
5.2 POTENTIAL STEP UNDER DIFFUSION CONTROL

(b) Concentration Profile

▪ Inversion of the Laplace transformation:

▪ The error function complement approaches unity for 

: the steady-state current
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(a) A Step to an Arbitrary Potential

▪ Consider the reaction О + nе ⇄ R in a Cottrell-like experiment at an electrode

where semi-infinite linear diffusion applies

▪ But this time let us treat potential steps of any magnitude (not sufficiently negative)

▪ Begin each experiment at a potential at which no current flows

▪ At t = 0, we change E instantaneously to a value anywhere on the reduction wave

▪ Assume that charge-transfer kinetics are very rapid, so that
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▪ The governing equations are
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▪ When we solve using the Laplace transform,
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▪ The flux balance at the surface is

▪ Using the Laplace transform,



▪ Introduce the assumption of reversibility to evaluate A(s).
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▪ Two equations differ only by the factor 1/(1 + ��) in the second term.

▪ Since (1 + ��) is independent of x and t

� the current can be obtained exactly as in the treatment of the Cottrell experiment by 

evaluating i(s) and then inverting:
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Cottrell equation

For Cottrell equation

▪ This relation is the general response function for a step experiment in a reversible

system. 

� The Cottrell equation is a special case for the diffusion-limited region, which requires a 

very negative E - E0’ so that θ � 0.



▪ Every current-time curve has the same shape

� but its magnitude is scaled by 1/(1 + ��) according to the potential to which the step 

is made.
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(c) Concentration Profiles

▪ Taking the inverse transforms of the below equations yields the concentration profiles:
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▪ Cottrell condition 



▪ In contrast with the previous reversible cases, we will treat the one-step, one-electron 

reaction О + nе ⇄ R using the general (quasireversible) i-E characteristic. 

▪ The interfacial electron-transfer kinetics in the quasireversible systems are not fast 

enough to use the Nernst equation (Not Nernstian)

▪ Thus kinetic parameters such as kf, kb, k0 and α influence the responses to potential 

steps 

� can often be evaluated from those responses.

▪ The focus in this section is to determine such kinetic information from step experiments

5.5 Voltammetry For Quasireversible Electrode Reactions



Responses Based on Linear Diffusion at a Planar Electrode

(a) Current-Time Behavior

▪ The current is governed by both mass transfer and charge-transfer kinetics

▪ The initial conditions (CR=0 at t=0), the semi-infinite conditions, and the flux balance
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▪ For the quasireversible one-step, one-electron case, we can evaluate A(s) by applying

the condition (Ch. 3):
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▪ Using the Laplace transform,
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▪ Taking the inverse transform

▪ For the case when R is initially present at CR*

� At a given step potential, kf, kb, and H are constants

� The product exp(x2)erfc(x) is unity for x = 0, but falls monotonically toward zero as 

x becomes large



▪ Note that the kinetics limit the current at t = 0 to a finite value proportional to kf (with 

R initially absent). 

▪ In principle, kf can be evaluated from the faradaic current at t = 0. 

� Since a charging current exists in the moments after the step is applied, the faradaic 

component at t = 0 typically would be determined by extrapolation from data taken after 

the charging current has decayed
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(b) Alternate Expression in Terms of η

▪ If both О and R are present in the bulk, so that an equilibrium potential exists, 

� one can describe the effect of potential on the current-time curve in terms of the 

overpotential, η.
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(Ch. 3)

by substituting for k0

in terms of i0 by



� i = [i in the absence of mass-transfer effects] X [f(H, t)]

where f(H, t) accounts for the effects of mass transfer.
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▪ For small values of Ht1/2,

� One can apply a step to the potential region at the foot of the wave (where kf, 

hence H, is still small)

� Then plot i vs. t1/2, and extrapolate the linear plot to t = 0 to obtain kf from the 

intercept.

▪ In a system for which R is initially absent, 
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▪ In a system containing both О and R initially where Еeq is defined.

For small values of Ht1/2

▪ Stepping from Eeq to another potential involves a step of magnitude η

▪ Thus a plot of i vs. t1/2 has as its intercept the kinetically controlled current free of 

mass-transfer effects.

� A plot of it=0 vs. η can then be used to obtain i0
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▪ For small values of η (Ch. 3),

▪ Then for small η and small Ht1/2



▪ To this point, this chapter has concerned either current-time transients stimulated by 

potential steps. 

▪ An alternative mode for recording the electrochemical response is to integrate the 

current

� obtains the charge passed as a function of time, Q(t)

� Chronocoulometry

▪ Important experimental advantages: 

(a) The measured signal is the integration of currents over time

� hence, offer better signal-to-noise ratios

(b) Contributions to Q(t) from double layer charging and from electrode reactions of 

adsorbed species can be distinguished from those due to diffusing electroreactants. 

� An analogous separation of the components of a current transient is not generally 

feasible. 

� This advantage of chronocoulometry is especially valuable for the study of surface 

processes.
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▪ The simplest chronocoulometric experiment is the Cottrell case with large amplitude of 

potential step

▪ One begins with a quiescent, homogeneous solution of species O, in which a planar

working electrode is held at some potential, Ei where insignificant electrolysis takes

place. 

▪ At t = 0, the potential is shifted to Ef, which is sufficiently negative to enforce a

diffusion-limited current. 

� Cottrell equation 

▪ The Cottrell equation describes the chronoamperometric response, and its integral from 

t = 0 gives the cumulative charge passed in reducing the diffusing reactant:

5.8.1 Large-Amplitude Potential Step

integration



▪ Qd rises with time, and a plot of its value vs. t1/2 is linear

▪ The slope of this plot is useful for evaluating any one of the variables n, A, DO, or CO*, 

given knowledge of the others.

▪ The equation shows that the diffusional component to the charge is zero at t = 0

� But, a plot of the total charge Q vs. t1/2 generally does not pass through the origin

� Additional components of Q arise i) from double-layer charging and ii) from the 

electroreduction of any О molecules that might be adsorbed at Ei
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▪ The charges devoted to these processes are passed very quickly compared to the slow 

accumulation of the diffusional component

� hence they may be included by adding two time-independent terms:

� where Qdl is the capacitive charge and nFAΓO quantifies the faradaic component given 

to the reduction of the surface excess, ΓO (mol/cm2), of adsorbed O.

▪ The intercept of Q vs. t1/2 is therefore Qdl + nFAΓO.




