IV. REACTOR MODEL

1. Reactors

- Reactors : Batch reactors vs. Continuous-flow reactors
- Completely stirred tank reactor (CSTR or CMF, Completely mixed flow reactor, CFSTR, Continuous flow stirred tank reactor) and Plug-flow reactor

1.1 Introduction on Reactor Models

Batch reactor

- no flow in or out (no transport across the boundary of the reactor)
- Contents are mixed.
- may contain a single or multiple fluids (e.g., air and water)
- Species concentrations within the reactor change with time because of (1) transformation or (2) phase changes across a fluid interface.

Completely stirred tank reactor

- Generally constant flow in and out
- Contents are thoroughly mixed (Perfect mixing assumption).
- Concentration of a species in the effluent is equal to its concentration throughout the reactor.
- The analysis of a CSTR is based on (1) a mass balance on species within the fluid in the reactor accounting for processes, as well as (2) mass transport into and (3) out of the reactor.

Plug-flow reactor

- A tube through which fluid flows
- Assumptions: (1) ,
 (2) , and
 - (3)
- The analysis of PFR involves (1) considering processes, and (2) advection along the axis of the tube.
- (1) and (2) (or) are the most important key concepts for the reactor modeling.

1.2 Reactor Material Balances

Material balance equation follows this general form

Accumulation rate = Inflow rate – Outflow rate \pm Net transformation rate Net transformation rate : gain "+" and loss "-"

> Inflow rate = $Q_{in} \cdot C_{in}$ Outflow rate = $Q_{out} \cdot C_{out}$ Accumulation rate = $\frac{d(C \cdot V)}{dt}$

dt

where Q_{in} = flow rates of fluid in [L³/T];

 Q_{out} = flow rate of fluid out [L³/T];

 C_{in} = concentration of species in the inflow [M/L³] or [moles/L³];

 C_{out} = concentration of the species in the outflow [M/L³] or [moles/L³];

C = concentration of the species $[M/L^3]$ or $[moles/L^3]$;

V = fluid volume $[L^3]$; and

T = elapsed time [T].

For general chemical reactions,

Net transformation rate = $r \cdot V$

where r = net rate of production of species concentration due to the reaction $[M/T,L^3]$ or $[moles/T,L^3]$.

For examples, $r = -k_0$ (for zero order reaction);

 $r = -k_1 \cdot C$ (first order reaction); and

 $r = -k_2 \cdot C^2$ (second order reaction).

For flux across fluid interface,

Net transformation rate = $J_{gl} \cdot A$

where J_{gl} = the species flux across the interface area [M/L²] or [moles/L²]; and A = interface area [L²].

Residence time, $\boldsymbol{\theta}$

Mean residence time of fluid molecule (hydraulic retention time in the water-based system)

$$\theta = \frac{V}{Q}$$

1.3 Reactor Models

Batch Reactor

$$\frac{d(C \cdot V)}{dt} = \text{net transformation rate} = r \cdot V$$
$$\frac{dC}{dt} = r \text{ or } \frac{d(C \cdot V)}{dt} = J \cdot A$$

EXAMPLE 5.A.2 Species Decay in a Batch Reactor as a Function of Reaction Order

A species is placed in a batch reactor, where it decays by either a zeroth-, first-, or second-order reaction. Derive equations to describe the change in species concentration and characteristic times in each case. Plot the results.

Zeroth order:	$C(t) = C(0) - k_0 t$	$t \le C(0)/k_0$
	C(t) = 0	$t > C(0)/k_0$
First order:	$C(t) = C(0) \exp(-kt)$	$z_1 t)$
Second order:	$C(t) = \frac{C(0)}{1 + 2k_2 t C(0)}$	<u>,</u>

Characteristic times for each case can be calculated by dividing the initial stock by the initial rate of decay as follows:

Figure 5.A.5 Change in species concentration as a function of time in a batch reactor in response to (a) zeroth-, (b) first-, and (c) second-order decay. In each case, a characteristic time for the reaction to proceed to completion is indicated on the x-axis.

CSTR

$$\frac{d(C \cdot V)}{dt} = Q \cdot C_{in} - Q \cdot C + r \cdot V$$

Since V = constant

$$\frac{\mathrm{dC}}{\mathrm{dt}} = \frac{1}{\theta} \cdot \left(\mathbf{C}_{\mathrm{in}} - \mathbf{C} \right) + \mathbf{r}$$

where θ = V/Q

If there is no reaction occurred in the reactor (just

$$\frac{dC}{dt} = \frac{1}{\theta} \cdot (C_{in} - C)$$
$$\int_0^C \frac{dC}{C_{in} - C} = \frac{1}{\theta} \cdot \int_0^t dt$$
$$C = C_{in} \cdot (1 - e^{-t/\theta})$$

Under steady state conditions (dC/ct = 0), a time dependent solution, C(t) is not required. For example, a zero order reaction

$$\frac{dC}{dt} = 0 = \frac{1}{\theta} \cdot (C_{in} - C) + r$$
$$\frac{1}{\theta} \cdot (C_{in} - C) = k_0$$
$$C = C_{in} - k_0 \cdot \theta$$

<u> PFR</u>

$$\frac{\partial \left(\mathbf{C} \cdot \Delta \mathbf{V} \right)}{\partial t} = \mathbf{U} \cdot \mathbf{A} \cdot \mathbf{C}(\mathbf{x}, t) - \mathbf{U} \cdot \mathbf{A} \cdot \mathbf{C}(\mathbf{x} + \Delta \mathbf{x}, t) + \mathbf{r} \cdot \Delta \mathbf{V}$$

Since $\Delta V = A \cdot \Delta x$

$$\frac{\partial C(x,t)}{\partial C} = \frac{U \cdot C(x,t) - U \cdot C(x + \Delta x, t)}{\Delta x} + r$$
$$\frac{\partial C(x,t)}{\partial t} = -U \cdot \frac{\partial C(x,t)}{\partial x} + r$$

Under a steady state condition, the concentration is solely a function of position, x.

$$\frac{\partial C(x,t)}{\partial t} = 0 \quad \text{and} \quad U \cdot \frac{dC(x)}{dx} = r$$

Figure 5.A.12 Schematic of an idealized plug-flow reactor and the control volume used for writing a material balance.

Comparison between CSTR and PFR

How will the total number of gray and spotted marbles in the two reactors change over time?

EXAMPLE 5.A.10 Comparing CMFR and PFR Performance

Reactor performance is often characterized by calculating the ratio of the outlet concentration to the inlet concentration under steady-state conditions. Given fixed mean residence times, Θ , compare reactor performance for a CMFR and a PFR for contaminants that undergo zeroth-order, first-order, and second-order decay reactions.

SOLUTION Each of the required results has been calculated in Examples 5.A.5 and 5.A.9. The results are summarized in Table 5.A.1 and Figure 5.A.16.

For the case of a zeroth-order reaction, the reactor configuration does not affect performance: The CMFR and the PFR yield the same results. For all positive reaction orders, though, greater conversion is obtained in a PFR than in a CMFR. The difference in performance is negligible if the overall conversion is small ($C_{out}/C_{in} \sim 1$), but the difference becomes progressively greater as conversion increases ($C_{out}/C_{in} \rightarrow 0$).

Table 5.A.1	Comparison of	of the	Steady-State	Performance
of CMFRs and	d PFRs			

	$C_{\rm out}/C_{\rm in}$				
Reaction order	r	CMFR	PFR		
Zeroth ^a	$-k_0$	$1-rac{k_0\Theta}{C_{ ext{in}}}$	$1 - rac{k_0 \Theta}{C_{ m in}}$		
First	$-k_1C$	$\frac{1}{1+k_1\Theta}$	$\exp(-k_1\Theta)$		
Second	$-2k_2C^2$	$\frac{(8k_2\Theta C_{\rm in}+1)^{1/2}-1}{4k_2\Theta C_{\rm in}}$	$\frac{1}{1+2k_2\Theta C_{\rm in}}$		

^aExpressions are valid provided that $k_0 \Theta \leq C_{in}$; otherwise, $C_{out} = 0$.

Figure 5.A.16 Steady-state reactor performance, comparing the outlet to inlet concentration ratio for a CMFR and a PFR for a species decaying by a homogeneous reaction of (a) first order or (b) second order.

