

Contents
☑ Ch. 1 Introduction to Ship Stability
☑ Ch. 2 Review of Fluid Mechanics
Image Ch. 3 Transverse Stability Due to Cargo Movement
Image: Ch. 4 Initial Transverse Stability
Initial Longitudinal Stability
☑ Ch. 6 Free Surface Effect
🗹 Ch. 7 Inclining Test
I Ch. 8 Curves of Stability and Stability Criteria
Image: Ch. 9 Numerical Integration Method in Naval Architecture
Image: Ch. 10 Hydrostatic Values and Curves
I Ch. 11 Static Equilibrium State after Flooding Due to Damage
Image: Ch. 12 Deterministic Damage Stability
Ch. 13 Probabilistic Damage Stability
Vydlab 2

sydlab 3

- 2. Definition of Virtual Subdivision Bulkheads
- 3. Probability of Damage (p_i)
- 4. Probability of Survival (s_i)
- 5. Example of the Calculation of Attained Index A for
- Box-Shaped Ship
- 6. Summary

al Architectural Calculation, Spring 2016, Myung-Il Roh

Overview of Probabilisti - Subdivision & Damage	ic Method e Stability (SDS)
Probabilistic Method	
The probability of damage at the level of the deepest s	" p_i " that a compartment or group of compartments may be flooded subdivision draft (scantling draft)
The probability of survival	" S_i " after flooding in a given damage condition.
The attained subdivision in of all damage cases. $A = p_1 \times s_1 + p_2 \times s_2 + $ $= \sum p_i \times s_i$	dex " <i>A</i> " is the summation of the probability $p_3 \times s_3 + \cdots p_i \times s_i$
The required subdivision in value of index "A" for a part $R = 1 - \frac{128}{L_s + 152}$	Idex " R " is the requirement of a minimum ticular ship. where, " L_s " is called subdivision length and related with the ship's length.
	$A \ge R$
Naval Architectural Calculation, Spring 2016, Myung-II Roh	ydlab •

5

considered, the " s_i " value is obtained by multiplying the reduction factor " v_m ".

" v_m " represents the probability that the <u>spaces above the horizontal</u> <u>subdivision line will be flooded</u> or compartments will be damaged.

Where "*m*" represents each **horizontal boundary** counted upwards from the waterline **under consideration**.

Case 1] Cal robability	culati of Su	ion o rviva	f (s _i)			4088 4088 HEO Tank No.4 (P85) No.4 Wall (P85)	100m 20m 20m 20m 20m 20m 20m 100 Hold Hold Hold Hi (P8c5) (P8c5) Tai No.3 Wo.2 Will No.3 Will No.5 Will No.5 Will No.5 Will No.5 Will No.5 Will No.5 Will	No.1 O Hold (P8.5) Prody assister	
$s_i = s_i(\theta_e)$	$\theta_{v}, \theta_{v}, G$	$Z_{\rm max}, l$	Range)			£	<pla th="" viewo<=""><th></th><th></th></pla>		
Calculation Cor : Scantling E	ndition Draft (18.0)	n), <u>b=4.0</u>			Ж θ _e , GZ, ship са	GZ range we	+ zme z + zme z ere obtained tware, "EzCO	using com MPART″.	putational
DAMAGES	x1	x2	J	θ_e	GZ _{max}	GZ Range	Si	pi	А
<1 zone damage	e>		Cause	Effect	Effect	Effect	Effect		
1.1.1	0	40	0.4	1 0	0.4	3:	1	0.17025	0.02666
2.1.1	40	60	0.2	7	0.7	50	1.	0.05516	0.00864
3.1.1	60	80	0.2	3	0.7	500	1.	0.05516	0.00864
4.1.1	80	100	2	रम			र्र	0.10281	0.01610
<2 zone damage	>		Bigger	Bigger	Smaller	Småller	Småller		
1-2.1.1	0	60	0.6	2 0	0.0	15)	0	0.22945	0.03195
2-3.1.1	40	80	0.4	1 0	0.4	36 5	1.	0.14097	0.02207
3-4.1.1	60	100	7.4		0.3		$\overline{\mathbf{v}}$	0.17025	0.02666
<3 zone damage	>		Bigger	Bigger	Smaller	Smaller	Smaller		
1-3.1.1	0	80	0.8		0.0	0	0.	0.28865	0.0000
2-4.1.1	40	100	7.6		0.5		$\overline{\mathbf{v}}$	0.21029	0.02928
θ_{e} : Non-din	nensional d	amage len	Bigger gth	Bigger	Smaller $\approx \theta_{e'}$ GZ, calculatio	Smaller GZ range are n software, "	Smaller e obtained Ez-compart	using comp ".	uter ship

Case 2] Calco robability of	ulatioı f Dam	n of age (p)		H.F.O No.4 WAT	IOUxer x 20xer 20 .4 No.3 No.2 .4 Hold Hold Hold .4 INO.3 No.2 INO.2 .4 Hold Hold Hold .65 (P&S) (P&S) INO.2 .7000 No.3 No.2 INO.2	RF 20re + H.C. No.1 H.C. Hold (P&S) KAT No.1 WAT How be be	
$p_i = p(x1, x2,$	$Ls) \times r($	(x1, x2,	$b,k,L_s)$				•	< SECTION 1 VIEWS
Calculation Condit : Scantling Dra	ion ft (18.0m), <u>k</u>	<u>5=20.0 Ca</u> Big	use Iger		e Zone	<play th="" wexes<=""><th>: 3 ₄, Zone 4 ₃</th><th></th></play>	: 3 ₄ , Zone 4 ₃	
DAMAGES	x ₁	x ₂	Damage Length	J	р	r	pi	
<1 zone damage>					Effect	Effect	Effect]
1.2.1	0	40	40	0.4000	0.4	1.4	0	
2.2.1	40	60	20	0.2000	0.15 3	1.0 00	0.1 73	
3.2.1	60	80	20	0.2000	0.15 3	1.0 00	0.1 73	
4.2.1	80	100	20	0.2000	0.11 7	1.0 00	0.1 37	
<2 zone damage>			_		Bigger	Bigger	Bigger	
1-2.2.1	0	60	60	0.6000	0.60 !1	1.0 00	0.6 21	
2-3.2.1	40	80	40	0.4000	0.40 2	1.0 00	0.4 42	
3-4.2.1	60	100	40	0.4000	0.40 !1	1.0 00	0.4 21	
<3 zone damage>								
1-3.2.1	0	80	80	0.8000	0.80 !1	1.0	0.8 21	
2-4.2.1	40	100	60	0.6000	0.6	1.000	0.0.42	
J: Non-dimens b: Mean transv	ional damag /erse distanc	te length J	$=\frac{ x_2 - x_1 }{Ls}$	× Eac	h results are o	obtained usin	ig manual cal	culation
hitectural Calculation, Spring 20)16, Myung-II Roh	ı					∕yd	lab

1 1	θ_e, θ_v, C	$GZ_{\rm max}, P$	Range)			*			
Calculation Co : Scantling	ondition Draft (18.0	0m), <u>b=20.0</u>	Cause Bigger]	ж θ _e , GZ, compu	and GZ rang	^{₄Pla} Wew <u>↓ Zone Z ↓ Zone</u> ge were obt calculation	∎ ³ ₩ ^{2mm} ained using software, "E	zcomf
DAMAGES	x ₁	X2	J	θe	Max_GZ	Range	Si	pi	А
< 1 zone damage	e >			Effect	Effect	Effect	Effect		
1.2.1	0	40	0.4000		\sim	2~2		0.40421	0.0
2.2.1	40	60	0.2000	00	C 5	5 81	1 D	0.15273	0.0
3.2.1	60	80	0.2000	00	C B	5 20	· D	0.15273	0.0
4.2.1	80	100	0.2000	00	C F	4 92	6.6	0.17637	0.0
< 2 zone damage	e >			Smaller	Smaller	Smaller	Smaller		
1-2.2.1	0	60	0.6000	00	C D	0	()	0.60421	0.0
2-3.2.1	40	80	0.4000	00	C D	0	()	0.40842	0.0
3-4.2.1	60	100	0.4000	00	C D	0	()	0.40421	0.0
	e >								
< 3 zone damage		00	0.8000	00	C D	0	(p	0.80421	0.0
< 3 zone damage 1-3.2.1	0	80							

	Deterministic F)emere Stehilit (Drobobilistis Domoso Stability			
Items		amage stability				
	ICLL ¹	MARPOL ²	SOLAS			
Ships	Oil tankers, Chemical tanke	ers	Bulk carriers, Container carriers, Ro-Ro sh s, Passenger ships			
Definition of damaged compartments	Define the compartments a compartments	as same with actual	Define virtual damage compartments after subdividing the compartments by using vir tual subdivision bulkheads			
Assumption of extent of damage	Assume the extent of dam compartments as a basis	age with actual	Assume the extent of damage with the vir ual damage compartments as a basis			
Generation of damage cases	Generate a damage case per two compartments	Generate a damage case per one or two compart ments	Generate a damage case for each extent o damage			
Draft under consideration	The deepest subdivision draft (d _s)	All drafts to be applied in the intact stability calculation	The deepest subdivision draft (d_s) , the paral subdivision draft (d_p) , the light service d aft (d_p)			
Evaluation of damage stability	All damage cases should s regulation of damage stab	atisfy each criterion for the ility.	The attained subdivision index should satify the regulation of damage stability ($A \ge F$			