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1. Form Drag and Skin Friction

§ Bed forms can have a profound influence on flow resista
nce, and thus on sediment transport in an alluvial chann
el.

§ Consider, the case of normal flow in a wide rectangular c
hannel. In the presence of bed forms must be

§ Where overbar tau is an effective boundary shear stress, 
where the overbar denotes averaging over the bed forms
, and can be defined as the streamwise drag force per u
nit area.

§ H represents the depth averaged over the bed forms.
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τ b = ρgHS
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1. Form Drag and Skin Friction

§ The effective boundary shear stress consists of two majo
r sources of “skin friction (local shear stress)”, and “form 
drag (pressure)”.

§ The form drag results from the net pressure distribution o
ver an entire bed form.

§ Drag is not directly on the particle itself (since normal to 
surface).

§ Drag appears when flow separates in the lee of the crest
, and this one is substantial (so, skin friction dominant)

3

 

τ b ≡ τ bs +τ bf
τ bs : Skin friction
τ bf : Form drag



Seoul National University

1. Form Drag and Skin Friction

§ The part of the effective shear stress that governs sedim
ent transport is thus seen to be the skin friction.

§ Any equation of the bed-load is to be applied, it is neces
sary to replace the Shields stress by the Shields stress a
ssociated with skin friction only:
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τ s
* = τ bs

ρgRD
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2. Shear Stress Partitions
§ Einstein Partition

– Einstein was the first to recognize the necessity of distingui
shing between skin friction and form drag.

– Where Cf represents a resistance coefficient that includes 
both skin friction and form drag.

– Where Cfs is the frictional resistance coefficient that would 
result if bed forms were absent. In rough turbulent flow

– Hs denotes the depth that would result in the absence of b
edforms
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τ b = ρCfU
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τ bs = ρCfsU
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2. Shear Stress Partitions

§ The purpose of the calculation is to get Hs. In normal flo
w (steady, uniform)

§ Now,

§ If form drag is
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τ b = ρCfU
2 = ρgHS

τ bs = ρCfsU
2 = ρgHsS
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τ bf = ρCffU
2 = ρgH f S

τ bf = τ b −τ bs
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2. Shear Stress Partitions

§ Then the coefficients are
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Cf = Cfs +Cff

H = Hs + H f
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Example Calculations

§

§ Sol) 
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Consider a sand-bed stream at a given cross section with 
a slope of 0.0004, a mean depth of 2.9m, a median bed 
sediment size of 0.35mm and a discharge per unit width 

q =U × H = 4.4m2 / s. Assume that the flow is under near
-normal condition. Compute values of τ bs , τ bf ,Cfs ,Cff , Hs

and H f

 

The mean flow velocity is given by U=4.4/2.9=1.52m/s
An appropriate esimate of ks  for sand-bed steam is 
ks=2.5D50.  First, Hs=1.047, then Hf. From the each depth, 
you may can each shear stress. After this, you can 
get friction coefficietns of each.
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2. Shear Stress Partitions

§ Finally the form-induced Shield stress is

§ The previous case (Example) only 30% of total Shield str
ess is skin Shield stress (which contributes to the transp
ort of sediment).

§ Einstein partition needs the velocity information.
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τ f
* =

τ bf
ρgRD
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2. Shear Stress Partitions (Nelson-Smith Partition)

§ Nelson and Smith (1989) consider flow over a dune; the f
low is taken to separate in the lee of the dune.
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Dffs =
1
2
ρCDBΔUr

2

Dffs  denotes that potion of the streamwise drag force Dfs  that is

due to form drag, B is the width, Ur  is a reference velocity.
CD  is site specific but in the Columbia River 0.21.

τ bf =
1
2
ρCD

Δ
λ
Ur

2 =
Dffs

Bλ
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2. Shear Stress Partitions (Nelson-Smith Partition)

§ The reference velocity Ur is defined to be the mean veloc
ity that would prevail between z=ks and z=Δ if the bed for
ms were not there.

§ From the logarithmic profile

§ It is assumed that a rough logarithmic law with roughnes
s ks prevail from z=ks and z=Δ and from z=Δ to z=H, kc r
epresents an another roughness, presenting a composit
e roughness length, including the effects of both skin or 
grain friction and form drag.  
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2. Shear Stress Partitions (Nelson-Smith Partition)

§ Now there are two velocity distributions exist

§ Nelson and Smith match the above two laws at the level 
z=Δ (the top of the dune). 
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2. Shear Stress Partitions (Nelson-Smith Partition)

§ The partition requires a prior knowledge of total boundar
y shear stress as well as roughness height and dune hei
ght, and wave length

§ From the partition

§ This equation will give skin shear stress and so from fricti
on. With this information using the previous equation of 

§ You can get the composite roughness.
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2. Example

§ Chosen to rather similar to the previous one, let

§ Then                    from

§ , now you can get kc from,  

§ And you can get,   
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H = 2.9m; S = 0.0004; ks = 2.5D50; D50 = 0.35mm,
Δ = 0.4m; λ = 15m

τ b = ρgHS,
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Cf = Cfs +Cff

H = Hs + H f
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2. Example
§ In computing friction coefficients, the flowing relationship 

was used for the depth-averaged velocity

§ Now you can calculate the depth-average flow velocity.
§ In another way, if you know the mean depth averaged ve

locity, you can get friction coefficient for form drag as

§ The Nelson-Smith does not require the assumption o
f quasi-normal flow (Einstein method)
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3. Empirical Formulas for Stage-Discharge Relations

§ To use the partition method, it is necessary to know in ad
vance the total effective boundary shear stress.

§ Therefore, partition itself cannot say anything.
§ The Einstein-Barbarossa Method

– For the case of dune resistance in sand-bed streams. 
– Empirical relation of the following form:

16

Cff = f τ s35
*( )

τ s35
* = τ bs

ρgRD35
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3. Empirical Techniques for Stage-Discharge Relations

§ The friction coefficient for the bed forms declines for incr
easing shear. 

§ Increased intensity of flow causes a decrease in form dra
g (transition from dunes to flat bed).

17
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3. Empirical Techniques for Stage-Discharge Relations

§ We need to find a relation between H and water discharg
e Q. 

§ It is assumed that the river slope S and the sizes D50 and 
D35 are known. The river is taken to be sufficiently wide s
o that the hydraulic radius Rh=H: (Hydraulic radius can b
e sued for the depth).

§ The channel width is

18

B = B(H )
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3. Empirical Techniques for Stage-Discharge Relations

§ So result may be 
plotted in terms o
f H versus Q for t
he desired depth-
discharge relatio
n.
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3. Empirical Techniques for Stage-Discharge Relations

§ With the previous value, we may have the bed-load tran
sport rate.

§ The volumetric bed load transport rate Qb is 

§ This is for the depth-discharge prediction in the sand-be
d streams.

20

τ s
* = τ bs

ρgRD50

Qb = qbB
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3. Stage-Discharge Relations (Engelund-Hansen Method)

§ Sand-bed streams.
§ More accurate than the method of Einstein and Barbaro

ssa.
§ The method assumes quasi-uniform material; it is neces

sary to know only a single grain size D. Roughness heig
ht ks is

§ The method uses the Einstein partition. Skin friction is c
omputed 
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3. Stage-Discharge Relations (Engelund-Hansen Method)

§ The previous equation have two branches.
§ The lower-regime branch is given by

§ Upper branch satisfies the relation

over a range; this implies on upper-regime plane bed. F     
or higher values of Shields stress again exceeds τs* imp     
lying form drag due to the development of antidunes.
§ The procedure rather closely parallels that of the Einstei

n Barbarossa method. It is assumed that values of S an
d D are know, as well as cross-sectional geometry.
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τ s
* = 0.064 + 0.4 τ *( )2

τ s
* = τ *
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3. Stage-Discharge Relations (Engelund-Hansen Method)

§ Values of Hs are selected, ranging from a low value to near b
ank-full.  The calculation then proceeds as follows

§ The value of τs* may then be used to calculate bedload trans
port rates, in a fashion completely analogous to the procedur
e outlined for the Einstein-Barbarossa method. 23
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