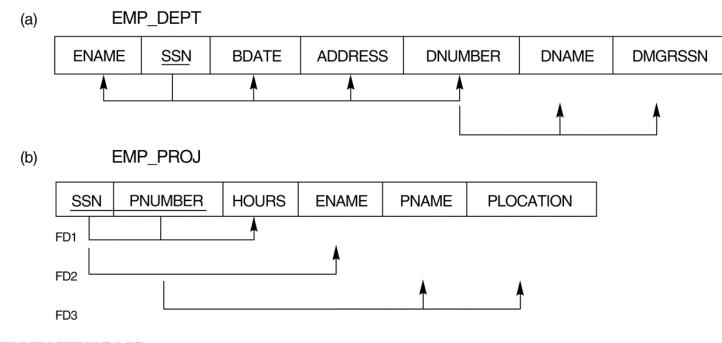
Functional Dependencies and Normalization for Relational Databases 406.426 Design & Analysis of Database Systems

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Engineering Seoul National University

outline


- informal design guidelines for relational databases
- functional dependencies (FDs)
- normal forms based on primary deys
- general normal form definitions (for multiple keys)
- BCNF (Boyce-Codd Normal Form)

informal measures of quality for relation schema

- semantics of the attributes
- reducing the **redundant values** in tuples
- reducing the **null values** in tuples
- disallowing the possibility of generating **spurious tuples**

semantics of the relation attributes

- guideline 1: Design a relation schema so that it is easy to explain its meaning. Do not combine attributes from multiple entity types and relationship types into a single relation. If a relation schema corresponds to one entity type or one relationship type, it is straightforward to explain its meaning.
- examples of poor design

4

redundant information in tuples & update anomalies

- one goal of schema design is to **minimize the storage space**
- example:

Β

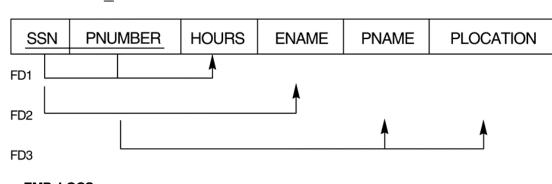
	EMPLOYEE				DEPARTMENT			
	ENAME	SSN	BDATE	ADDRESS		DNAME	DNUMBER	DMGRSSN
A	Smith,John B. Wong,Franklin T. Zelaya,Alicia J. Wallace,Jennifer S. Narayan,Remesh K. English,Joyce A. Jabbar,Ahmad V. Borg,James E.	123456789 333445555 999887777 987654321 666884444 453453453 987987987 888665555	1965-01-09 1955-12-08 1968-07-19 1941-06-20 1962-09-15 1972-07-31 1969-03-29 1937-11-10	731 Fondren,Houston,TX 638 Voss,Houston,TX 3321 Castle,Spring,TX 291 Berry,Bellaire,TX 975 Fire Oak,Humble,TX 5631 Rice,Houston,TX 980 Dallas,Houston,TX 450 Stone,Houston,TX	5 5 4 5 5 4 1	Research Administration Headquarters	5 4 1	333445555 987654321 888665555

				redur	ndancy	
EMP_DE	РТ					
ENAME	SSN	BDATE	ADDRESS	DNUMBER	DNAME	DMGRSSN
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan,Ramesh K.	666884444	1962-09-15	975 FireOak,Humble,TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

DIGITAL INTERACTIONS LAB

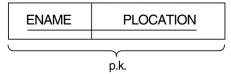
update anomalies

- **insertion** anomalies
 - to insert a new employee tuple into EMP_DEPT, we must include either the **attribute values for the department** that the employee works for, or **nulls**
 - it is difficult to **insert a new department** that has no employees as yet in the EMP_DEPT relation
- **deletion** anomalies
 - if we delete from EMP_DEPT an employee tuple that happens to represent the last employee working for a particular department, **the information concerning that department is lost**
- modification anomalies
 - in EMP_DEPT, if we change the value of one of the attributes of a particular department, we must update the tuples of all employees who work in that department
- guideline 2: design the base relation schemas so that **no insertion, deletion, or modification anomalies are present** in the relations

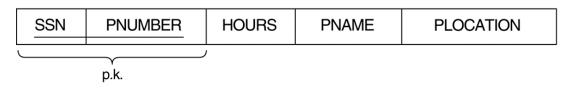


null values in tuples

- grouping many attributes together into a fat relation -> if many of the attributes do not apply to all tuples in the relation, we end up with many nulls in those tuples
- example
 - if only 10% of employees have individual offices, there is little justification for including an attribute OFFICE_NUMBER in the EMPLOYEE relation -> A relation EMP_OFFICES(ESSN, OFFICE_NUMBER) can be created
- guideline 3: as far as possible, avoid placing attributes in a base relation whose values may frequently be null


generation of spurious tuples

- example: consider EMP_LOCS and EMP_PROJ1 instead of EMP_PROJ
 - EMP_LOCS: the employee whose name is ENAME works on some project whose location is PLOCATION



EMP_PROJ

EMP_LOCS

EMP_PROJ1

generation of spurious tuples (cont.)

- decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is **undesirable** because, when we JOIN them back using NATURAL JOIN, we do not get the correct original information
 - PLOCATION is the attribute that relates EMP_LOCS and EMP_PROJ1, and PLOCATION is **neither a primary key nor a foreign key** in either EMP_LOCS or EMP_PROJ1

EMP_LOCS

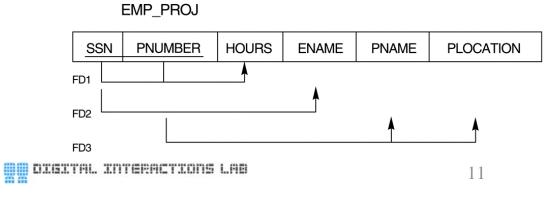
ENAME	PLOCATION
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford

SSN	PNUMBER	HOURS	PNAME	PLOCATION	
123456789	1	32.5	ProductX	Bellaire	Smith, John B.
123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
123456789	2	7.5	ProductY	Sugarland	Smith, John B.
123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
453453453	1	20.0	ProductX	Bellaire	Smith, John B.
453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
453453453	2	20.0	ProductY	Sugarland	Smith, John B.
453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.
333445555	2	10.0	ProductY	Sugarland	Smith, John B.
333445555	2	10.0	ProductY	Sugarland	English, Joyce A.
333445555	2	10.0	ProductY	Sugarland	Wong, Franklin T.
333445555	3	10.0	ProductZ	Houston	Narayan, Ramesh K.
333445555	3	10.0	ProductZ	Houston	Wong, Franklin T.
333445555	10	10.0	Computerization	n Stafford	Wong, Franklin T.
333445555	20	10.0	Reorganization	Houston	Narayan,Ramesh K.
333445555	20	10.0	Reorganization	Houston	Wong,Franklin T.

EMP_PROJ1

SSN	PNUMBER	HOURS	PNAME	PLOCATION
123456789	1 2	32.5	Product X	Bellaire
123456789		7.5	Product Y	Sugarland
666884444	3	40.0	Product Z	Houston
453453453	1	20.0	Product X	Bellaire
453453453	2	20.0	Product Y	Sugarland
333445555	2	10.0	Product Y	Sugarland
333445555	3	10.0	Product Z	Houston
333445555	10	10.0	Computerization	Stafford
333445555	20	10.0	Reorganization	Houston

DIGITAL INTERACTIONS LAB


generation of spurious tuples (cont.)

• guideline 4: design relation schemas so that **they can be joined with** equality conditions on attributes that are either primary keys or foreign keys in a way that guarantees that no spurious tuples are generated

definition

- a **functional dependency** (FD), denoted by *X* -> *Y*, between two sets of attributes *X* and *Y* that are subsets of *R* specifies a **constraint on the possible tuples** that can form a relation state *r* of *R*
 - for any two tuples t_1 and t_2 in r that have $t_1[X] = t_2[X]$, they must also have $t_1[Y] = t_2[Y]$
 - the values of the *Y* component of a tuple in *r* depend on (or are determined by) the values of the *X* component
- if X is a candidate key of $R, X \rightarrow Y$ for any subset of attributes Y of R
- if $X \rightarrow Y$ in R, this does not say whether or not $Y \rightarrow X$ in R
- example
 - FD1: {SSN, PNUMBER} -> HOURS
 - FD2: SSN -> ENAME
 - FD3: PNUMBER -> {PNAME, PLOCATION}

inference rules for FDs

- *F*: the set of functional dependencies that are specified on relation schema *R*
- *F*⁺ (closure of *F*): the set of all dependencies that include *F* as well as all dependencies that can be **inferred** from *F*
- example
 - *F* = {SSN -> {ENAME, BDATE, ADDRESS, DNUMBER }, DNUMBER -> {DNAME, DMGRSSN }
 - SSN -> {DNAME, DMGRSSN}
 - SSN -> SSN
 - DNUMBER -> DNAME
- notations
 - $F \models X \rightarrow Y: X \rightarrow Y$ is inferred from F
 - $\{X,Y\} \rightarrow Z$ is abbreviated to $XY \rightarrow Z$

well-known inference rules

- IR1 (reflexive rule)
 - If $X \supseteq Y$, then $X \rightarrow Y$
- IR2 (augmentation rule)
 - ${X \rightarrow Y} \models XZ \rightarrow YZ$
- IR3 (transitive rule)
 - ${X \rightarrow Y, Y \rightarrow Z} \models X \rightarrow Z$
- IR4 (decomposition rule)
 - $\{X \rightarrow YZ\} \models X \rightarrow Y$
- IR5 (union rule)
 - ${X \rightarrow Y, X \rightarrow Z} \models X \rightarrow YZ$
- IR6 (pseudotransitive rule)
 - ${X \rightarrow Y, WY \rightarrow Z} \models WX \rightarrow Z$

closure computation

- closure X^+ : the set of attributes that are functionally determined by X based on F
- algorithm
 - $X^+ = X$
 - repeat
 - $oldX^+ = X^+$
 - for each FD $Y \rightarrow Z$ in F do
 - if $X^+ \supseteq Y$, then $X^+ = X^+ \cup Z$
 - until $(X^+ = oldX^+)$
- example
 - *F* = {SSN -> ENAME, PNUMBER -> {PNAME, PLOCATION}, {SSN, PNUMBER} -> HOURS}
 - $\{SSN\}^+ = \{SSN, ENAME\}$
 - {PNUMBER}⁺ = {PNUMBER, PNAME, PLOCATION}
 - {SSN, PNUMBER}⁺ ={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS}

equivalence of sets of FDs

- *F*: a set of FDs
- F^+ : closure of F
 - the set of all FDs logically implied by F
- *F* is said to **cover** another set of FDs *E* if every FD in *E* is also in F^+
- F covers E if
 - for every FD (X -> Y) in E, X⁺ (w.r.t. F) \supseteq Y
- That is, $X^+ \supseteq Y \Longrightarrow X^+ \dashrightarrow Y \Longrightarrow X^+ \dashrightarrow X^+$; $X^+ \dashrightarrow Y \Longrightarrow X \dashrightarrow Y$
- two sets of FDs *E* and *F* are equivalent if $E^+ = F^+$

minimal sets of FDs

- minimal cover of a set of FDs *E*: a set of FDs *F* that satisfies the property that
 - **every** FD in *E* is in F^+
 - the above property is lost if any FD from *F* is removed
- formally, *F* is **minimal** if
 - every FD in *F* has a single attribute for its **rhs**
 - we cannot replace any FD X -> A in F with a FD Y -> A, where $Y \subset X$, and still have a set of FDs that is equivalent to F
 - we cannot remove any FD from *F* and still have a set of FDs that is equivalent to *F*

algorithm for finding a minimal cover F for E

- set F = E
- replace each FD $X \rightarrow \{A_1, ..., A_n\}$ in F by the n functional dependencies $X \rightarrow A_1, ..., X \rightarrow A_n$
- for each FD $X \rightarrow A$ in F
 - for each attribute $B \in X$
 - if $\{\{F \{X \to A\}\} \cup \{(X \{B\}) \to A\}\}$ is equivalent to *F*
 - then replace $X \rightarrow A$ with $(X \{B\}) \rightarrow A$ in F
- for each remaining FD $X \rightarrow A$ in F
 - if $\{F \{X \rightarrow A\}\}$ is equivalent to F
 - then remove $X \rightarrow A$ from F

normalization of relations


- first proposed by Codd
- takes a relation schema through a series of tests to certify whether it satisfies a certain normal form
- a process of analyzing the given relation schemas based on their FDs and primary keys to achieve the desirable properties of (1) minimizing redundancy, and (2) minimizing the insertion, deletion, and update anomalies
- the process of normalization through **decomposition** must confirm the existence of additional properties that the relational schemas should possess: e.g., nonadditive join property, dependency preservation property
- 1NF, 2NF, 3NF, and BCNF: based on the functional dependencies among the attributes of a relation
- 4NF, 5NF: Based on the concepts of **multivalued dependencies** and **join dependencies** respectively

keys and attributes participating in keys

- **superkey** of a relation schema $R = \{A_1, ..., A_n\}$
 - a set of attributes $S \subseteq R$ with the property that no two tuples t_1 and t_2 in any legal relation state *r* of *R* will have $t_1[S] = t_2[S]$
- a **key** *K* is a superkey with the additional property that removal of any attribute from *K* will cause *K* not to be a superkey any more
- if a relation schema has more than one key, each is called a **candidate** key
- one of the candidate keys is arbitrarily designated to be the **primary** key
- an attribute of relation schema *R* is called a **prime attribute** of *R* if it is a **member of some candidate key** of *R*

first normal form (1NF)

- to disallow **multivalued attributes**, **composite attributes**, and their combinations
- the domain of an attribute must include only **atomic values** and the value of any attribute in a tuple must be a **single value** from the domain of that attribute
- example

3 main techniques to achieve 1NF

- remove the attribute DLOCATIONS that violates 1NF and place it in a separate relation DEPT_LOCATIONS along with the primary key DNUMBER of DEPARTMENT -> generally considered best
- expand the key so that there will be a separate tuple in the original DEPARTMENT relation for each location of a DEPARTMENT -> introduces redundancy
- if a maximum number of values is known: DLOCATION1, DLOCATION2, ... -> introduces null values

DEPARTMENT

DNAME	DNUMBER	DMGRSSN
Research Administration Headquarters		333445555 987654321 888665555

DEPT_LOCATIONS

DNUMBER	DLOCATION
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

DEPARTMENT

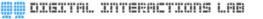
DNAME	DNUMBER	DMGRSSN	DLOCATION
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	<u> </u>	888665555	Houston

another example: nested relation

- EMP_PROJ(SSN, ENAME, {PROJS(PNUMBER, HOURS)})
- SSN is the primary key of the EMP_PROJ while PNUMBER is the **partial key** of the nested relation
- for normalization into 1NF, we remove the nested relation attributes into a new relation and propagate the primary key into it

SSN	ENAME	PNUMBER	HOURS
123456789	Smith,John B.	1	32.5
		2	7.5
666884444	Narayan,Ramesh	K. 3	40.0
453453453	English,Joyce A.	1	20.0
		2	20.0
333445555	Wong,Franklin T.	2	10.0
		3	10.0
		10	10.0
		20	10.0
999887777	Zelaya,Alicia J.	30	30.0
		10	10.0
987987987	Jabbar,Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S	S. 30	20.0
		20	15.0
888665555	Borg,James E.	20	null

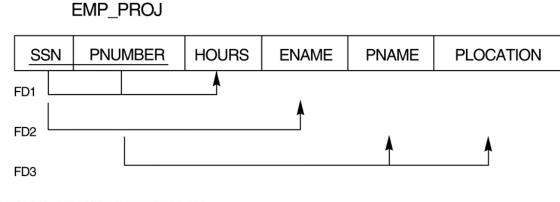
EMP_PROJ


EMP_PROJ

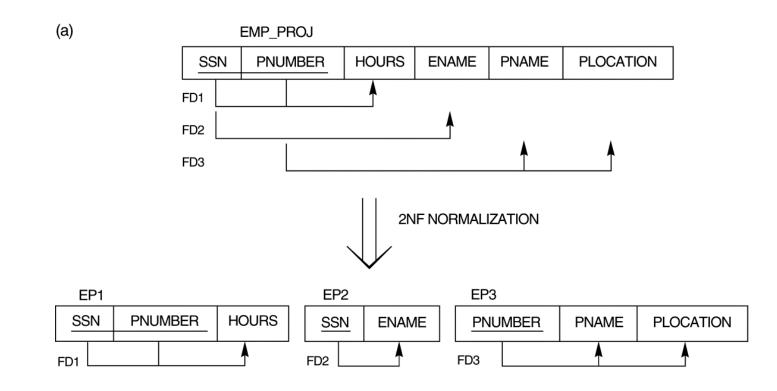
		PRO	DJS
SSN	ENAME	PNUMBER	HOURS

EMP_PROJ1

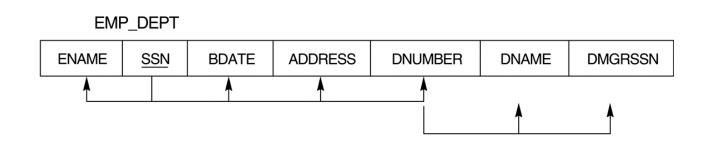
EMP_PROJ2

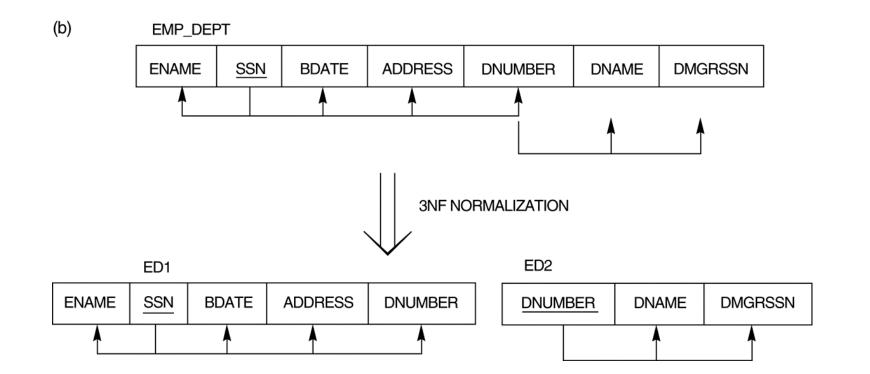

SSN	PNUMBER	HOURS
-----	---------	-------

second normal form (2NF)


- an FD X -> Y is a full functional dependency (FFD) if removal of any attribute A from X means that the dependency does not hold any more
- an FD *X* -> *Y* is a **partial dependency** if some attribute *A* ∈ *X* can be removed from *X* and the dependency still holds
- a relation schema *R* is in **2NF** if **every nonprime attribute** *NA* in *R* is **fully functionally dependent** on the **primary key** of *R*
- example: {SSN, PNUMBER} is a primary key for EMP_PROJ
 - {SSN, PNUMBER} -> ENAME: FFD?
 - {SSN, PNUMBER} -> PNAME: FFD?
 - {SSN, PNUMBER} -> PLOCATION: FFD?

converting into 2NF


if a relation schema is not in 2NF, it can be 2NF normalized into a number of 2NF relations in which nonprime attributes are associated only with the part of the primary key on which they are fully functionally dependent

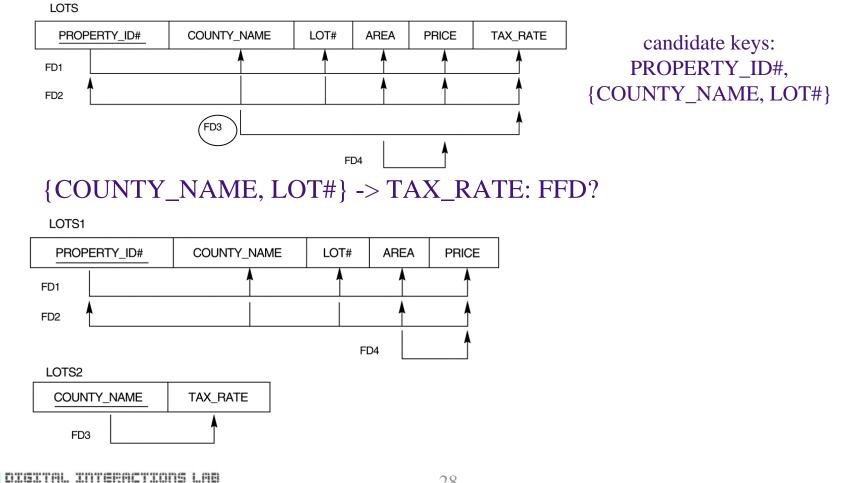


third normal form (3NF)

- an FD X -> Y in a relation schema R is a transitive dependency if there is a set of attributes Z that is neither a candidate key nor a subset of any key of R, and both X -> Z and Z -> Y hold
- a relation schema *R* is in **3NF** if it **satisfies 2NF** and **no nonprime attribute** of *R* is **transitively dependent** on the **primary key**
- example
 - SSN -> DMGRSSN is transitively dependent because DNUMBER is a nonprime attribute, SSN -> DNUMBER and DNUMBER -> DMGRSSN hold, and DNUMBER is neither a key nor a subset of the key of EMP_DEPT

example

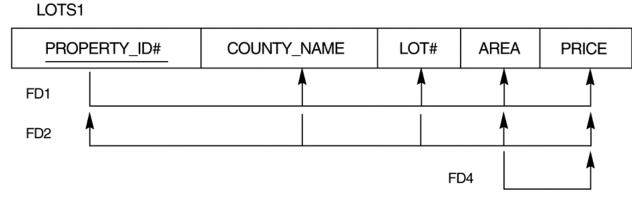
general definitions of 2nd and 3rd normal forms


- the previous definition of 3NF disallows partial and transitive dependencies on the primary key to avoid update anomalies
- now the partial and full functional dependencies and transitive dependencies are considered **w.r.t. all candidate keys** of a relation

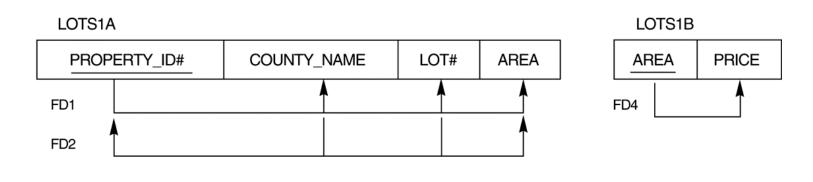
general definition of 2NF

**

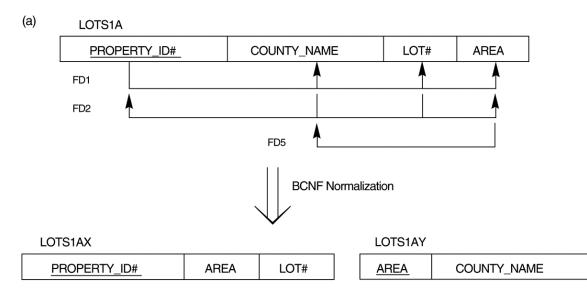
- **prime** attribute: an attribute that is **part** of **some candidate** key
- a relation schema *R* is in 2NF if every nonprime attribute *A* in *R* is not partially dependent on <u>any</u> key of R



general definition of 3NF


- def) a relation schema *R* is in 3NF satisfies the following property
 - whenever a nontrivial functional dependency X -> A holds in R, either (a) X is a superkey of R, or (b) A is a prime attribute of R
- an FD $X \rightarrow A$
 - violating (b) => A is a nonprime attribute \land
 - violating (a) => X is not a superset of any key of R
 - => *X* is either **nonprime** or a **proper subset** of a key of *R*
 - X is nonprime => transitive dependency (i.e., \exists a key Y, s.t. Y -> X -> A)
 - X is a proper subset of a key => partial dependency (i.e., ∃ a partial dependency "Z(⊃X) -> A" due to the existence of "X -> A")
- therefore, a relation schema *R* is in 3NF if for **every nonprime** attribute *A* of *R*
 - it is **non-transitively dependent** on **every** key of *R*, and
 - it is **fully functionally dependent** on **every** key of *R*

example


- FD4: AREA -> PRICE
 - AREA is not a superkey and PRICE is not a prime attribute
 - that is, from FD1 and FD2, we know that PRICE is transitively dependent on each of the candidate keys (PROPERTY_ID#, {COUNTY_NAME, LOT#}) via the nonprime attribute AREA

Boyce-Codd normal form (BCNF)

- a relation schema *R* is in BCNF if whenever a nontrivial functional dependency *X* -> *A* holds in *R*, then *X* is a **superkey** of *R*
- stricter than 3NF: every relation in BCNF is also in 3NF, but a relation in 3NF is not necessarily in BCNF
- example
 - FD5
 - {COUNTY_NAME, LOT#} is a candidate key
 - AREA is not a superkey => violates BCNF
 - COUNTY_NAME is a prime attribute => satisfies 3NF

