

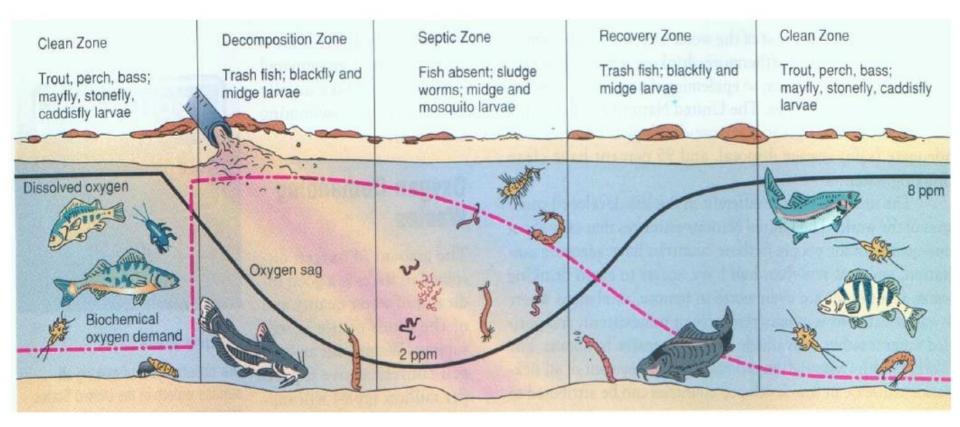
Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

Water Pollution-4 -Surface Water Quality

Changha Lee

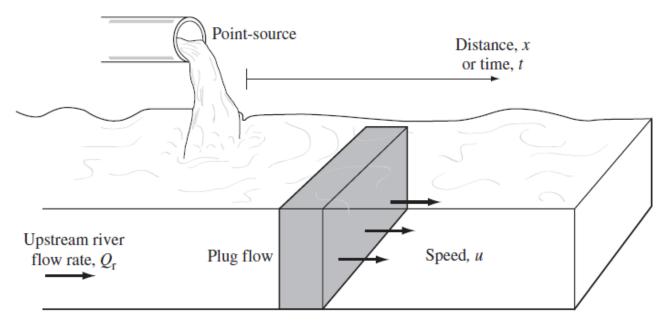
School of Chemical and Biological Engineering Seoul National University

Oxygen Depletion in Rivers


$\sqrt{\rm Oxygen}$ Depletion in Rivers

- River health is directly related to DO concentration profile.
- The critical level for DO is ~3 mg/L.
- No fish will survive if DO < 1 mg/L.
- Lower DO: floating sludge, odors and fungal growth
- Factors Affecting DO profile:

Sources	Sinks		
Atm. Reaeration	Discharge (BOD) respiration		
Photosynthesis	Nitrification		
Advection (confluence)	Benthal O ₂ demand (sediments)		


• Temperature also a factor (less DO at high T)

DO Sag Curve and Aquatic Wildlife

DO Model: Discharge and Mixing

$\sqrt{\text{Consider a waste discharge mixing with a stream flow}}$

$$L_o = \frac{Q_w L_w + Q_r L_r}{Q_w + Q_r} = \text{BOD of mixed stream } (x = 0)$$

 L_0 = ultimate BOD of the mixture of streamwater and wastewater (mg/L) L_r = ultimate BOD of the river just upstream of the point of discharge (mg/L) L_w = ultimate BOD of the wastewater (mg/L) Q_r = volumetric flow rate of the river just upstream of the discharge point (m³/s) Q_w = volumetric flow rate of wastewater (m³/s)

DO Model: Discharge and Mixing

 Initial DO deficit (D₀) in combined flow is the saturation value minus the actual DO.

Do not confuse DO with D₀

$$D_0 = DO_{sat} - \frac{Q_w(DO_w) + Q_r(DO_r)}{Q_w + Q_r}$$

 $D = \text{dissolved oxygen deficit} = (DO_s - DO)$ $DO_s = \text{saturated value of dissolved oxygen}$ DO = actual dissolved oxygen at a given location downstream

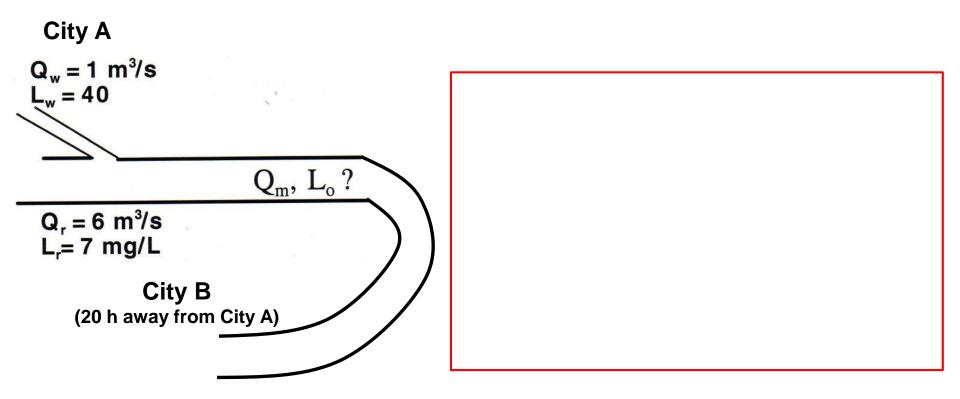
DO Model: Deoxygenation

 $\sqrt{O_2}$ depletion is primarily due to heterotrophic respiration.

- Deoxygenation can occur rapidly and results in an oxygen deficit (relative to typical levels)
- Deoxygenation rate (proportional to BOD) = $k_d L_t = k_d L_0 exp(-k_d t) = dD/dt$

Recall the BOD degradation rate

$$\frac{dL_t}{dt} = kL_t$$


$$k = k_a$$

$$L_t = L_o e^{-kt}$$

 k_d = deoxygenation rate coefficient (\approx k) L_o = ultimate carbonaceous biochemical O₂ demand

Example

River was characterized as BOD = 7 mg/L, flow = 6 m³/s.
Discharge into the river at City A: BOD = 40 mg/L, inflow = 1 m³/s.
What is the BOD just after discharge and at city B, 20 hours after discharge at City A? (k_d = 0.15 d⁻¹)

DO Model: Reaeration

 $\sqrt{\text{Primarily a function of gas exchange with atmosphere.}}$

- Oxygen dissolves in water, and equilibrium (saturated) concentration follows Henry's law
- Assume that the rate of reaeration is proportional to the oxygen deficit (D)

D = saturated DO - actual DO = $DO_s - DO$ DO is f(T, atm, Cl⁻)

Rate of reaeration $= k_{\rm r}D$

 $k_{\rm r}$ = reaeration constant (time⁻¹)

Temperature (°C)	Chloride Concentration in Water (mg/L)			
	0	5,000	10,000	15,000
0	14.62	13.73	12.89	12.10
5	12.77	12.02	11.32	10.66
10	11.29	10.66	10.06	9.49
15	10.08	9.54	9.03	8.54
20	9.09	8.62	8.17	7.75
25	8.26	7.85	7.46	7.08
30	7.56	7.19	6.85	6.51

Solubility of Oxygen in Water (mg/L) at 1 atm Pressure

Source: Thomann and Mueller, 1987.

DO Model: Reaeration

Reaeration rate = k_rD

- Where k_r = reaeration coefficient (depends on mixing and flow rate)

$$k_r = \frac{3.9\sqrt{u}}{H^{\frac{3}{2}}}$$

- $\mathbf{k}_{\mathbf{r}}$ reaeration rate (1/day)
- u average stream velocity (m/s)
- **H** average stream depth (m)

0.1 to 0.23/day for small pounds0.69 to 1.5/day for swift streams

• Generally slower than DO consumption (i.e., deoxygenation) when the BOD is high (e.g., near the discharge point).

DO Model: Deoxygenation & Reaeration

 $\sqrt{\text{The combination of the deoxygenation}}$ and reaeration rates represent the O₂ behavior.

Assumptions

- Mixing occurs across the river cross-section y and z
- No mixing in *x* direction (no dispersion in flow direction)
- Point source, plug flow conditions:
 Solution to plug flow is the first order expression

Streeter–Phelps Oxygen Sag Equation

• Rate of increase of oxygen deficit = rate of deoxygenation – rate of reaeration

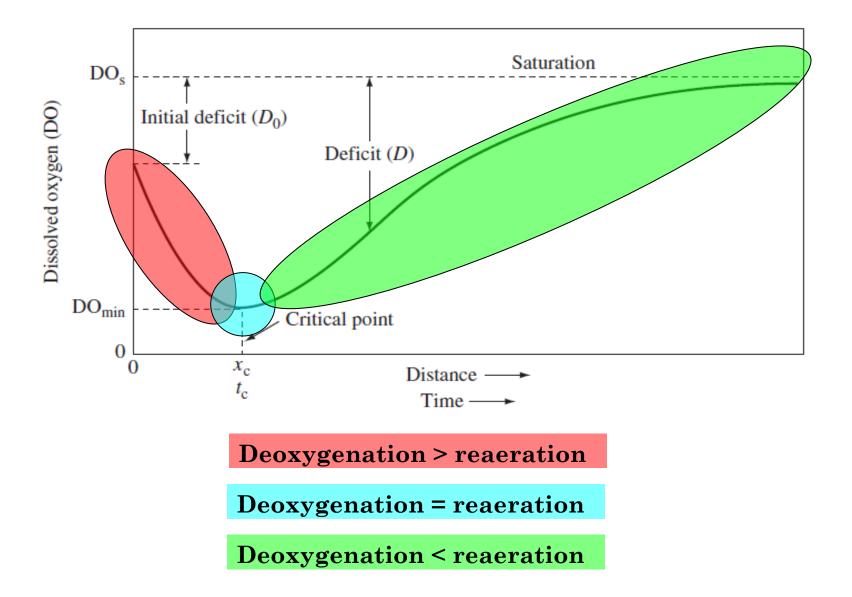
$$\frac{dD}{dt} = k_d L_o e^{-k_d t} - k_r D$$

• Solution:

$$D = \frac{k_d L_o}{k_r - k_d} (e^{-k_d t} - e^{-k_r t}) + D_o e^{-k_r t}$$

D_o: initial DO deficit of river-sewage mixture

Streeter-Phelps Equation


- Quantify Deficit (in dissolved oxygen) progressing downstream (in terms of time or distance)
- Distance is easier to conceptualize and can be easily substituted

Distance = (velocity) x (time)

$$x = u \times t$$

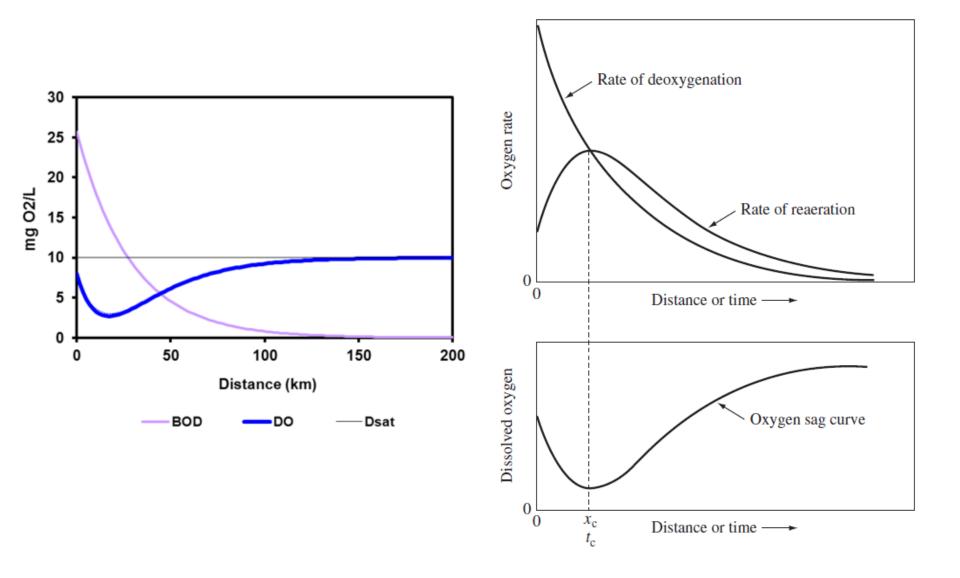
$$D = \frac{k_{d}L_{0}}{k_{r} - k_{d}} (e^{-k_{d}x/u} - e^{-k_{r}x/u}) + D_{o} e^{-k_{r}x/u}$$

Streeter-Phelps Equation

Streeter-Phelps Equation

Deoxygenation > reaeration at the beginning

$$\frac{dD}{dt} = k_d L_o e^{-kt} - k_r D$$


 At some point the rates are equal – this is when DO is a minimum (determined by setting dD/dt = 0)

Critical point,

$$t_{c} = \frac{1}{k_{r} - k_{d}} \ln \left(\frac{k_{r}}{k_{d}} \left[1 - \frac{D_{o} \left(k_{r} - k_{d} \right)}{k_{d} L_{o}} \right] \right)$$

• Later, deoxygenation rate decreases (with BOD) and reaeration becomes faster.

DO Sag Curve and BOD Profile

Example

• Where will the critical point occur if

 $L_o = BOD$ of river/sewage mix = 10.9 mg/L

DO at mix. point = 7.6 mg/L

u = 0.3 m/s, depth = 3.0 m

 $T = 20 \ ^{\circ}C, \ k_{d} = 0.2 \ /day$

$$t_{c} = \frac{1}{k_{r} - k_{d}} \ln \left(\frac{k_{r}}{k_{d}} \left[1 - \frac{D_{o} \left(k_{r} - k_{d} \right)}{k_{d} L_{o}} \right] \right)$$

Temperature (°C)	Chloride Concentration in Water (mg/L)			
	0	5,000	10,000	15,000
0	14.62	13.73	12.89	12.10
5	12.77	12.02	11.32	10.66
10	11.29	10.66	10.06	9.49
15	10.08	9.54	9.03	8.54
20	9.09	8.62	8.17	7.75
25	8.26	7.85	7.46	7.08
30	7.56	7.19	6.85	6.51

Solubility of Oxygen in Water (mg/L) at 1 atm Pressure

Source: Thomann and Mueller, 1987.

Example (Solution)

First, we need to find k_r and D_o

For k_r use the O'Connor-Dobbins empirical formula

$$k_r = \frac{3.9\sqrt{u}}{H^{3/2}} = \frac{3.9 \text{ u}^{1/2}}{H^{3/2}} =$$

To find the critical point

=

$$t_{c} = \frac{1}{k_{r} - k_{d}} \ln \left(\frac{k_{r}}{k_{d}} \left[1 - \frac{D_{o} \left(k_{r} - k_{d} \right)}{k_{d} L_{o}} \right] \right)$$

with the given flow rate and stream size

$$x = u t$$

• What will be the minimum DO in this river? Could find the minimum DO value

 $t_c = 2.67 \text{ days}$

Using the oxygen sag equation with this value of t, we find that the maximum oxygen deficit is 3.1 mg/L.

$$D = \frac{k_d L_o}{k_r - k_d} (e^{-k_d t} - e^{-k_r t}) + D_o e^{-k_r t}$$

If the deficit is 3.1 mg/L and DO saturation is 9.1 mg/L

 $DO_{min} = 9.1 - 3.1 = 6.0 \text{ mg/L}$

Remarks

- The model can be used to determine the assimilative capacity of rivers, or to set permits for sewage discharge.
 - -If the proposed discharge results in DO that is too low, allowed sewage is should be reduced (lower BOD concentration and/or inflow rate).
- Temperature effects are important in hot weather the DO_{sat} is lower and respiration is faster.
- More complex models consider photosynthesis and diurnal variations (sine functions). Other factors such as benthal DO demand by sludge and nitrification can also be considered.

Water Quality of Lakes & Reservoirs

 Lakes and Reservoirs require special attention because they are not moving or flowing (no easy flushing) so inputs and oxygenations process have different effects

Oligotrophic

- A new body of water (young lake)
- "little nutrients"

• Eutrophic

- "well fed"
- Phytoplankton grow and die (drop to the bottom)
- Organic matter decays, using up oxygen
- Silt and organic matter accumulate at bottom
 - \rightarrow lake becomes more shallow and warms up
 - \rightarrow also becomes murky
 - \rightarrow eventually becomes a marsh or a bog
- Eutrophication: natural aging process takes thousands of years.

How Do Humans Affect Eutrophication?

- Generation of:
 - municipal wastewater
 - industrial wastes
 - agricultural runoff

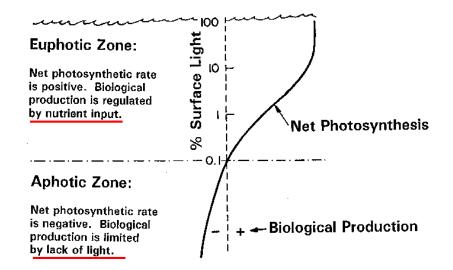
 Accelerated eutrophication due to human activities
 = <u>cultural eutrophication</u>

All these inputs stimulate algae growth

How Do Humans Affect Eutrophication

$\sqrt{\mathbf{Result} \mathbf{of} \mathbf{eutrophication}}$:

- Algae blooms
 - Odor & taste problems
 - Algal toxins (e.g., microcystin)
 - DO consumed with algal decay
- Low dissolved oxygen may drive out fish
- Anaerobic conditions odor (H₂S), dissolution of heavy metals pH drop due to fatty acids


$\sqrt{}$ Sunlight

- Sunlight affects photosynthesis (algae need light).
- Oligotrophic lakes (e.g.,. Lake Tahoe)
 - Clear and photosynthesis occurs down to 100 m +
- Eutrophic lakes
 - Murky and photosynthesis may be limited to upper layer.
- Layers based on photosynthesis activity
 - Euphotic Zone:

 O_2 input by photosynthesis > O_2 removed by respiration

- Aphotic Zone:

little light (little photosynthesis, mainly benthic activity)

√ Nutrient

- Many nutrients are important to life
 - C, N, P, S, Ca, Mg, K, Se, Pb, Zn, Cu....
 - To control algae growth we can control nutrient levels, but which one(s)?

phosphorus (P) or nitrogen (N)

- Liebig's Law of the Minimum
 - Total biomass of any organism is determined by the nutrient present in the <u>lowest concentration</u> relative to the organism's stoichiometric requirement (which is determined by the organism's elemental composition)

√ Nutrient

- If you determine which is the <u>limiting nutrient</u> and make it scarcer, the algae population will be reduced.
- Eutrophic lakes have primarily blue-green algae (cyanobacteria), which can get N from the atmosphere
 - Need to focus on limiting P
 - 0.01 mg/L-P "acceptable"
 - 0.02 mg/L-P "excessive" \rightarrow cause algal blooms
- Very deep lakes
 - Less recirculation of P, tend to be oligotrophic.

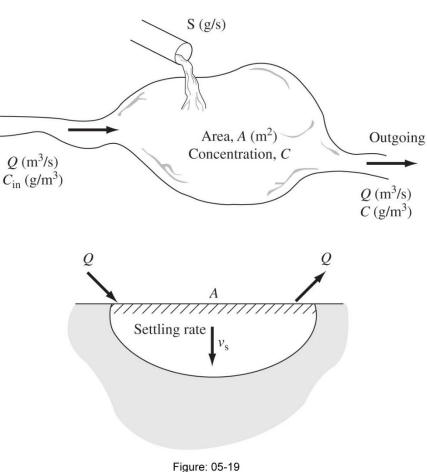
$\sqrt{}$ Nutrient

- Consider empirical elemental composition of algae:
 - $-\ C_{106}H_{263}O_{110}N_{16}P$
- N/P = 16 × (14 g/mol) / 1 × (31 g/mol) = 7.2
 - For every 7.2 g of N utilized, 1 g of P is used
- Rule of thumb:

 $N/P > 10 \rightarrow P$ is limiting $N/P < 5 \rightarrow N$ is limiting

- No algae blooms will occur if:
 - P < 0.015 mg/L
 - N < 0.3 mg/L</p>

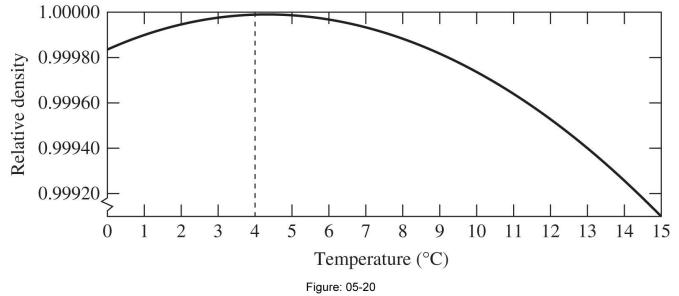
$\sqrt{10}$ Phosphorus


 For well mixed lakes at steady state, small S, and Q_{in} = Q_{out}, sink term is mainly due to settling

Rate of P addition = Rate of P removal

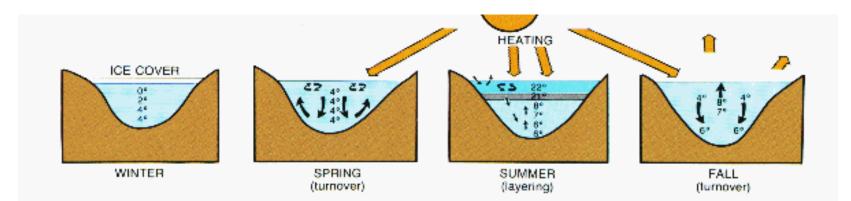
$$QC_{in} + S = QC + v_SAC$$

$$C = \frac{QC_{in} + S}{Q + v_s A}$$


S = rate of P addition from all point-source(s) (g/s) Q = inflow/outflow rate from lake (m³/s) $V_s = P$ settling rate (m/s) A = surface area of lake (m²) C = concentration of phosphorus (g/m³)

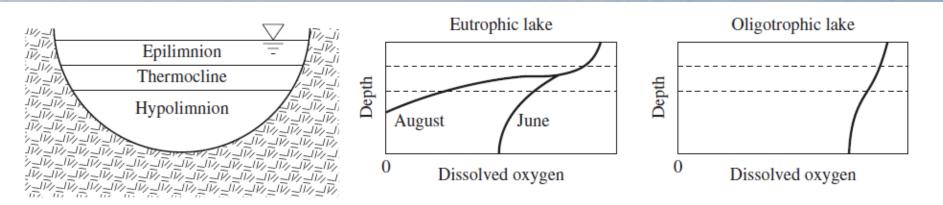
Copyright © 2008 Pearson Prentice Hall, Inc.

$\sqrt{1}$ Temperature


- Temperature affects water density.
 - Water has a maximum density at 4 degrees C
- Density \downarrow for T < 4°C
- Density \downarrow for T > 4°C

Copyright © 2008 Pearson Prentice Hall, Inc.

Thermal Stratification


- In the summer:
 - Water is warmed by the sun > 4° C
 - Top layer warms up, becomes less dense than bottom layer
 - \rightarrow Top warmer layer stays at the top of the lake
- In the winter:
 - Top water is colder than 4°C
 - As top layer cools, it becomes less dense than bottom layer
 - \rightarrow Top layer (ice) stays at top of the lake
- In both extremes, there is little vertical mixing due to temperature related density differences – this is known as <u>thermal stratification</u>

Thermal Stratification

- To get from summer temperature profile to the winter temperature profile (and vice versa), top layer must pass through a point when the temperature is 4°C (denser, sinks and displaces bottom layer water which rises)
- This allows for periodic mixing (and nutrient recycling) in climates where it gets cold enough to freeze and/or warm enough to thaw.
- Due to thermal stratification, the warm and cold parts of the lake act independently

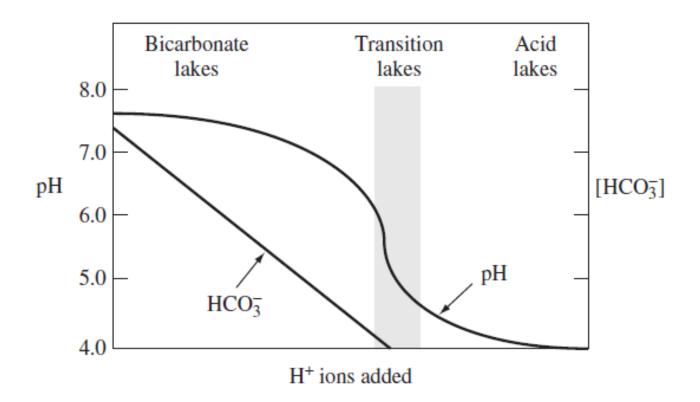
Thermal Stratification

- Epilimnion (usually) upper warmer layer, uniform T, mixing is affected by waves and wind
- Hypolimnion cold, lower layer
- Transition happens in the thermocline/metalimnion

$\sqrt{1000}$ How does this stratification affect DO?

- For both eutrophic and oligotrophic lakes, warm upper layer (epilimnion) can get oxygen from reaeration and photosynthesis
- In the hypolimnion, DO only from photosynthesis, this may happen in a oligotrophic lake but unlikely in a eutrophic (turbid) lake

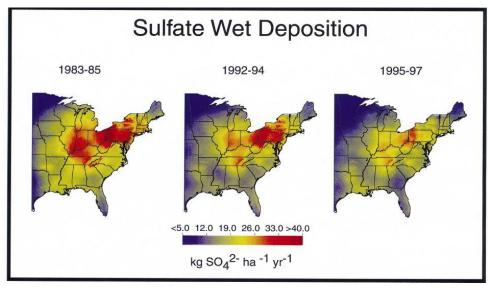
Acidification


- Rainwater in equilibrium with CO₂ has a pH of 5.5
- Northeastern US rain can have a pH < 4
- California fogs have pH around 3
- Low pH values primarily due to S and N oxide emissions (generate sulfuric and nitric acid)
- The term acid deposition includes both acid rain and the deposition of acid gases and particles
- Acid deposition effects
 - Materials : attacks marble, limestone as well as metals
 - Terrestrial ecosystems : stresses plants, hinders growth
 - Aquatic ecosystems : fish & aquatic life

Acid Rain

- If the pH of a lake falls below 5.5, aquatic life becomes stressed.
- Few species will survive in a pH below 5.
- Some lakes have natural buffers or chemicals to neutralize the H⁺
- Carbonates are important buffers: $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- As H⁺ is added to the aquatic system, carbonic acid is formed and pH does not change if there is an infinite source of bicarbonate (buffering).
- There is a documented correlation between the pH and the fish population
 - Bicarbonate lakes are well populated.
 - Many acidic lakes are barren.

Bicarbonate buffering strongly resists acidification until pH drops below 6.3.
 As more H⁺ ions are added, pH decreases rapidly after the point.



- What determines the bicarbonate concentration and vulnerability to acidification?
 - Soils, size of water body, vegetation and geography
- Soils are important because they are the source of limestone for buffering; lakes with calcareous soils (lots of limestone) are well neutralized
- Soils of nearby land are also important
 - If soils are thin and impermeable, the runoff will enter the water body with little contact between the precipitation and natural buffers
- Local vegetation can also affect acidification
 - Deciduous trees (loose leaves annually) tend to decrease acidity
 - Conifers (pine trees) tend to increase it

- Acidification also has effects on <u>heavy metal mobility</u>.
 - Metals dissolve as the pH drops

e.g., Gibbsite Al(OH)₃ + 3 H⁺ \leftrightarrow Al³⁺ + 3H₂O

- Aluminum is toxic to fish, and even if the pH doesn't kill them the aluminum could.
 - Air pollution control is mitigating acid rain

