
Practical Database Design MethodologyPractical Database Design Methodology

and Use of UML Diagramsand Use of UML Diagrams
 406.426 Design & Analysis of Database Systems 406.426 Design & Analysis of Database Systems

Jonghun ParkJonghun Park

jonghun@snu.ac.krjonghun@snu.ac.kr

Dept. of Industrial EngineeringDept. of Industrial Engineering

Seoul National UniversitySeoul National University

2

chapter outline

information system life cycle

phases of database design

UML diagrams

Rational Rose

other tools

design tools

3

IT as a key to successful business

data is regarded as a corporate resource, and its management and

control is considered central to the effective working of an

organization

more functions in organizations are computerized, increasing the

need to keep large volumes of data available in an up-to-the-

minute current state

as the complexity of the data and applications grows, complex

relationships among the data need to be modeled and maintained

there’s a tendency toward consolidation of information resources in

many organizations

many organizations are reducing their personnel costs by letting the

end-user perform business transactions

4

characteristics of database systems

data independence from changes in the underlying logical

organization and in the physical access paths and storage structures

external schemas that allow the same data to be used for multiple

applications

integration of data across multiple applications into a single DB

simplicity of developing new applications using high-level

languages like SQL

possibility of supporting casual access for browsing and querying by

managers while supporting major production-level TP

5

trends in DB systems

personal DBs is gaining popularity

Excel, MySQL, Access, …

check-out and check-in

advent of distributed & client-server DBMSs

for better local control and faster local processing

emergence of Web-based applications

using data dictionary systems (or information repositories)

data about DB

DB structure, constraints, applications, authorizations, …

performance-critical TP systems

around-the-clock nonstop operation

hundreds of transactions per min.

6

information system life cycle

feasibility analysis

cost-benefit studies, setting up priorities, scopes,…

requirements collection and analysis

interacting with potential users

design

design of DB system, design of application systems

implementation

validation and acceptance testing

against performance criteria and behavior specifications

deployment, operation and maintenance

new requirements or applications crop up

7

DB application system life cycle

system definition

DB design

DB implementation

loading or data conversion

time consuming

application conversion

time consuming

testing and validation

operation

usually the old and the new systems are operated in parallel for some

time

monitoring and maintenance

8

database design

problem definition: design the logical and physical structure of one

or more databases to accommodate the information needs of the

users in an organization for a defined set of applications

goals

satisfy the information content requirements

provide a natural and easy-to-understand structuring of information

support processing requirements and any performance objectives

tradeoff between “understandability” and “performance”

9

phases of DB design and implementation

10

phase 1: requirements collection and analysis

major activities

application areas and user groups are identified

existing documentation concerning the applications is analyzed

current operating environment and planned use of the information is

studied

types of transactions and their frequencies, the flow of information,

geographic characteristics, origin of transactions, destination of reports,

input and output data for the transactions, …

written responses to sets of questions are sometimes collected from the

potential DB users

requirements are subject to change!

JAD (Joint Application Design)

contextual design

11

phase 1: requirements collection and analysis

requirement specification techniques

diagramming techniques

OOA

DFD

formal specification methods

e.g., Z

hardly used

upper CASE tools

help check the consistency and completeness of specifications

correcting a requirement error is much more expensive than

correcting an error made during implementation

12

phase 2: conceptual DB design

involves two parallel activities: conceptual schema design and

transaction and application design

conceptual schema design is DBMS-independent because

complete understanding of the DB structure, semantics,

interrelationships, and constraints can be best achieved independently

of a specific DBMS

choice of DBMS and later design decision may change

high-level data model is more expressive and general than the data

models of individual DBMS

diagrammatic description of the conceptual schema can serve as an

excellent vehicle of communication among database users, designers,

and analysts

13

phase 2: conceptual DB design

desired characteristics of a conceptual data model

expressiveness

simplicity and understandability

minimality

diagrammatic representation

formality

the above characteristics usually result in conflicts

output

entity types, relationship types, attributes

key attributes, cardinality and participation constraints on relationships,

weak entity types, specialization/generalization hierarchies, …

14

phase 2: conceptual DB design

approaches to conceptual schema design

centralized (or one-shot) schema design approach

requirements of the different applications and user groups from Phase 1 are

merged into a single set of requirements before schema design begins

single schema corresponding to the merged set of requirements is then

designed

view integration approach

schema is designed for each user group or application based only on its own

requirements

during a subsequent view integration phase, the schemas are merged or

integrated into a global conceptual schema for the entire DB

more popular

15

phase 2: conceptual DB design

strategies for schema design

top-down strategy

start with a schema containing high-level abstractions and then apply

successive top-down refinements

bottom-up strategy

start with a schema containing basic abstractions and then combine or add

to these abstractions

inside-out strategy

special case of a bottom-up strategy, where attention is focused on a central

set of concepts that are most evident

modeling then spreads outward by considering new concepts in the vicinity

of existing ones

mixed strategy

requirements are partitioned according to a top-down strategy, and part of

the schema is designed for each partition according to a bottom-up strategy

16

example of top-down refinement

17

example of bottom-up refinement

18

phase 2: conceptual DB design

schema integration

identifying correspondences and conflicts among the schemas

naming conflicts: synonyms, homonyms

type conflicts: e.g., entity vs. attribute

domain conflicts

conflicts among constraints

modifying views to conform to one another

merging of views

involves a considerable amount of human intervention and negotiation to

resolve conflicts

restructuring

to remove any redundancies and unnecessary complexity

19

example of view modification (1)

20

example of view modification (2)

21

phase 2: conceptual DB design

strategies for the view integration process

binary ladder integration

2 schemas that are quite similar are integrated first

N-ary integration

all the views are integrated in one procedure

binary balanced strategy

pairs of schemas are integrated first, then the resulting schemas are paired

for further integration

mixed strategy

schemas are partitioned into groups based on their similarity, and each

group is integrated separately

22

different strategies for the view integration

23

phase 2: conceptual DB design

phase 2b: transaction design

to design the functional characteristics of known DB transactions

(applications) in a DBMS-independent way

80-20 rule: 80 % of the workload is represented by 20 % of the most

frequently used transactions

identifying the transaction’s I/O

retrieval, update, and mixed transactions

identifying the transaction’s functional behavior

notation for specifying processes

activities, events, operations, sequencing, synchronizations, …

still remains an active area of research

24

phase 3: choice of a DBMS

technical considerations

type of DBMS, the storage structures and access paths, UI, APIs, the

types of high-level languages, availability of development tools, ability

to interface with other DBMSs, architectural options related to CS

operation, DBMS portability

nontechnical considerations

financial status and the support organization of the vendor, availability

of vendor services, organization-wide adoption of a certain philosophy,

familiarity of personnel with the system

economic considerations

software acquisition cost, maintenance cost, hardware acquisition cost,

DB creation and conversion cost, personnel cost, training cost, operating

cost

25

phase 3: choice of a DBMS

drivers for DBMS

data complexity, data sharing among applications, dynamically evolving

or growing data, frequency of ad hoc requests for data, data volume and

need for control

common built-in features of DBMSs

text editors and browsers

report generators and listing utilities

communication software

data entry and display features such as forms, screens, and menus with

automatic editing features

inquiry and access tools that can be used on WWW

graphical DB design tools

26

phase 4: data model mapping

to create a conceptual schema and external schemas in the data

model of the selected DBMS

two stages

system-independent mapping: e.g., EER -> relational schemas

tailoring the schemas to a specific DBMS

result: DDL statements in the language of the chosen DBMS that

specify the conceptual and external level schemas of the DB system

many automated CASE design tools can generate DDL from a

conceptual schema design

27

phase 5: physical database design

process of choosing specific storage structures and access paths
for the DB files to achieve good performance for the various DB
applications

usually include various types of indexing, clustering of related
records on disk blocks, linking related records via pointers, and
various types of hashing

frequently used criteria

response time

elapsed time between submitting a DB transaction for execution and
receiving a response

space utilization

amount of storage space used by the DB files and their access path
structures on disk

transaction throughput

average # of transactions processed per min

cf. benchmark test

28

phase 6: DB system implementation and tuning

typically the responsibility of the DBA and is carried out in

conjunction with the DB designers

language statements in DDL including SDL of the selected DBMS

are compiled and used to create the DB schemas and DB files

DB can then be loaded (populated) with the data

conversion routines may be needed

DB transactions must be implemented by the application

programmers, and then writing and testing program code with

embedded DML commands

29

UML as a design specification standard

even though its concepts are based on object-oriented techniques, the

resulting models of structure and behavior can be used to design both

relational, object-oriented, and object-relational DBs

UML defines 9 types of diagrams

structural diagrams

describe the structural or static relationships among components

class diagram, object diagram, component diagram, and deployment

diagram

behavioral diagrams

describe the behavioral or dynamic relationships among components

use case diagram, sequence diagram, collaboration diagram, statechart

diagram, and activity diagram

30

UML diagrams

class diagrams

capture the static structure of the system and act as foundation for

other models

show classes, interfaces, collaborations, dependencies, generalizations,

association and other relationships

object diagrams

show a set of objects and their relationships

correspond to instance diagrams

component diagrams

illustrate the organizations and dependencies among software

components

consists of components, interfaces, and dependency relationships

deployment diagrams

represent the distribution of components across the hardware topology

31

UML diagrams

use case diagrams

model the functional interactions between users and the system

use case is a set of scenarios that have a common goal

sequence diagrams

describe the interactions between various objects over time

give a dynamic view of the system by showing the flow of messages between
objects

collaboration diagrams

represent interactions between objects as a series of sequenced messages

show objects as icons and number the messages

statechart diagrams

describe how an object’s state changes in response to external events

show all the possible states an object can get into in its lifetime

activity diagrams

present a dynamic view of the system by modeling the flow of control from
activity to activity

can be considered as flowcharts with states

32

use-case diagram notation

33

example use case diagram

34

sequence diagram notation

35

example of a sequence diagram

36

statechart diagram notation

37

example of statechart diagram

38

data modeling using Rational Rose

reverse engineering

create a conceptual data model based on the DB structure

forward engineering

generate the DDL in a specific DBMS from a data model

conceptual design in UML notation

supported DBs: IBM DB2, Oracle, SQL server, Sybase

converting logical data model to object model and vice versa

synchronization between the conceptual design and the actual DB

extensive domain support

easy communication among design teams

39

graphical data model in Rational Rose

40

logical data model diagram in Rational Rose

41

CASE tools

provided facilities

diagramming

model mapping

design normalization

desired characteristics

easy-to-use interface

analytical components

heuristic components

trade-off analysis

display of design results

design verification

