
Disk Storage, Basic FileDisk Storage, Basic File

Structures, and HashingStructures, and Hashing
406.426 Design & Analysis of Database Systems406.426 Design & Analysis of Database Systems

Jonghun ParkJonghun Park

jonghun@snu.ac.krjonghun@snu.ac.kr

Dept. of Industrial EngineeringDept. of Industrial Engineering

Seoul National UniversitySeoul National University

2

chapter outline

disk storage devices

files of records

operations on files

unordered files

ordered files

hashed files

RAID technology

3

storage hierarchy

primary storage

storage media that can be operated on directly by CPU

RAMs: main memory, cache memory

secondary storage

magnetic disks, optical disks, and tapes

larger capacity, cost less, slower access than primary storage devices

flash memory

in between DRAM and magnetic disk storage

nonvolatile

appearing in cameras, MP3P, USB storage, ...

MMDBMS: entire DBs are kept in main memory

flash memory DBMS: asymmetric read/write time

4

storage of DBs

data stored on disk is organized as files of records

each record is a collection of data values that can be interpreted as

facts about entities, their attributes, and their relationships

primary file organizations: determines how the records of a file are

physically placed on the disk, and hence how the records can be

accessed

heap: no particular order

sequential file: records are ordered

hashed file: uses a hash function applied to a particular field

B-tree: uses tree structures

5

hardware description of disk devices

6

interleaved concurrency vs. parallel execution

processes A and B are running concurrently in an interleaved
fashion, whereas processes C and D are running concurrently in a
parallel fashion

7

buffering of blocks

double buffering: reading and processing can proceed in parallel

when the time required to process a disk block in memory is less

than the time required to read the next block and fill a buffer

8

records and record types

data is usually stored in the form of records

each record consists of a collection of related data values or items,
where each value is formed of one or more bytes and correspond to a
particular field of the record

a collection of field names and their corresponding data types
constitute a record type

data type of a field is usually one of the standard data types used in
programming

numeric (integer, long integer, or floating point)

string of characters (fixed-length or varying)

Boolean

date and time

BLOBs (Binary Large Objects)

data items that consist of large unstructured objects, which represent
images, digitized videos, or audio streams, or free text

9

files, fixed-length records, and variable-length records

file: a sequence of records

in many cases, all records in a file are of the same record type

fixed-length records: every record in the file has exactly the same

size

variable-length records: different records in the file have different

sizes

reasons for having the variable-length records

one or more of the fields are of varying size: e.g., NAME

one or more of the fields may have multiple values for individual

records: called a repeating field

one or more of the fields are optional

file contains records of different record types

10

record storage formats

11

representation of the variable-length records

optional fields

let every field be included in every record, but store a special null value

if no value exists

or include in each record a sequence of <field-name, field-value> pairs

repeating fields

allocate as many spaces in each record as the maximum number of

values that the field can take

or use one separator character to separate the repeating values of the

field and another separator character to indicate termination of the field

variable-length fields

use special separator characters which do not appear in any field value

to terminate variable-length fields

12

record blocking, spanned vs. unspanned records

block: the unit of data transfer between disk and memory

records of a file must be allocated to disk blocks

blocking factor: bfr

B: the block size (in bytes)

for a file of fixed-length records of size R bytes, with B R, we can fit
bfr = B/R records per block

unused space in each block: B – (bfr * R) bytes

spanned record

store part of a record in one block and the rest on another

pointer at the end of the first block points to the block containing the remainder
of the record

whenever a record is larger than a block, we must use a spanned organization

13

allocating file blocks on disk

contiguous allocation

blocks are allocated to consecutive disk blocks

makes reading the whole file very fast

makes expanding the file difficult

linked allocation

each block contains a pointer to the next block

easy to expand the file but makes it slow to read the whole file

combination of the above

allocates clusters of consecutive disk blocks and the cluster are linked

indexed allocation

one or more index blocks contain pointers to the actual file blocks

14

file headers

header includes information to determine the disk addresses of the

file blocks as well as to record format descriptions, which may

include field lengths and order of fields within a record for fixed-

length unspanned records and field type codes, separator characters,

and record type codes for variable-length records

15

heap files

simplest and most basic type of organization

records are placed in the file in the order in which they are inserted, so new
records are inserted at the end of the file

inserting a new record is very efficient: the last block of the file is copied into a
buffer; the new record is added; and the block is then rewritten back to disk

searching for a record using any search condition involves a linear search

when only one record satisfies the search condition: for a file of b blocks,
searching (b/2) blocks is required on the average

when no records or several records satisfy the search condition: searching all b
blocks is required

deletion

find the block and delete the record

deletion marker: a record is deleted by setting the deletion marker to a certain
value

accessing a record by its position in the file of fixed-length records using
unspanned blocks and contiguous allocation

records in the file are numbered 0, 1, 2, ..., r-1

records in each block are numbered 0, 1, 2, ..., bfr-1

the i-th record of the file is located in block i/bfr and is the (i mod bfr)-th
record in that block

16

sorted files (sequential files)

physically order the records of a file on disk

based on the values of one of their fields

(called ordering field)

advantages

reading the records in order of the

ordering key values becomes extremely

efficient

finding the next record from the current

one in order of the ordering key usually

requires no additional block access

binary search can be used for a search

condition based on the value of an

ordering key field

max time to access a specific record is

log2b

17

binary search on an ordering key of a disk file

searching for a record whose ordering key field value is K

b is the number of blocks

l 1; u b;
while (u l) do
 i (l + u) / 2
 read block i of the file into the buffer
 if K < (ordering key field value of the first record in block i)
 then u i – 1
 else if K > (ordering key field value of the last record in block i)
 then l i + 1
 else if the record with ordering key field value = K is in the buffer
 then goto found
 else goto notfound
end
goto notfound

cf. number guessing game based on “high” / “low” hints

18

sorted files (cont.)

linear search for the nonordering fields

inserting and deleting records are expensive operations because the

records must remain physically ordered

on the average, half the records of the file must be moved to make space

for the new record

for the record deletion, the problem is less severe if deletion markers

and periodic reorganization are used

one option for making insertion more efficient is to keep some

unused space in each block for new records

ordered files are rarely used

19

hash files

provides very fast access to records on certain search conditions

search condition must be an equality condition on a single field,

called the hash field of the file

idea

provide a function h, called a hash function that is applied to the hash

field value of a record and yields the address of the disk block in

which the record is stored

20

internal hashing

hashing is implemented as a hash table through the use of an array of records

array index: 0, ..., M-1

choose a hash function that transforms the hash field value into an integer between

0 to M-1

e.g., h(K) = K mod M, where hash key field value is K

problem

of possible values for a hash field >> # of available addresses for records

does not guarantee distinct values will has to distinct addresses

21

collision resolution

a collision occurs when the hash field value of a record that is being inserted hashes to an
address that already contains a different record

methods for collision resolution

open addressing: proceeding from the occupied position specified by the hash address,
the program checks the subsequent positions in order until an unused position is found

chaining: place the new record in an unused overflow location and set the pointer of
the occupied hash address location to the address of that overflow location

multiple hashing: applies the second, third, ... hash function if the first results in a
collision. if another collision results, the program uses open addressing

goal of a good hashing function: to distribute the records uniformly over the address
space so as to minimize collisions while not leaving many unused locations

22

external hashing

target address space is made of buckets, each of which holds

multiple records

bucket is either one disk block or a cluster of contiguous blocks

hash function maps a key into a relative bucket number, rather

than assign an absolute block address to the bucket

23

collision resolution

collision problem is less severe with buckets, because as many records as will fit

in a bucket can hash to the same bucket without causing problems

use a variation of chaining in which a pointer is maintained in each bucket to a

linked list of overflow records for the bucket

record pointer: includes both a block address as well as a relative record position

within the block

24

more on hashing

hashing provides the fastest possible access for retrieving an

arbitrary record given the value of its hash field

order preserving hashing

maintains records in order of hash field values

e.g., take the leftmost three digits of an invoice number field as the hash

address and keep the records sorted by invoice number within each

bucket

static hashing

a fixed number of buckets M is allocated, and each bucket may have up

to m records

a serious drawback for dynamic files

what if the # of records turns out to be << (or >>) (m*M)?

dynamic hashing

extendible hashing, linear hashing

25

extendible hashing

stores an access structure in addition to the file

access structure is built on the binary representation of the hashing

function result

a type of directory, an array of 2d bucket address, is maintained,

where d is called the global depth of the directory

initially, d = 1

integer value corresponding to the first d bits of a hash value is used

as an index to the array to determine a directory entry, and the

address in that entry determines the bucket in which the

corresponding records are stored

several directory locations with the same first d’ (called local depth;

<= d) bits for their hash values many contain the same bucket

address if all the records that hash to these locations fit in a single

bucket

26

structure of the extendible hashing scheme

27

extendible hashing (cont.)

bucket splitting

bucket whose hash values start with 01 overflows -> the bucket that contains

all records whose hash values start with 010, and the bucket that contains all

records whose hash values start with 011

value of d can be increased or decreased by one at a time, thus doubling or

halving the number of entries in the directory array

doubling is needed if a bucket, whose local depth d’ is equal to the global depth d,

overflows

halving occurs if d > d’ for all the buckets after some deletions occur

advantages

performance of the file does not degrade as the file grows

splitting causes minor reorganization in most cases, since only the records in

one bucket are redistributed to the two new buckets

disadvantages

directory must be searched before accessing the buckets themselves, resulting

in two block access instead of one in static hashing

28

linear hashing

to allow a hash file to expand and shrink its number of buckets
dynamically without needing a directory

file starts with M buckets: 0, 1, ..., M-1

initial hash function hi(K) = K mod M

when a collision leads to an overflow record in any bucket, bucket 0 is
split into two buckets: the original bucket 0 and a new bucket M at the end
of the file

records originally in bucket 0 are distributed between the two buckets
based on hi+1(K) = K mod 2M

any record that hashed to bucket 0 based on hi will hash to either bucket 0 or
bucket M based on hi+1

splits are performed in linear order (bucket 0 first, then bucket 1, then
2, ...), and a split is performed when any bucket overflows

if the bucket that overflows is not the bucket that is split (which is the
common case), overflow techniques such as chaining are used

if enough overflows occur, all the original file buckets, 0, 1, ... M-1 will
have been split, so the file now has 2M buckets, and all buckets use the
hash function hi+1

29

linear hashing (cont.)

no directory is needed, only a value n, which is initially set to 0 and

is incremented by 1 whenever a split occurs, is needed to

determine which buckets have been split

to retrieve a record with hash value K, first apply the function hi to

K; if hi(K) < n, then apply the function hi+1 on K because the bucket

is already split

when n = M, this signifies that all the original buckets have been

split and the hi+1 applies to all records in the file -> at this point, n is

reset to 0, and any new collisions that cause overflow lead to the use

of a new hashing function hi+2(K) = K mod 4M

in general, a sequence of hashing functions, hi+j(K) = K mod (2jM) is

used, where j = 0, 1, 2, ...; a new hashing function hi+j+1 is needed

whenever all the buckets, 0, 1, ..., (2jM) – 1 have been split and n is

reset to 0

30

example: M = 4

n=0

PRIMARY

PAGES

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

n=1

PRIMARY

PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

37*

insert 43

37*

insert 29
n=2

PRIMARY

PAGES

44* 36*

32*

25*9*

14* 18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

5* 37* 29*

31

RAID

redundant arrays of independent disks

to even out the widely different rates of performance improvement of disks against
those in memory and microprocessors

a large array of small independent disks acting as a single higher-performance
logical disk

a concept called data striping is used, which utilizes parallelism to improve disk
performance

improves overall I/O performance by allowing multiple I/Os to be service in
parallel

by storing redundant information on disks using parity or some other error
correction code, reliability can be improved

32

use of RAID technology

33

SAN

storage area networks

online storage peripherals are configured as nodes on a high-speed

network and can be attached and detached from servers in a very

flexible manner

