
Functional Dependencies andFunctional Dependencies and

Normalization for Relational DatabasesNormalization for Relational Databases
406.426 Design & Analysis of Database Systems406.426 Design & Analysis of Database Systems

Jonghun ParkJonghun Park

jonghun@snu.ac.krjonghun@snu.ac.kr

Dept. of Industrial EngineeringDept. of Industrial Engineering

Seoul National UniversitySeoul National University

2

outline

informal design guidelines for relational databases

functional dependencies (FDs)

normal forms based on primary deys

general normal form definitions (for multiple keys)

BCNF (Boyce-Codd Normal Form)

3

informal measures of quality for relation schema

semantics of the attributes

reducing the redundant values in tuples

reducing the null values in tuples

disallowing the possibility of generating spurious tuples

4

semantics of the relation attributes

guideline 1: Design a relation schema so that it is easy to explain its

meaning. Do not combine attributes from multiple entity types and

relationship types into a single relation. If a relation schema

corresponds to one entity type or one relationship type, it is

straightforward to explain its meaning.

examples of poor design

5

redundant information in tuples & update anomalies

one goal of schema design is to minimize the storage space

example:

A

B

6

update anomalies

insertion anomalies

to insert a new employee tuple into EMP_DEPT, we must include either the

attribute values for the department that the employee works for, or nulls

it is difficult to insert a new department that has no employees as yet in the

EMP_DEPT relation

deletion anomalies

if we delete from EMP_DEPT an employee tuple that happens to represent the

last employee working for a particular department, the information

concerning that department is lost

modification anomalies

in EMP_DEPT, if we change the value of one of the attributes of a

particular department, we must update the tuples of all employees who work

in that department

guideline 2: design the base relation schemas so that no insertion, deletion, or

modification anomalies are present in the relations

7

null values in tuples

grouping many attributes together into a fat relation -> if many of the

attributes do not apply to all tuples in the relation, we end up with

many nulls in those tuples

example

if only 10% of employees have individual offices, there is little

justification for including an attribute OFFICE_NUMBER in the

EMPLOYEE relation -> A relation EMP_OFFICES(ESSN,

OFFICE_NUMBER) can be created

guideline 3: as far as possible, avoid placing attributes in a base

relation whose values may frequently be null

8

generation of spurious tuples

example: consider EMP_LOCS and EMP_PROJ1 instead of
EMP_PROJ

EMP_LOCS: the employee whose name is ENAME works on some
project whose location is PLOCATION

9

generation of spurious tuples (cont.)

decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable
because, when we JOIN them back using NATURAL JOIN, we do not get the
correct original information

PLOCATION is the attribute that relates EMP_LOCS and EMP_PROJ1, and
PLOCATION is neither a primary key nor a foreign key in either
EMP_LOCS or EMP_PROJ1

10

generation of spurious tuples (cont.)

guideline 4: design relation schemas so that they can be joined with

equality conditions on attributes that are either primary keys or

foreign keys in a way that guarantees that no spurious tuples are

generated

11

definition

a functional dependency (FD), denoted by X -> Y, between two sets of attributes
X and Y that are subsets of R specifies a constraint on the possible tuples that can
form a relation state r of R

for any two tuples t1 and t2 in r that have t1[X] = t2[X], they must also have
t1[Y] = t2[Y]

the values of the Y component of a tuple in r depend on (or are determined by)
the values of the X component

if X is a candidate key of R, X -> Y for any subset of attributes Y of R

if X -> Y in R, this does not say whether or not Y -> X in R

example

FD1: {SSN, PNUMBER} -> HOURS

FD2: SSN -> ENAME

FD3: PNUMBER -> {PNAME, PLOCATION}

12

inference rules for FDs

F: the set of functional dependencies that are specified on relation

schema R

F+ (closure of F): the set of all dependencies that include F as well

as all dependencies that can be inferred from F

example

F = {SSN -> {ENAME, BDATE, ADDRESS, DNUMBER},

DNUMBER -> {DNAME, DMGRSSN}}

SSN -> {DNAME, DMGRSSN}

SSN -> SSN

DNUMBER -> DNAME

notations

F X -> Y: X -> Y is inferred from F

{X,Y} -> Z is abbreviated to XY -> Z

13

well-known inference rules

IR1 (reflexive rule)

If X Y, then X -> Y

IR2 (augmentation rule)

{X -> Y} XZ -> YZ

IR3 (transitive rule)

{X -> Y, Y -> Z} X -> Z

IR4 (decomposition rule)

{ X -> YZ} X -> Y

IR5 (union rule)

{X -> Y, X -> Z} X -> YZ

IR6 (pseudotransitive rule)

{X -> Y, WY -> Z} WX -> Z

14

closure computation

closure X+: the set of attributes that are functionally determined by X based on F

algorithm

X+ = X

repeat

oldX+ = X+

for each FD Y -> Z in F do

if X+ Y, then X+ = X+ Z

until (X+ = oldX+)

example

F = {SSN -> ENAME, PNUMBER -> {PNAME, PLOCATION}, {SSN,

PNUMBER} -> HOURS}

{SSN}+ = {SSN, ENAME}

{PNUMBER}+ = {PNUMBER, PNAME, PLOCATION}

{SSN, PNUMBER}+ ={SSN, ENAME, PNUMBER, PNAME, PLOCATION,

HOURS}

15

equivalence of sets of FDs

F: a set of FDs

F+: closure of F

the set of all FDs logically implied by F

F is said to cover another set of FDs E if every FD in E is also in F+

F covers E if

for every FD (X -> Y) in E, X+ (w.r.t. F) Y

That is, X+ Y => X+ -> Y => X -> X+; X+ -> Y => X -> Y

two sets of FDs E and F are equivalent if E+ = F+

16

minimal sets of FDs

minimal cover of a set of FDs E: a set of FDs F that satisfies the

property that

every FD in E is in F+

the above property is lost if any FD from F is removed

formally, F is minimal if

every FD in F has a single attribute for its rhs

we cannot replace any FD X -> A in F with a FD Y -> A, where Y X,

and still have a set of FDs that is equivalent to F

we cannot remove any FD from F and still have a set of FDs that is

equivalent to F

17

algorithm for finding a minimal cover F for E

set F = E

replace each FD X -> {A1, ..., An} in F by the n functional

dependencies X -> A1, ..., X -> An

for each FD X -> A in F

for each attribute B X

if {{F – {X -> A}} {(X – {B}) -> A}} is equivalent to F

then replace X -> A with (X – {B}) -> A in F

for each remaining FD X -> A in F

if {F – {X -> A}} is equivalent to F

then remove X -> A from F

18

normalization of relations

first proposed by Codd

takes a relation schema through a series of tests to certify whether it
satisfies a certain normal form

a process of analyzing the given relation schemas based on their FDs
and primary keys to achieve the desirable properties of (1)
minimizing redundancy, and (2) minimizing the insertion,
deletion, and update anomalies

the process of normalization through decomposition must confirm
the existence of additional properties that the relational schemas
should possess: e.g., nonadditive join property, dependency
preservation property

1NF, 2NF, 3NF, and BCNF: based on the functional dependencies
among the attributes of a relation

4NF, 5NF: Based on the concepts of multivalued dependencies and
join dependencies respectively

19

keys and attributes participating in keys

superkey of a relation schema R = {A1, ..., An}

a set of attributes S R with the property that no two tuples t1 and t2 in

any legal relation state r of R will have t1[S] = t2[S]

a key K is a superkey with the additional property that removal of

any attribute from K will cause K not to be a superkey any more

if a relation schema has more than one key, each is called a

candidate key

one of the candidate keys is arbitrarily designated to be the primary

key

an attribute of relation schema R is called a prime attribute of R if it

is a member of some candidate key of R

20

first normal form (1NF)

to disallow multivalued attributes, composite attributes, and their

combinations

the domain of an attribute must include only atomic values and the

value of any attribute in a tuple must be a single value from the

domain of that attribute

example

21

3 main techniques to achieve 1NF

remove the attribute DLOCATIONS
that violates 1NF and place it in a
separate relation
DEPT_LOCATIONS along with the
primary key DNUMBER of
DEPARTMENT -> generally
considered best

expand the key so that there will be a
separate tuple in the original
DEPARTMENT relation for each
location of a DEPARTMENT ->
introduces redundancy

if a maximum number of values is
known: DLOCATION1,
DLOCATION2, ... -> introduces null
values

22

another example: nested relation

EMP_PROJ(SSN, ENAME, {PROJS(PNUMBER, HOURS)})

SSN is the primary key of the EMP_PROJ while PNUMBER is the partial key of

the nested relation

for normalization into 1NF, we remove the nested relation attributes into a new

relation and propagate the primary key into it

23

second normal form (2NF)

an FD X -> Y is a full functional dependency (FFD) if removal of any attribute A

from X means that the dependency does not hold any more

an FD X -> Y is a partial dependency if some attribute A X can be removed

from X and the dependency still holds

a relation schema R is in 2NF if every nonprime attribute NA in R is fully

functionally dependent on the primary key of R

example: {SSN, PNUMBER} is a primary key for EMP_PROJ

{SSN, PNUMBER} -> ENAME: FFD?

{SSN, PNUMBER} -> PNAME: FFD?

{SSN, PNUMBER} -> PLOCATION: FFD?

24

converting into 2NF

if a relation schema is not in 2NF, it can be 2NF normalized into a

number of 2NF relations in which nonprime attributes are

associated only with the part of the primary key on which they

are fully functionally dependent

25

third normal form (3NF)

an FD X -> Y in a relation schema R is a transitive dependency if

there is a set of attributes Z that is neither a candidate key nor a

subset of any key of R, and both X -> Z and Z -> Y hold

a relation schema R is in 3NF if it satisfies 2NF and no nonprime

attribute of R is transitively dependent on the primary key

example

SSN -> DMGRSSN is transitively dependent because DNUMBER is a

nonprime attribute, SSN -> DNUMBER and DNUMBER ->

DMGRSSN hold, and DNUMBER is neither a key nor a subset of the

key of EMP_DEPT

26

example

27

general definitions of 2nd and 3rd normal forms

the previous definition of 3NF disallows partial and transitive

dependencies on the primary key to avoid update anomalies

now the partial and full functional dependencies and transitive

dependencies are considered w.r.t. all candidate keys of a relation

28

general definition of 2NF

prime attribute: an attribute that is part of some candidate key

a relation schema R is in 2NF if every nonprime attribute A in R is

not partially dependent on any key of R

candidate keys:

PROPERTY_ID#,

{COUNTY_NAME, LOT#}

{COUNTY_NAME, LOT#} -> TAX_RATE: FFD?

29

general definition of 3NF

def) a relation schema R is in 3NF satisfies the following property

whenever a nontrivial functional dependency X -> A holds in R,

either (a) X is a superkey of R, or (b) A is a prime attribute of R

an FD X -> A

violating (b) => A is a nonprime attribute

violating (a) => X is not a superset of any key of R

=> X is either nonprime or a proper subset of a key of R

X is nonprime => transitive dependency (i.e., a key Y, s.t. Y -> X -> A)

X is a proper subset of a key => partial dependency (i.e., a partial

dependency “Z(X) -> A” due to the existence of “X -> A”)

therefore, a relation schema R is in 3NF if for every nonprime

attribute A of R

it is non-transitively dependent on every key of R, and

it is fully functionally dependent on every key of R

30

example

FD4: AREA -> PRICE

AREA is not a superkey and PRICE is not a prime attribute

that is, from FD1 and FD2, we know that PRICE is transitively dependent on
each of the candidate keys (PROPERTY_ID#, {COUNTY_NAME, LOT#})
via the nonprime attribute AREA

31

Boyce-Codd normal form (BCNF)

a relation schema R is in BCNF if whenever a nontrivial functional dependency
X -> A holds in R, then X is a superkey of R

stricter than 3NF: every relation in BCNF is also in 3NF, but a relation in 3NF is
not necessarily in BCNF

example

FD5
{COUNTY_NAME, LOT#} is a candidate key

AREA is not a superkey => violates BCNF

COUNTY_NAME is a prime attribute => satisfies 3NF

