5.2 POTENTIAL STEP UNDER DIFFUSION CONTROL

(b) Concentration Profile
= Inversion of the Laplace transformation:
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5.4.1 Voltammetry Based on Linear Diffusion at a Planar Electrode

(a) A Step to an Arbitrary Potential

= Consider the reaction O + ne 2 R in a Cottrell-like experiment at an electrode
where semi-infinite linear diffusion applies
= But this time let us treat potential steps of any magnitude (not sufficiently negative)
= Begin each experiment at a potential at which no current flows
= Att = 0, we change E instantaneously to a value anywhere on the reduction wave
= Assume that charge-transfer kinetics are very rapid, so that

RT. Co(0,1)

E=EY + 28 1p
nF  Cr(0, 1)

B Co(o, I) _ nkF B ‘
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5.4.1 Voltammetry Based on Linear Diffusion at a Planar Electrode

= The governing equations are

IColx, ) 97C o, 1) ICR(x, 1)  3*Cgrlx, 1)
a0 42 a TR 42

Colx,0)=C4 Crx, 0) =0

lim Co(x, 1) = o lim Crx,0) =0

= When we solve using the Laplace transform,

— Ccx
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Cr(x, s) = B(s) e~V Drx



5.4.1 Voltammetry Based on Linear Diffusion at a Planar Electrode

= The flux balance at the surface is

dCo(x, 1) dCRr(x, 1)
DO( ax )X=O+DR( Ix )x 0_0

= Using the Laplace transform,
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5.4.1 Voltammetry Based on Linear Diffusion at a Planar Electrode

= Introduce the assumption of reversibility to evaluate A(s).
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5.4.1 Voltammetry Based on Linear Diffusion at a Planar Electrode

= s Cg cf;*;e—(sfﬂo)‘”x For Cottr:ll equ:tion
X, 8) = -
O h) S(l + 69) Eo(x, S) _ CSO _ CSO e__q /___-S/D()X

= Two equations differ only by the factor 1/(1 + £6) in the second term.
= Since (1 + &0) is independent of x and t

- the current can be obtained exactly as in the treatment of the Cottrell experiment by

evaluating i(s) and then inverting:

Cottrell equation

1/2, % ® nFADYCS
nFADHC ) =
i(f) = iy(f) = 1!2?1!2 O /2§12 (1 + £6)
™

= This relation is the general response function for a step experiment in a reversible

system.

> The Cottrell equation is a special case for the diffusion-limited region, which requires a

very negative E - E% so that 8 > 0.



5.4.1 Voltammetry Based on Linear Diffusion at a Planar Electrode

. nFADYCE
i(t) = iy(t) = — 5
T o 1g(D)
) =17 £0
© nFADY*CS
I =
ﬂ.lfz tlfz (1 + gﬂ)

= Every current-time curve has the same shape
- but its magnitude is scaled by 1/(1 + £8) according to the potential to which the step

IS made.



5.4.1 Voltammetry Based on Linear Diffusion at a Planar Electrode

(c) Concentration Profiles

= Taking the inverse transforms of the below equations yields the concentration profiles:

1/2
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= — Colx, ) = CH — ———erf
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= Cottrell condition
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5.5 Voltammetry For Quasireversible Electrode Reactions

= In contrast with the previous reversible cases, we will treat the one-step, one-electron

reaction O + ne 2 R using the general (quasireversible) i-E characteristic.

» The interfacial electron-transfer kinetics in the quasireversible systems are not fast

enough to use the Nernst equation (Not Nernstian)
= Thus kinetic parameters such as k; k., k% and o influence the responses to potential
steps

- can often be evaluated from those responses.

= The focus in this section is to determine such kinetic information from step experiments



5.5 Voltammetry For Quasireversible Electrode Reactions

Responses Based on Linear Diffusion at a Planar Electrode
(@) Current-Time Behavior

» The current is governed by both mass transfer and charge-transfer kinetics

= The initial conditions (C;=0 at t=0), the semi-infinite conditions, and the flux balance

*

~ CO 12
Co(x, 5) = — + A(s)e ©Po)x
0 ’ ) £ = (Do/Dp)"2

Crlx, 5) = —£ A(s)e™ /PR

= For the quasireversible one-step, one-electron case, we can evaluate A(s) by applying
the condition (Ch. 3):
ke = 40 —af(E—E")
I. &CO(X, f) f ¢ o
pa = Dol g ) THCoO D ~kCrOD k= Ol EED
f=F/RT



5.5 Voltammetry For Quasireversible Electrode Reactions

= Using the Laplace transform,

: ICo(x, 1) aCo(x, . —
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5.5 Voltammetry For Quasireversible Electrode Reactions

= Taking the inverse transform

_— IiCox, )|  FAKCE ‘ o * 2 12
i(s) = FADO[T:L:O = N ’Q(H N /2) i(t) = FAk; Cg exp(H*t) erfc(Ht'*)

= For the case when R is initially present at Cz*

i(1) = FA(keCE — ky, Cpy) exp(H?t) erfc(Ht'?)

> At a given step potential, ki k,, and H are constants

= The product exp(x?)erfc(x) is unity for x = 0, but falls monotonically toward zero as

x becomes large



5.5 Voltammetry For Quasireversible Electrode Reactions

FAk;C},

Figure 5.5.1 Current decay
after the application of a step to a
potential where species O is
reduced with quasireversible

¢ Kkinetics.

= Note that the kinetics limit the current at t = 0 to a finite value proportional to k; (with
R initially absent).

= In principle, k; can be evaluated from the faradaic current at t = 0.

- Since a charging current exists in the moments after the step is applied, the faradaic
component at t = 0 typically would be determined by extrapolation from data taken after

the charging current has decayed



5.5 Voltammetry For Quasireversible Electrode Reactions

(b) Alternate Expression in Terms of n
= If both O and R are present in the bulk, so that an equilibrium potential exists,
- one can describe the effect of potential on the current-time curve in terms of the

overpotential, n.

i(1) = FA(kCl — k, Cp) exp(H?t) erfc(Ht'?)

\ J
|

; , (ch. 3)
MCE — kCh = R [Che VT EED) — 10N E-ED)]

by substituting for k,
. . ; , in terms of iy by
kiCo = k(R = 74 0 [ — o(=elny

(1-a)

i = FAK’CE “ Ccx*
» i = ig[e” M — (1o exp(Hzt) erfo(Ht ')
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5.5 Voltammetry For Quasireversible Electrode Reactions

i = i [e‘_af” — e(l_”)f“] exp(Hzt) erfc(Ht 1"2)

= i = [i in the absence of mass-transfer effects] X [f(H, 1)]

where f(H, t) accounts for the effects of mass transfer.

= For small values of Htl/?
2x

x2
e erfc(x)=1— ——
'ITUZ

= In a system for which R is initially absent,

: : 2H{'?

i(t) = FAk; C§ exp(H?t) erfc(Ht'?) » i = FAkfcg(l - —w—m»)

=>» One can apply a step to the potential region at the foot of the wave (where k;
hence H, is still small)

= Then plot i vs. t1/2, and extrapolate the linear plot to t = 0 to obtain k; from the

Intercept.



5.5 Voltammetry For Quasireversible Electrode Reactions

* In a system containing both O and R initially where E,, is defined.

12
i = ig[e” " — 17V exp(H?t) erfc(Ht %) » i = dg[e™ " — e(lﬂ)fn](l - ZHIIIZ )
o

For small values of Htl/2

= Stepping from E,, to another potential involves a step of magnitude n
= Thus a plot of i vs. t1/2 has as its intercept the kinetically controlled current free of
mass-transfer effects.

> A plot of i,_y vs. n can then be used to obtain i,



5.5 Voltammetry For Quasireversible Electrode Reactions

= For small values of n (Ch. 3),

: Fign 2 12
i =i, [e M — ((1—a)fm exp(Hzt) erfc(Ht 112) » i = —p= exp (H<t) erfc(Ht')

[ = 1’0|:€ “afﬂ_e(l —a)fﬂ:|

i=—igfn

= Then for small n and small Htl/?

) FloT,' 2 12 » . Figm 2 H /2
| = —— exp (H*t) erfc(Ht''*) i=—p1- i

x? 2x
e erfc(x) =1— ——
1,.‘|.l,’2



5.8 CHRONOCOULOMETRY

= To this point, this chapter has concerned either current-time transients stimulated by

potential steps.

= An alternative mode for recording the electrochemical response is to integrate the
current
- obtains the charge passed as a function of time, Q(t)

- Chronocoulometry

= Important experimental advantages:

(a) The measured signal is the integration of currents over time
- hence, offer better signal-to-noise ratios

(b) Contributions to Q(t) from double layer charging and from electrode reactions of
adsorbed species can be distinguished from those due to diffusing electroreactants.
- An analogous separation of the components of a current transient is not generally

feasible.

- This advantage of chronocoulometry is especially valuable for the study of surface

processes.



5.8.1 Large-Amplitude Potential Step

= The simplest chronocoulometric experiment is the Cottrell case with large amplitude of

potential step

= One begins with a quiescent, homogeneous solution of species O, in which a planar
working electrode is held at some potential, E; where insignificant electrolysis takes

place.

= At t = 0, the potential is shifted to E; which is sufficiently negative to enforce a
diffusion-limited current.

- Cottrell equation

= The Cottrell equation describes the chronoamperometric response, and its integral from

t = 0 gives the cumulative charge passed in reducing the diffusing reactant:

1/2 ~3%
i) = i) = AP0 Co = _ 2nFADCH”
d 12,172 Q4 = vy

Integration



5.8.1 Large-Amplitude Potential Step

= Qg rises with time, and a plot of its value vs. t1/? is linear

Q4

_ 2nFAD§*CEt'?

,n.lf2

= The slope of this plot is useful for evaluating any one of the variables n, A, D, or Cg¥,

given knowledge of the others.

= The equation shows that the diffusional component to the charge is zero att = 0

- But, a plot of the total charge Q vs. t¥/2 generally does not pass through the origin

- Additional components of Q arise i) from double-layer charging and ii) from the

electroreduction of any O molecules that might be adsorbed at E;



5.8.1 Large-Amplitude Potential Step

= The charges devoted to these processes are passed very quickly compared to the slow
accumulation of the diffusional component

- hence they may be included by adding two time-independent terms:

_ 2nFADY*CGi'
- 1/2

+ le + HFAFO
aw

> where Qg is the capacitive charge and nFAT, quantifies the faradaic component given

to the reduction of the surface excess, 'y (mol/cm?), of adsorbed O.

= The intercept of Q vs. t1/2 is therefore Qg + nFAT,.





