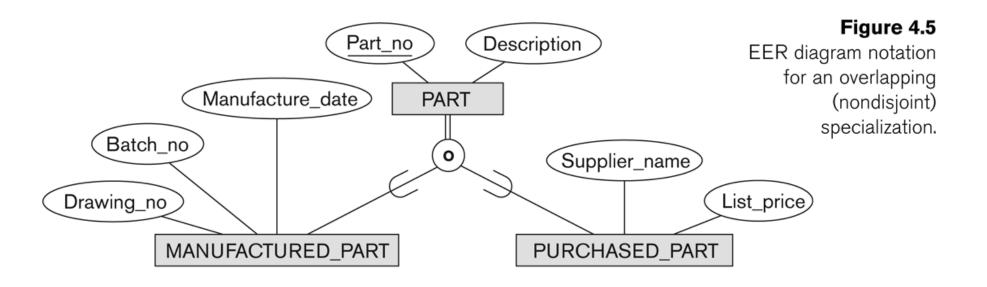
- generalization: the process of **generalizing** several entity types into a **single superclass** of which the original entity types are special subclasses
 - e.g., CAR, TRUCK -> VEHICLE
 - the inverse of the specialization process


Figure 4.3

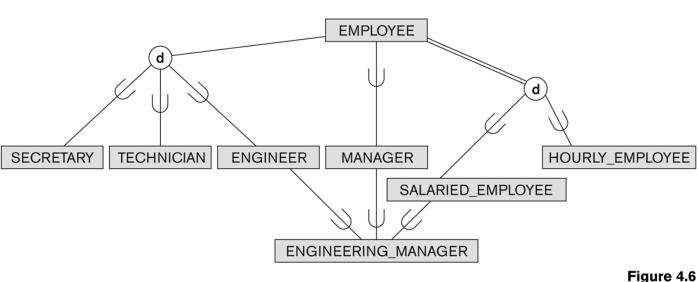
Generalization. (a) Two entity types, CAR and TRUCK. (b) Generalizing CAR and TRUCK into the superclass VEHICLE.

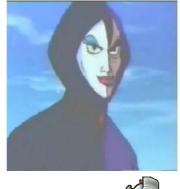
constraints on specialization and generalization


- in general, we may have several specializations defined on the same entity type
- **predicate-defined** subclasses: the entities that become members of each subclass by placing a **condition** on the value of some attribute of the superclass
 - e.g., (JobType = 'Secretary') on SECRETARY
- if all subclasses in a specialization have their membership condition on the same attribute of the superclass, the specialization is called an **attribute-defined specialization**
- user-defined: specified individually **for each entity** by the user

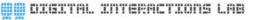
constraints on the specialization

- **disjointness** constraint
 - specifies that the subclasses of the specialization must be disjoint
 - an entity can be a member of **at most one** of the subclasses of the specialization
 - a specialization that is **attribute defined** implies the **disjointness** constraint if the attribute used to define the membership predicate is **single-valued**
 - notations: d, o

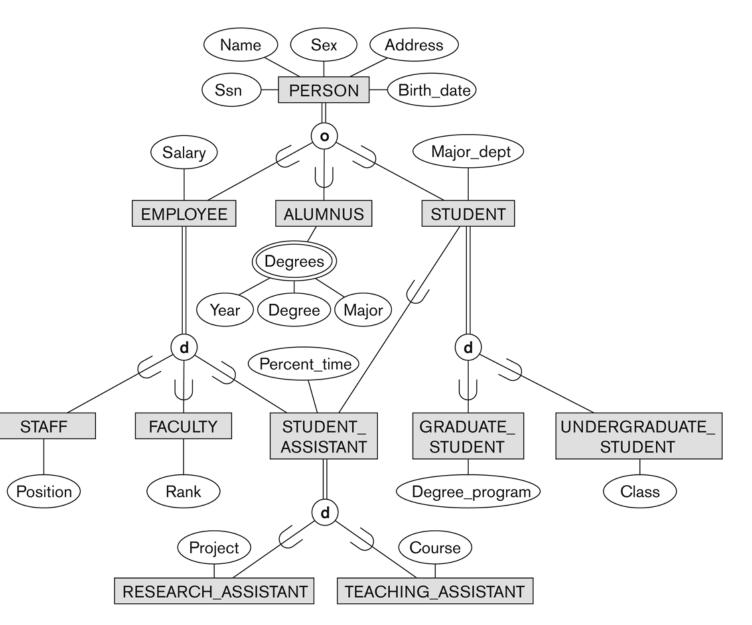

constraints on the specialization


- completeness constraint
 - **total specialization**: every entity in the superclass must be a member of at least one subclass in the specialization
 - partial specialization: allows an entity not to belong to any of the subclasses
- disjointness and completeness constraints are **independent**
 - i.e., disjoint, total / disjoint, partial / overlapping, total / overlapping, partial
- in general, a superclass that was identified through the **generalization** process usually is **total**
- some rules on the insertion and deletion
 - **deleting** an entity from a superclass implies that it is automatically deleted from all the subclasses to which it belongs
 - **inserting** an entity in a superclass implies that the entity is mandatorily inserted in all predicate-defined (or attribute-defined) subclasses for which the entity satisfies the defining predicate
 - **inserting** an entity in a superclass of a total specialization implies that the entity is mandatorily inserted **at least one** of the subclasses of the specialization

specialization hierarchies vs. lattices


- specialization hierarchies
 - every subclass must participate as a subclass in only **one** class/subclass relationship
- specialization lattices
 - a subclass can be a subclass in more than one class/subclass relationship

A specialization lattice with shared subclass ENGINEERING_MANAGER.

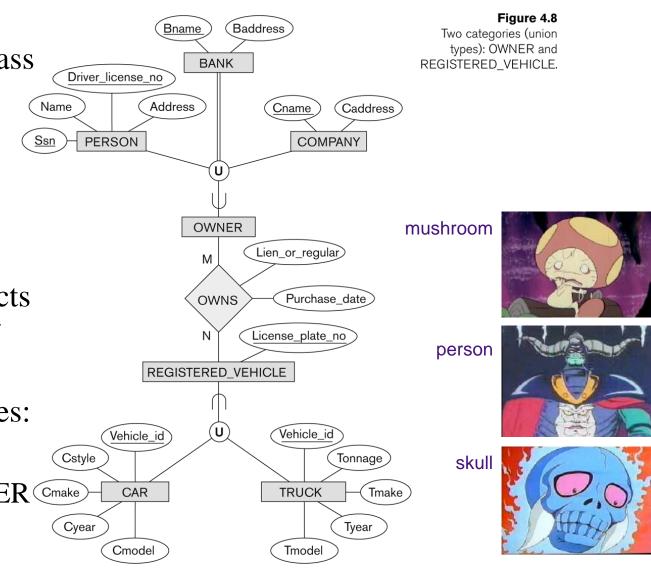


characteristics of specialization

- a subclass inherits the attributes not only of its direct superclass but also of all its **predecessor** superclasses all the way to the root of the hierarchy or lattice
- an entity may exist in several leaf nodes of the hierarchy
 - e.g., GRADUATE_STUDENT and RESEARCH_ASSISTANT
- a subclass with more than one superclass is called a **shared subclass**
- some models do not allow multiple inheritance
 - need to create additional subclasses to cover all possible combinations of classes that may have some entity belong to all these classes simultaneously
 - e.g., {EMPLOYEE, ALUMNUS, STUDENT} -> E, A, S, E_A, E_S, A_S, E_A_S

example

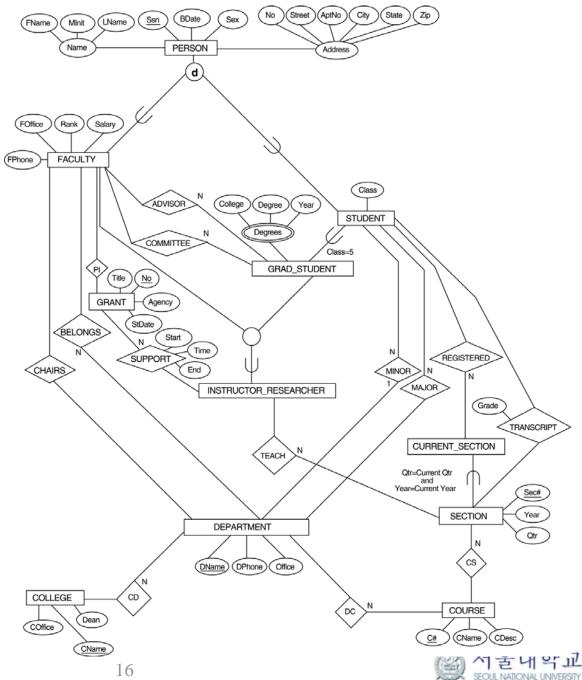
Figure 4.7


A specialization lattice with multiple inheritance for a UNIVERSITY database.

DIGITAL INTERACTIONS LAB

categories

- modeling a single superclass / subclass relationship with more than one superclass
- the subclass will represent a collection of objects that is a subset of the UNION of distinct entity types: called a category
 - example: OWNER Cmake



category (cont.)

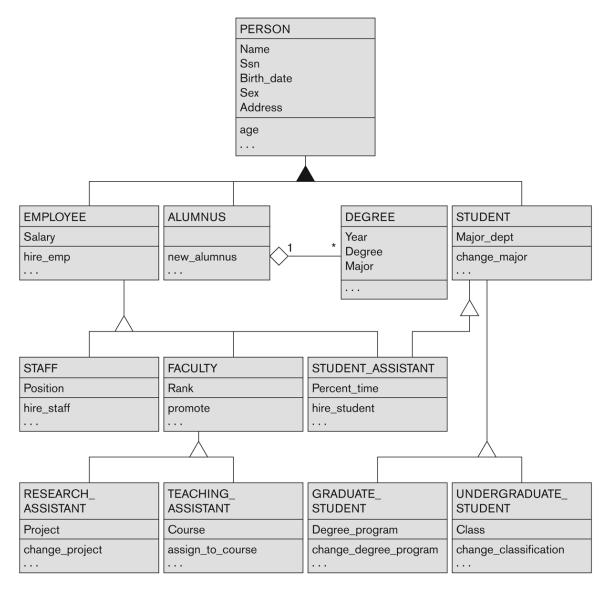
- comparison with the shared subclass
 - shared subclass
 - a subset of the **intersection** of the three superclasses
 - inherits all the attributes of its superclasses
 - category
 - a subset of the **union** of its superclasses
 - **inherits** the attributes **selectively** depending on the superclass to which the entity belongs
- category can be total or partial
 - a total category holds the union of all **entities** in its superclass
 - a partial category holds a subset of the union
 - if a category is total, it may be represented alternatively as a **total specialization** (**or a total generalization**)

summing up

DIGITAL INTERACTIONS LAB

formal definitions for the EER model

- class: a set or collection of entities
 - e.g., entity types, subclasses, superclasses, categories
- subclass *S* is a class whose entities must always be a subset of the entities in another class, called the superclass *C* of the superclass/subclass (or IS-A) relationship (denoted by C/S)
 - i.e., $S \subseteq C$
- a specialization $Z = \{S_1, S_2, ..., S_n\}$ is a set of subclasses that have the same superclass G (denoted by G/S_i)
 - *G* is called a generalized entity type
 - *Z* is said to be total if $\bigcup S_i = G$; partial, o.w.
 - *Z* is said to be disjoint if $S_i \cap S_j = \phi$ for $i \neq j$; overlapping, o.w.

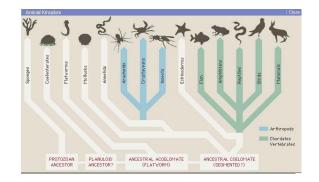

formal definitions for the EER model (cont.)

- a subclass *S* of *C* is said to be **predicate-defined** if a predicate *p* on the attributes of *C* is used to specify which entities in *C* are members of *S*
 - S = C[p]
- a specialization Z (or generalization G) is said to be **attributedefined** if a predicate $(A = c_i)$, where A is an attribute of G and c_i is a constant value from the domain of A, is used to specify membership in each subclass S_i in Z
- a category *T* is a class that is a subset of the union of *n* defining superclasses, *D*₁, *D*₂, ..., *D_n*, *n* > 1
 - $T \subseteq (D_1 \cup D_2 \dots \cup D_n)$
- a predicate p_i on the attributes of D_i can be used to specify the members of each D_i that are members of T
 - $T = (D_1[p_1] \cup D_2[p_2] \dots \cup D_n[p_n])$

DIGITAL INTERACTIONS LAB

specialization/generalization in UML

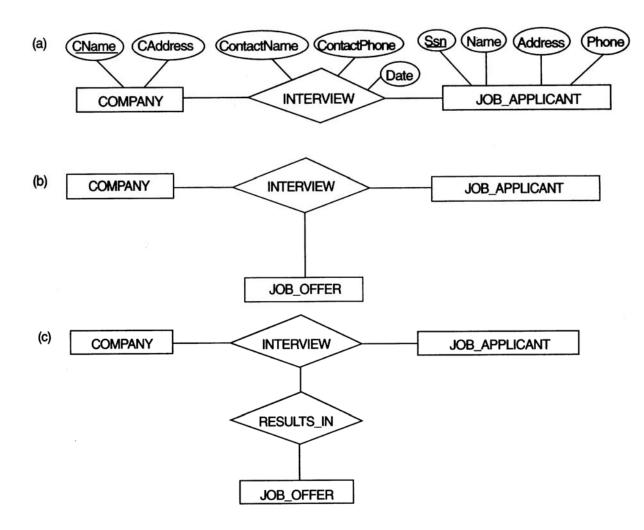
Figure 4.10


A UML class diagram corresponding to the EER diagram in Figure 4.7, illustrating

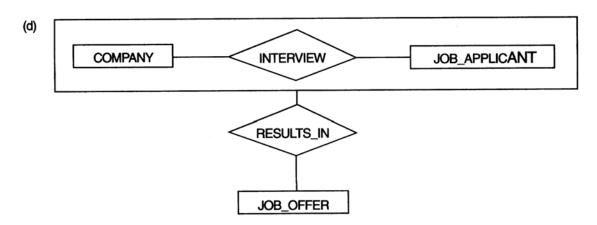
UML notation for specialization/generalization.

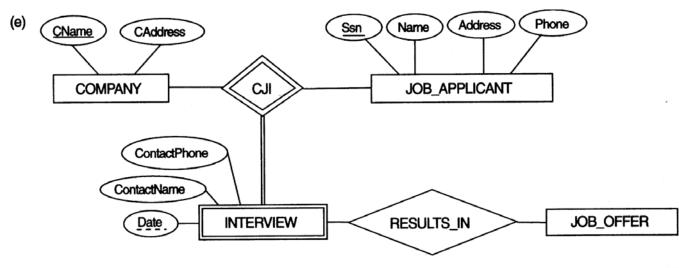
abstraction concepts

- classification and instantiation
 - classification: systematically assigning similar objects to object classes
 - instantiation: generation of distinct objects of a class (IS-AN-INSTANCE-OF relationship)
- identification
 - abstraction process whereby classes and objects are made uniquely identifiable by means of some **identifier**
- specialization and generalization
 - specialization: the process of classifying a class of objects into more specialized subclasses
 - generalization: generalizing several classes into a higher level abstract class that includes the objects in all these classes (IS-A relationship)
- aggregation and association
 - **aggregation**: building composite objects from their component objects (IS-A-PART-OF)
 - **association**: association of objects from several independent classes (IS-ASSOCIATED-WITH)



concept of aggregation and association


• suppose that some interviews result in job offers, whereas others do not



concept of aggregation and association (cont.)

• composite object (not allowed in ER)

• creation of a new weak entity type INTERVIEW

semantic web and ontology

- semantic web
 - to allow **information exchange among computers** on the web
 - attempts to create knowledge representation models that are quite general in order to allow meaningful information exchange and search among machines
- ontology
 - a specification of a **conceptualization**
 - attempts to describe the **structures** and **relationships** that are possible in reality through some common vocabulary, and so it can be considered as a way to **describe the knowledge** of a certain community about reality
 - possible techniques: thesaurus, dictionary, taxonomy, database schema, logical theory, ...

5,148,836 sites - 69,629 editors - over 590,000 categories

