

Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

http://artlab.re.kr

Photochemical AOPs

Changha Lee

School of Chemical and Biological Engineering Seoul National University

Characteristics of Light

✓ Planck law of radiation

 $u = hv = hc/\lambda = hc\overline{v}$

$\mathbf{U} = \mathbf{N}_{A}h\mathbf{v} = h\mathbf{c}\mathbf{N}_{A}/\lambda = h\mathbf{c}\mathbf{N}_{A}\mathbf{\bar{v}}$

Where u = energy (J) of one photon v = frequency (s⁻¹) λ = wavelenght (m) \overline{v} = wavenumber (m⁻¹) c = speed of light (2.9979x0⁸ ms⁻¹) h = Planck constant (6.6261x10⁻³⁴ Js) N_A = Avogadro number (6.02214 x10²³ mol⁻¹) U = energy per einstein

Characteristics of Light

✓ Electromagnetic spectrum

Photo-Excitation and Subsequent Processes

 $A + h\nu \rightarrow A^*$ (photo-excitation)

 $A^* \rightarrow A + heat$ (thermal decay)

 $A^* \rightarrow A + hv'$ (fluorescence)

 $A^* \rightarrow A + hv''$ (phosphorescence)

 $A^* \rightarrow B$ (photochemical reaction)

Fluorescence and Phosphorescence

UV Energy and Bond Dissociation Energy

Radiation energy

Range	Wavelength Range (nm)	Energy Range (kJ/Einstein)
Near Infrared	700 ~1000	120 ~ 171
Visible	400 ~ 700	171 ~ 299
UVA	315 ~ 400	299 ~ 380
UVB	280 ~ 315	380 ~ 427
UVC	200 ~ 280	427 ~ 598
νυν	100 ~ 200	598 ~ 1196

Average Bond Enthalpies (kJ/mol)

Single	Single Bonds									
С—Н	413	N—H	391		О—Н	463		F-F	155	
C-C	348	N—N	163		0-0	146				
C-N	293	N—O	201		O-F	190		Cl—F	253	
С—О	358	N—F	272		O-Cl	203		CI-CI	242	
C-F	485	N—Cl	200		O-I	234				
C-Cl	328	N—Br	243					Br-F	237	
C—Br	276				S-H	339		Br—Cl	218	
C—I	240	н—н	436		S-F	327		Br—Br	193	
C—S	259	H—F	567		S-Cl	253				
		H—Cl	431		S—Br	218		I—Cl	208	
Si-H	323	H—Br	366		s—s	266		I—Br	175	
Si—Si	226	H—I	299					I—I	151	
Si-C	301									
Si—O	368									
Multip	le Bonds									
C=C	614	N=N	418		O2	495				
C≡C	839	N≡N	941		-					
C=N	615				S=O	523				
C≡N	891				s=s	418				
C=0	799									
C≡O	1072									

Quantum Yield

$\sqrt{\mathbf{Definition}}$

 $\phi_{\mathsf{B}} =$

$A + hv \rightarrow B$

 $\phi_{A} = \frac{\text{Molecules (mole) of A decomposed per unit volume per unit time}}{\text{Quanta of light (Einstein) absorbed by A per unit volume per unit time}}$

Molecules (mole) of B formed per unit volume per unit time

Quanta of light (Einstein) absorbed by A per unit volume per unit time

- φ_A is not always same as φ_B

 $\sqrt{10}$ Primary quantum yield: quantum yield for the primary photochemical reaction $\sqrt{10}$ Overall quantum yield: quantum yield considering the primary photochemical reaction and subsequent thermal reactions

e.g., $A + hv \rightarrow B + C$ (primary quantum yield = 0.5) $A + C \rightarrow B$

Overall quantum yield for the photochemical production of $B = 0.5 \times 2 = 1.0$

Kinetics of Photochemical Reactions

✓ Beer-Lambert absorption law

 $I / I_0 = 10^{-εbC}$ ε: molar aborption coefficient (M⁻¹ cm⁻¹) b: optical pathlength (cm) C: molar concentration of photon absorber (M)

✓ Kinetic raw of photochemical reactions

φ

$$A + hv \rightarrow B$$

$$d[A]/dt = I_0(1-10^{-\varepsilon b[A]}) \times$$

Absorbed photon flow by compound, A

 I_0 : incident photon flow (Einstein I⁻¹ s⁻¹)

 ϕ : quantum yield

Kinetics of Photochemical Reactions

At a low concentration ($\varepsilon bc << 0.1$)

 $d[A]/dt = -I_0(1-10^{-\epsilon b[A]}) \times \phi \approx -2.303 I_0\epsilon b\phi[A]$

First order kinetics

At a high concentration ($\varepsilon bc >>1$)

 $d[A]/dt = -I_0(1-10^{-\epsilon b[A]}) \times \phi \approx -I_0 \phi$

Zero order kinetics

Photolysis of Pollutants

✓ Direct photolysis

 $T + hv \rightarrow P$

T: Target compound P: Product

✓ Indirect photolysis

 $\begin{array}{c} \mathsf{A} + h\nu \to \mathsf{R} \\ \mathsf{R} + \mathsf{T} \to \mathsf{P} \end{array}$

A: Light absorbing compound R: Reactive compound

✓ Photo-catalysis

$$\begin{array}{ccc} C + h\nu \rightarrow R \\ R + T \rightarrow C + P \end{array}$$

C: Photo-catalyst

e.g., UV/H₂O₂ system

 $H_2O_2 + h\nu \rightarrow 2 \cdot OH$ Compounds + $\cdot OH \rightarrow Products$

e.g., TiO₂ photo-catalysis

 $TiO_2 + h\nu \rightarrow TiO_2(h^+ \& e^-)$ Compounds + $TiO_2(h^+ \& e^-) \rightarrow Products + TiO_2$

UV Lamps

Mercury vapor lamps

- Low pressure Hg lamps: monochromatic emission at 254 and 185 nm(표준형, 고출력 저압수은 램프)
- Medium and High pressure Hg lamps: polychromatic emission from 200~800 nm(수은 중압, 고압 램프)

Wavelength (nm)	Color
184.5	VUV
253.7	UVC
365.4	UVA
404.7	Violet
435.8	Blue
546.1	Green
578.2	Yellow-orange

UV Lamps

Mercury vapor lamps (medium or high pressure)

A: Continuous UV lamp

B: Pulsed UV lamp

The major difference in emission spectra occurs between 200 and 450 nm.

UV Lamps

Black light blue (BLB) lamps

Xenon arc lamps (solar simulator)

Wavelength (nm)

Phosphor	Peak, nm	Width, nm	Philips Suffix.	Osram Suffix.	U.S. Type	Uses
Mixture	450	50	-	/71	-	hyperbilirubinaemia, polymerization
SrP ₂ O ₇ , Eu	420	30	/03	/72	-	polymerization
SrB ₄ O ₇ , Eu	370	20	/08	/73	("BLB")	forensics, night clubs
SrB ₄ O ₇ , Eu	370	20	-	/78	("BL")	insect attraction, polymerization, psoriasis, suntanning
BaSi ₂ O ₅ , Pb	350	40	/09	/79	"BL"	insect attraction, suntanning lounges
BaSi ₂ O ₅ , Pb	350	40	/08	-	"BLB"	dermatology, forensics, night clubs
SrAI ₁₁ O ₁₈ , Ce	340	30	-	-	-	photochemical uses
MgSrAl ₁₀ O ₁₇ , Ce	310	40	-	-	-	medical applications, polymerization

Water Treatment Using Photochemical Reactions

Drinking Water Treatment (UV/H₂O₂ system) Wastewater Treatment (Photo-Fenton, UV/TiO₂???)

The UV/H_2O_2 System

$$H_2O_2 + hv \rightarrow 2 \cdot OH$$

Primary quantum yield: 0.5

$H_2O_2 + hv \leftrightarrow [HO^{\bullet} + {}^{\bullet}OH] \rightarrow 2{}^{\bullet}OH$ Solvent Cage

Subsequent reactions $^{\circ}OH + H_2O_2 \rightarrow HO_2^{\circ} + H_2O_2$ $2HO_2 \rightarrow H_2O_2 + O_2$ $2 \cdot OH \rightarrow H_2O_2$

The Photo–Fenton System

Photochemical reduction of Fe(III) to Fe(II)

Photochemical Reactions of Ferric Complexes

✓ Ferric-hydroxo complexes

 $Fe^{3+} + H_2O + hv \rightarrow Fe^{2+} + \bullet OH + H^+$ (1) $Fe(OH)^{2+} + hv \rightarrow Fe^{2+} + \bullet OH$ (2) $Fe_2(OH)_2^{4+} + hv \rightarrow Fe(III) + Fe^{2+} + \bullet OH$ (3)

The photochemical reaction (2) is dominant due to its high quantum yields (0.1 \sim 0.2) and the high fraction of Fe(OH)²⁺ in weakly acidic conditions

✓ Other ferric complexes

General form: $Fe^{3+}(X) + hv \rightarrow Fe^{2+} + X^{\bullet}$

e.g.,
$$\operatorname{Fe}(\operatorname{SO}_4)^+ + hv \to \operatorname{Fe}^{2+} + \operatorname{SO}_4^{-\bullet}$$

 $\operatorname{Fe}(\operatorname{Cl})^{2+} + hv \to \operatorname{Fe}^{2+} + \operatorname{Cl}^{\bullet}$
 $\operatorname{Fe}(\operatorname{Ox})_3^{3-} + hv \to \operatorname{Fe}^{2+} + 2\operatorname{C}_2\operatorname{O}_4^{2-} + \operatorname{C}_2\operatorname{O}_4^{-\bullet}$

Light Absorption and Quantum Yields for Photolysis of Ferric–Hydroxo Complexes

↑ Molar absorption coefficients (a) and quantum yields for the photochemical reactions (b) of Fe(III)-hydroxo complexes as a function of wavelength

Quantum yields for Photolysis of Several Ferric Complexes

$$Fe^{3+}(X) + hv \rightarrow Fe^{2+} + X \bullet \qquad \phi_{Fe^{2+}}$$

Fe(III) complexes	λ (nm)	ε (M ⁻¹ cm ⁻¹)	ϕ
Fe ³⁺	$240\sim 260$	2800-4225	0.01-0.06
Fe(OH) ²⁺	$240 \sim 380$	150-1650	0.05-0.8
$\operatorname{Fe}_2(\operatorname{OH})_2^{4+}$	350	4106	0.007
Fe(Cl) ²⁺	347	1600	0.5
$\operatorname{Fe(SO_4)}^+$	$280\sim 350$	576–2043	$(1.51-7.28) \times 10^{-3}$
$Fe(C_2O_4)_3^{3-}$	$280 \sim 480$	0–5550	$0.5-0.6(1.0-1.2)^{a}$
Fe(OH)(citrate) ⁻	365	900	0.28-0.29

^a Overall quantum yields for the production of Fe(II)

Photo–Ferrioxalate System

✓ Classical Fenton and photo-Fenton system

Classical Fenton

• $Fe^{2+} + H_2O_2$ → $Fe^{3+} + •OH + OH^-$

Input of high concentration Fe(II)

Production of large iron sludge

Photofenton

♦ $Fe(OH)^{2+} + hv \rightarrow Fe^{2+} + \bullet OH$

- Input of low concentration of Fe(II) or Fe(III) (photochemical recycling)
- Reduced iron sludge production

✓ What is the photo-ferrioxalate system?

A new photo-fenton system using ferric oxalate complexes, which have better photochemical activity and solubility at neutral pH.

Formation of Ferrioxalates (Fe(III)–Oxalato Complexes)

 $\$ Speciation of Fe(III)-oxalato complexes as functions of oxalate concentration (a) and pH (b) ([Fe(III)]_{tot} = 0.1 mM, pH 3 for (a), [oxalate]₀ = 3 mM for (b)).

pН

 $\log[C_2O_4^2]$

High molar absorptivity

High quantum yields for Fe(II) generation

Production of highly reductive radical intermediate ($CO_2^{-\bullet}$) and H_2O_2

Minimized effects of anions

Available at neutral pH

High Molar Absorptivity

✓ Light absorption spectrum of ferrioxalate

- High molar absorptivity and wide light absorption band

High Quantum Yields for Fe(II) Generation

✓ Quantum yields for Fe(II) generation

Ferric-hydroxo complexes

 $Fe^{III}(OH)^{2+} + h_{V} \rightarrow Fe^{2+}$

Ferrioxalate

 $Fe^{III}(C_2O_4)_3^{3-} + h\nu \rightarrow Fe^{2+} + CO_2^{-\bullet}$

 $\text{CO}_2^{-\bullet}$ + $\text{Fe}(\text{C}_2\text{O}_4)_3^{3-} \rightarrow \text{Fe}^{2+}$

Production of CO_2 - and H_2O_2

\checkmark Production of highly reductive radical intermediate (CO₂-•)

Photolysis of ferrioxalate

$$Fe(C_2O_4)_3^{3-} + hv \rightarrow Fe^{2+} + 2C_2O_4^{2-} + C_2O_4^{-}$$

 $C_2O_4^{-\bullet} \rightarrow \textbf{CO}_2^{-\bullet} + CO_2$

Fe(II) generation

 $CO_2^{-\bullet} + Fe(C_2O_4)_3^{3-} \rightarrow Fe^{2+} + CO_2 + 3C_2O_4^{2-}$

H₂O₂ generation

 $\mathbf{CO_2}^{-\bullet} + \mathrm{O_2}(+\mathrm{H^+}) \rightarrow \mathrm{O_2}^{-\bullet}(\mathrm{HO_2}^{\bullet}) + \mathrm{CO_2} \rightarrow \mathrm{H_2O_2}$

Redox couples	E ⁰ (V vs. NHE)
CO ₂ /CO ₂ -•	- 1.9
e^- (CB) on TiO ₂	- 1.5 ~
N ₂ H ₅ ⁺ /NH ₃ OH ⁺	- 1.41
Fe ²⁺ /Fe ⁰	- 0.44

Production of CO_2 - and H_2O_2

Minimized Effects of Anions

Speciation of Fe(III) in the presence of phosphate and oxalate; the speciation change from Fe(III)phosphate to Fe(III)-oxalato complexes as a function of oxalate concentration ([Fe(III)]_{tot}. = 0.1 mM, [Phosphate]₀ = 1 mM, pH = 3.0)

Available at Neutral pH

Jeong and Yoon, 2005 (Water Res.)

1 The effect of pH and oxalate on 2,4-D degradation in photo/ferrioxalate system without H₂O₂ addition ([Fe³⁺]₀ = 10^{-5} M, [2,4-D]₀ = 10^{-5} M, [C₂O₄²⁻]₀ = 0 or 3×10^{-3} M, O₂ bubbling, $I_0 = 3.47 \times 10^{-6}$ Einstein 1^{-1} s⁻¹).

High solubility at neutral pH

Vacuum UV (VUV) Technology

Disinfection & TOC reduction

(Ultrapure water production process, Aquafine Co.)

VUV Lamps

VUV Lamps

Mercury-free Vacuum-(VUV) and UV Excilamps: Lamps of the Future?

VUV Lamps

Excimer lamps

Excimer Wavelengt		Relative Power mW
Ar ₂ *	126 nm	
Kr ₂ *	146 nm	
Xe ₂ *	172 & 175 nm	
ArF	193 nm	60
KrF	248 nm	100
XeBr	282 nm	
XeCl	308 nm	50
XeF	351 nm	45
KrCl	222 nm	25

- Excimer "excited dimer". Basically, this is a pair of atoms with an excited gas atom which in its ground state is usually unconnected (Xe + Xe* = Xe₂* (excimer)).
- Excimers can be formed by noble gases and noble gas/halogen mixtures.
- UV radiation in a very narrow, monochromatic spectral range
- Depending on the gas selected, different narrowband UV spectrums are emitted, mainly in a single spectral line

Bond Dissociation Energy

Average Bond Enthalpies (kJ/mol)											
Single	Single Bonds										
С—Н	413	N—H	391		О—Н	463	1	F—F	155		
C-C	348	N—N	163		0-0	146					
C—N	293	N—O	201		O-F	190		Cl—F	253		
с—о	358	N—F	272		O-Cl	203	(CI—CI	242		
C—F	485	N—Cl	200		O—I	234					
C-Cl	328	N—Br	243				1	Br—F	237		
C—Br	276				S—H	339	1	Br—Cl	218		
C—I	240	н—н	436		S-F	327	1	Br—Br	193		
c—s	259	H—F	567		S-Cl	253					
		H—Cl	431		S—Br	218]	I—Cl	208		
Si—H	323	H—Br	366		s—s	266	1	I—Br	175		
Si—Si	226	H—I	299]	I—I	151		
Si-C	301										
Si—O	368										
Multip	le Bonds										
C=C	614	N=N	418		O2	495					
C≡C	839	N≡N	941				•				
C=N	615				S=O	523					
C≡N	891				s=s	418					
C=O	799										
C≡O	1072										

184.9 nm = 647 kJ/Einstein

253.7 nm = 471 kJ/Einstein

Direct Photolysis by VUV

ε_{H2O} = ca. 50 cm⁻¹ >> ε_{O2} = 0.9 cm⁻¹ (at 1기압)

Water Splitting by VUV

• Primary photochemical processes

 $H_2O + h\nu(< 190 \text{ nm}) \to H^{\bullet} + HO^{\bullet}$ (1) $H_2O + h\nu(< 190 \text{ nm}) \rightarrow H^+ + e^- + HO^{\bullet}$ (2)

(1):
$$\phi_{185nm} = 0.33$$
, $\phi_{172nm} = 0.42$,
 $\phi_{148nm} = 0.7$, $\phi_{124nm} = 1$

(2):
$$\phi_{175\sim 200 \text{nm}} = 0.01 \sim 0.05$$

•	Secondary reactions	
	Reaction	$k (L \text{ mol}^{-1} \text{ s}^{-1})$
	$e_{aq}^- + H_2O \rightarrow H \cdot + OH^-$	1.9×10^{1}
	$e_{aq}^{-} + e_{aq}^{-} \rightarrow H_2 + 2 \text{ OH}^{-}$	$2k = 1.1 \times 10^{10}$
	$e_{aq}^- + H \rightarrow H_2 + OH^-$	2.5×10^{10}
	$e_{sq}^{-} + OH \rightarrow OH^{-}$	3.0×10^{10}
	$e_{sq}^{-} + O^{-} \rightarrow 2 \text{ OH}^{-}$	2.2×10^{10}
	$e_{\mathbf{aq}}^- + \mathbf{H}^+ \rightarrow \mathbf{H}$	2.3×10^{10}
	$e_{aq}^- + H_2O_2 \rightarrow OH^- + OH$	1.1×10^{10}
	$e_{\rm M}^-$ + HO ₂ ⁻ \rightarrow 2 OH ⁻ + ·OH	3.5×10^9
	$e_{aq}^{-} + O_2 \rightarrow O_2^{-}$	1.9×10^{10}
	$e_{\mathbf{aq}}^{-} + \mathbf{O}_2^{-} \rightarrow \mathbf{O}_2^{2-}$	1.3×10^{10}
	$H + H_2O \rightarrow H_2 + OH$	1×10^{1}
	$H_{\cdot} + H_{\cdot} \rightarrow H_{2}$	$2k = 1.55 \times 10^{10}$
	$H + OH \rightarrow H_2O$	$7.0 imes 10^9$
	$H \cdot + OH^- \rightarrow e_{aq}^-$	2.2×10^7
	$H_1 + H_2O_2 \rightarrow OH + H_2O$	9×10^7
	$H_{2} + O_{2} \rightarrow HO_{2}$	2.1×10^{10}
	$H_{2} + HO_{2} \rightarrow H_{2}O_{2}$	$\sim 10^{10}$
	$\cdot OH + \cdot OH \rightarrow H_2O_2$	$2k = 1.1 \times 10^{10}$
	$\cdot OH + \cdot O^- \rightarrow HO_2^-$	$\leq 2 \times 10^{10}$
	$\cdot OH + H_2 \rightarrow H \cdot + H_2O$	4.2×10^{7}
	$\cdot OH + OH^- \rightarrow \cdot O^- + H_2O$	1.3×10^{10}
	$-OH + H_2O_2 \rightarrow H_2O + HO_2$	
	$\Rightarrow O_2 + H^+$	2.7×10^7
	$OH + HO_2^- \rightarrow OH^- + HO_2^-$	
	$\Rightarrow O_2 - H^+$	$7.5 imes 10^{9}$
	$\cdot OH + H_2O_2^+ \rightarrow H_3O^+ + O_2$	1.2×10^{10}
	$OH + HO_2 \rightarrow H_2O + O_2$	6×10^{9}
	$OH + O_2 \rightarrow OH^- + O_2$	8×10^{9}

VUV Intensity Attenuation

- Beer-Lambert absorption law
 - $I / I_0 = 10^{-\epsilon bC}$

- ε: molar aborption coefficient (M⁻¹ cm⁻¹)
 b: optical pathlength (cm)
- C: molar concentration of photon absorber (M)
- UV attenuation
 Linear absorption coeff. (εC) of water = 50?? cm⁻¹ (at 185 nm) and 550 cm⁻¹ (at 172 nm)

Affecting Factors

UV shielding substances (용존 혹은 입자성 물질) (no significant)

Operational conditions of the reactor: Light intensity, flow rate, volume, etc.

Effect of Dissolved Oxygen

• Effect on TOC removal (target compound: methylene blue) (Tasaki et al., 2009)

 Concentration of dissolved oxygen (Heit and Braun, 1996)

Effect of Dissolved Oxygen

Removal of the target compound

```
H_2O + hv (< 200 \text{ nm}) \rightarrow H \bullet + \bullet OH
```

```
RH + \bullet OH \rightarrow R\bullet + H_2O
```

```
Without oxygen,

R \cdot + \cdot H \rightarrow RH

With oxygen,

O_2 + \cdot H \rightarrow HO_2 \cdot

O_2 + R \cdot \rightarrow ROO \cdot
```


Gallic acid degradation by VUV (Quici et al., 2008)

- Dissolved oxygen (DO) also affects the degradation of the target compound.
- DO reacts with •H so that the backward reaction of R• is prevented.

Semiconductor Photocatalysis

TiO₂ Photocatalysis, Why TiO₂?

- Band edge levels: Strong oxidation power of h⁺ & e⁻ capture by oxygen
- 2. Excellent (photo)chemical stability

anodic photocorrosion: MX + nh⁺ \rightarrow Mⁿ⁺ + X

cathodic photocorrosion: MX + ne⁻ \rightarrow M + Xⁿ⁻

3. Availability: One of top 50 mass-produced chemicals

Applications of Semiconductor Photocatalysis

Air purification (Trojan Technologies)

Deordoriser (NHKspring co)

Water purification (Purifics environmental technologies Inc)

Water purification (Photox Bradford)

Source: Prof. W. Choi from POSTECH

Platinized TiO₂

- Enhance electron transfer rate

Platinized TiO₂

✓ Ammonia oxidation by platinized TiO₂

Platinized TiO_2 does not only accelerate the rate of ammonia oxidation, but also alters the oxidation mechanism (N₂ production).

Pristine TiO₂

Platinized TiO₂

Source: Prof. W. Choi from POSTECH

Photo-Cathodic Protection of Metals

Semiconductor Metal photoanode

using a sacrificial anode

new cathodic protection using a semiconductor photoanode

(Park et al., 2001 Chem. Commun., Park et al., 2002, J. Phys. Chem. B)

Photo-Cathodic Protection of Metals

Separation of TiO₂ Particulates

small enough to separate TiO₂ particulates in aqueous media

Photocatalytic Membrane System

Migration of •OH from Illuminated TiO₂ Surface

Migration of •OH from Illuminated TiO₂ Surface

✓ Photodegradation of polymers

Issues about TiO₂ Photocatalysis

✓ Surface modification

Strategies:

- Prevention of hole-electron recombination
- Visible-light utilization

▲ Metal (or nonmetal) doping

▲ Photosensitization

✓ Separation / Immobilization

▲ TiO₂ coating by electrospraying Source: Dr. S.W. Hong from KIST

▲ TiO₂ photocatalysis/membrane hybrid system

Source: Prof. W. Choi from POSTECH

Main components:

- UV lamp
- Quartz sleeve
- Wiper for mechanical cleaning of quartz
 - sleeves to protect against fouling
- UV sensor to control UV output
- Power supply

Source: Ozonia Co. (Aquaray[®] H_2O)

▲ Longitudinal flow system

▲ Cross flow system

Received Fluence (J/m^2) Outlet +2000 Inlet 1600 1200 Outlet **UV Lamp** Model S12Q in the Sleeve 800 Inlet 400 Model S8Q 0 +2000Туре "А" 1600 1200 Outlet Туре "В" 800 400 Inlet Modeling of UV reactor by Computational Fluid Dynamics (CFD) (Elyasi et al., 2006)

(Aquafine Co.)

1 Compound parabolic collectors (CPCs) for sunlight harvesting, a photograph (a) and a cross-sectional diagram (b).

Figures-of-Merit for Photochemical AOPs

- Electrical energy is usually the principal factor in the operating cost of AOT systems.
- For low pollutant concentrations, we use Electrical Energy per Order (EE/O) as the electrical energy (kWh) necessary to reduce the concentration of a pollutant by one order of magnitude in 1000 L of water.
- For high pollutant concentrations, we use Electrical Energy per Mass (EE/M) as the electrical energy (kWh) necessary to remove 1 kg of pollutant. EE/M can also be based on TOC (1 kg of C).

EE/O or EE/M for Several Photo–Fenton Systems

No.	Light source	Conditions	Target	Energy efficiency (EE/O or EE/M)
1	Medium pressure Hg lamp (λ = 200–600 nm)	[Fe(II)] = 10–40 mg/L, [H ₂ O ₂] = 50–500 mg/L, [Target] = 7–100 mg/L, pH = 3.0		EE/O = 1.2–2.9 kWh/order/m ³
		[Fe(III)] = 10–40 mg/L, [Oxalic acid]/[Fe(III)] = 3 (molar basis), [H ₂ O ₂] = 50–500 mg/L, [Target] = 7–100 mg/L, pH = 2.8–3.2	BTX, 1,4-Dioxane, MTBE, TCE, PCE	EE/O = 0.6–1.8 kWh/order/m ³
2		[Fe(II)] = 0.5 mM, [H ₂ O ₂] = 10 mM, [Target] = 30.6 mg/L as TOC, pH = 2.8	Synthetic dve	EE/M = 504.03 kWh/kg TOC
3	Low pressure Hg lamp (λ _{max} = 253.7 nm)	[Fe(II)] = 0.5 mM, [H ₂ O ₂] = 5 mM, [Target] = 25 mg/L, pH = 2.8	wastewater	EE/O = 0.56 kW/order/m ³ EE/M = 750 kWh/kg DOC,
4		[Fe(II)] = 30 mg/L, [H ₂ O ₂] = 3 g/L, [Target] = 2,000 mg/L as COD, pH = 3.0	Olive oil mill wastewater	EE/O = 92.23 kWh/order/m ³
5		$[Fe(II)] = 24.1-25.1 mg/L, [H_2O_2] = 133.2-138.8 mg/L,$ [Target] = 20,000 mg/L		EE/O = 10–140 kWh/order/m ³
6		[Fe(II)] = 0.2 mM, [H ₂ O ₂] = 10 mM, [Target] = 64 mg/L, pH = 3.0	Nonylphenol ethoxylate (NP-10)	EE/O = 1.9 kWh/order/m ³ EE/M = 200 kWh/kg TOC,
7	Commercial UV-A lamp ($\lambda_{max} = 360 \text{ nm}$)	$[Fe(II)] = 4.6 mg/L, [H_2O_2] = 19 mg/L,$ [Target] = 10 mg/L, pH = 3.0	Caffeic acid	EE/O = 31.5 kWh/order/m ³ (90% removal)

<Example 1>

We assume that for a hypothetical contaminant with a molecular weight of 100 g/mol

- 25% of the electrical energy input into a medium pressure UV lamp system produces useful UV photons with an average wavelength of 254 nm.
- 2) $\phi_{OH} = \chi = 1.0.$
- 3) One •OH is required to transform and remove one molecule of contaminant.

Calculate EE/M (kWh/kg) value !

<Solution 1>

One Einstein (one mole) of 254 nm photons contains 0.13 kWh of energy according to

$$\begin{split} \mathsf{E} &= \mathsf{N}_{\mathsf{A}}\mathsf{h}_{\mathsf{V}} = \mathsf{N}_{\mathsf{A}}\mathsf{h}\mathsf{c}/\lambda = (6.02 \times 10^{23}) \times (6.6 \times 10^{-34}) \times (3 \times 10^8)/(254 \times 10^{-9}) \\ &= 469 \text{ kJ} = 0.13 \text{ kWh} \end{split}$$

Considering the energy efficiency, 25% 0.52 kWh of electrical energy produces one Einstein of 254 nm photons.

Since $\phi_{OH} = \chi = 1.0$, 0.52 kWh of electrical energy degrade one mole of the contaminant.

Since the molecular weight of the contaminant is 100 g/mol, 5.2 kWh of electrical energy is required to degrade 1 kg of the contaminant

 \Rightarrow EE/M = 5.2 kWh/kg

<Example 2>

2000 L of a wastewater containing 500 mg/L of total organic carbon (TOC) as phenol is treated for 10 hr with an AOP rated at 30 kW to yield an effulent that is 100 mg/L TOC. Calculate the EE/M value !

<Solution 2> The mass of TOC removed is 2000 (L) x 0.00040 (kg/L) = 0.8 kg TOC Thus the EE/M value is $(30 \times 10)/0.8 = 375$ kWh/kg

<Example 3>

A groundwater containing 20 mg/L of trichloroethylene (TCE) flowing at 8.5 m³/h is treated with an AOP rated at 25 kW. It was found that the effluent concentration of TCE had dropped to 5 ug/L. Calculate the EE/O value !

<Solution 3> The orders of removal is log(20/0.005) = 3.602Thus EE/O value is 25/(8.5 x 3.602) = 0.82 kWh/order/m³