2019 Spring

"Phase Equilibria in Materials"

04.22.2019

Eun Soo Park

1

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment "Ternary Phase diagram"

- "Two phase equilibrium (f = 2)"
- 1) <u>Two-phase equilibrium</u> between the liquid and a solid solution
- 2) Ternary two-phase equilibrium with a saddle point
- 3) <u>Two-phase equilibrium</u> between solid or liquid solutions: $\alpha_1 \rightleftharpoons \alpha_2$ or $I_1 \rightleftharpoons I_2$

* Tie lines are not parallel to the binary tie line. Miscibility gap

- Addition of C to a heterogeneous mixture of A & B in a ratio corresponding to the distribution of C

"Three phase equilibrium (f = 1)"

Coalescence of miscibility gap and two phase region
 Coalescence of two two-phase region

З

• Projection on concentration triangle ABC

• How is the reaction in three phase region among liquid, α and β ?

Fig. 149. Criteria for distinguishing eutectic and peritectic reactions in ternary three-phase equilibrium.

The tangent to the liquid curve at a particular temperature is extrapolated to meet the tie line connecting the α and β phases.

- 1) If the extrapolated line intersected the $\alpha\beta$ tie line, the equilibrium was considered to be eutectic
- 2) If it met the $\alpha\beta$ tie line only when the latter was extrapolated, the equilibrium was considered to be peritectic.

Similarly, a eutectoid reaction could be distinguished from a peritectoid and a monotectic from a syntectic.

• How is the reaction in three phase region among liquid, α and β ?

Fig. 149. Criteria for distinguishing eutectic and peritectic reactions in ternary three-phase equilibrium.

The tangent to the liquid curve at a particular temperature is extrapolated to meet the tie line connecting the α and β phases.

- 1) If the extrapolated line intersected the $\alpha\beta$ tie line, the equilibrium was considered to be eutectic
- 2) If it met the $\alpha\beta$ tie line only when the latter was extrapolated, the equilibrium was considered to be peritectic.

7

Similarly, a eutectoid reaction could be distinguished from a peritectoid and a monotectic from a syntectic.

Review of Invariant Binary Reactions

Eutectic Type Eutectic Al-Si, Fe-C $| = \alpha + \beta$ Eutectoid Fe-C ß $\gamma \overrightarrow{} \alpha + \beta$ Monotectic Cu-Pb $|_2$ $|_1 \overrightarrow{\alpha} + |_2$ Monotectoid Al-Zn, Ti-V α_1 ζβ $\alpha_2 \rightarrow \alpha_1 + \beta$

On cooling one phase going to two phases Metatectic reaction: $\beta \leftrightarrow L + \alpha$ Ex. Co-Os, Co-Re, Co-R⁸_u

Review of Invariant Binary Reactions

Peritectic Type

On cooling two phases going to one phase

• How is the reaction in three phase region among liquid, α and β ?

Similarly, a eutectoid reaction could be distinguished from a peritectoid and a monotectic from a syntectic.

• How is the reaction in three phase region?

<Hillert's criterion>

Basically, the reaction we can expect is eutectic reaction

 $(/ \rightarrow \alpha + \beta)$. But, in reality, we can have eutectic and peritectic reaction <u>depending on the relative amount of three phase</u>.

The <u>average composition of the alloy</u> then determines <u>for a particular temperature whether</u> <u>the reaction will be eutectic or peritectic.</u>

8.3 TIE LINES AND TIE TRIANGLES

Comp. of X ;

- A : 0.25 x 10%+0.25 x 50%+0.5 x 30%
- B: 0.25 x 20%+0.25 x 20%+0.5 x 40%
- C: 0.25 x 70%+0.25 x 30%+0.5 x 30%

A small change in temperature, dT, causes a small change in the composition and amounts of each phase, but not of the alloy itself,

phase equilibrium; ——, equilibrium at T; ----, equilibrium at T-dT.

15

To simplify the calculation,

Assumption, $X_{A}^{\beta} = X_{A}^{\prime} > X_{A}^{\alpha}$ (New coordinate system) $\Delta m_{\beta} + \Delta m_{l} = -\Delta m_{\alpha}$ $\Delta X_{A} = m_{\alpha} \cdot \Delta X_{A}^{\alpha} + m_{\beta} \cdot \Delta X_{A}^{\beta} + m_{l} \cdot \Delta X_{A}^{l} + X_{A}^{\alpha} \cdot \Delta m_{\alpha} + X_{A}^{\beta} \cdot \Delta m_{\beta} + X_{A}^{l} \cdot \Delta m_{l} = 0$ $\underline{-X_{A}^{\alpha} \Delta m_{\alpha} - X_{A}^{\beta} \Delta m_{\beta} - X_{A}^{l} \Delta m_{l}} = m_{\alpha} \Delta X_{A}^{\alpha} + m_{\beta} \Delta X_{A}^{\beta} + m_{l} \Delta X_{A}^{l}$

 $\Delta m_{\alpha}(X_{A}^{\beta}-X_{A}^{\alpha}) = m_{\alpha}\Delta X_{A}^{\alpha} + m_{\beta}\Delta X_{A}^{\beta} + m_{l}\Delta X_{A}^{l}$

Sign	Assumption	Sign
$\Delta m_{\alpha}(X_{\rm A}{}^{\beta} - X_{\rm A}{}^{\alpha})$	$X_{\rm A}{}^{\beta} = X_{\rm A}{}^{l} > X_{\rm A}{}^{\alpha}$	$m_{\alpha}\Delta X_{\rm A}{}^{\alpha} + m_{\beta}\Delta X_{\rm A}{}^{\beta} + m_{l}\Delta X_{\rm A}{}^{l}$
$\Delta m_{\beta}(X_{\rm A}{}^{\alpha} - X_{\rm A}{}^{\beta})$	$X_{\rm A}^{\alpha} = X_{\rm A}^{\ l} > X_{\rm A}^{\ \beta}$	$m_{\alpha}\Delta X_{\rm A}{}^{\alpha} + m_{\beta}\Delta X_{\rm A}{}^{\beta} + m_{l}\Delta X_{\rm A}{}^{l}$
$\Delta m_l (X_{\rm A}^{\alpha} - X_{\rm A}^{l})$	$X_{\rm A}^{\alpha} = X_{\rm A}^{\beta} > X_{\rm A}^{l}$	$m_{\alpha}\Delta X_{\rm A}{}^{\alpha} + m_{\beta}\Delta X_{\rm A}{}^{\beta} + m_{l}\Delta X_{\rm A}{}^{l}$

here, Δm_{α} : change of α phase fraction with ΔT

Δm_{α}	Δm_{eta}	Δm_l		
+	+	-	$l \rightarrow \alpha + \beta$	eutectic
+	-	-	$l + \beta \rightarrow \alpha$	peritectic
-	+	-	$l + \alpha \rightarrow \beta$	peritectic

<u>Hillert's criterion indicates that the relative amounts of the α , β and liquid phases (the average alloy composition) are of importance in determining the type of reaction.</u>

• three phase regions $a_1e_1b_1$, $a_2e_2b_2$, ..., $a_7e_7(b_7)$ projected on the concentration triangle.

To determine whether the reaction is always a monovariant eutectic type, irrespective of alloy ¹⁹ composition within the three-phase region, we apply Hillert's criterion to each pair of isotherms.

• Relations between the triangle a₁e₁b₁ and a₂e₂b₂

 $\textcircled{2} \Delta X_{A}^{\alpha}, \Delta X_{A}^{\beta}, \Delta X_{a}^{l}(+) \rightarrow \Delta m_{\beta}(+)$

 $\mathsf{T}\downarrow \rightarrow \beta\uparrow$

 $(\text{if } X_{A}^{\alpha} = X_{A}^{l} > X_{A}^{\beta})$

(if $X_{A}^{\beta} = X_{A}^{l} > X_{A}^{\alpha}$,) $(1) \Delta X_{A}^{\alpha}, \Delta X_{A}^{\beta}, \Delta X_{A}^{l}(+) \rightarrow \Delta m_{\alpha}(+)$

 $X_{A}^{\alpha} = X_{A}^{\beta}$ $\downarrow \Delta X_{A}^{\beta}$

The reaction under gone by any alloy within the triangle $a_1e_1b_1$ is 20eutectic-type: $I \leftrightarrow \alpha + \beta$ ex) $a_2e_2b_2 - a_3e_3b_3/a_3e_3b_3 - a_4e_4b_4$

- 9.3. THREE-PHASE EQUILIBRIUM INVOLVING EUTECTIC REACTIONS
 - Relative position of vertex in tie triangle with ΔT

③ Slope of tangent line at $a_3 \leq$ slope of line a_3e_3

 Δm_{μ} (-); if m_{β} is very larger than m_{α} and $m_{\beta} \rightarrow \Delta m_{\alpha}$ (-) and Δm_{β} (+) \rightarrow (/ + $\alpha \rightarrow \beta$) if m_{β} is much smaller than m_{α} and $m_{\beta} \rightarrow \Delta m_{\alpha}$ (+) and Δm_{β} (-) \rightarrow (/ + $\beta \rightarrow \alpha$)

• three phase regions $a_1e_1b_1$, $a_2e_2b_2$, ..., $a_7e_7(b_7)$ projected on the concentration triangle.

To determine whether the reaction is always a monovariant eutectic type, irrespective of alloy 23 composition within the three-phase region, we apply Hillert's criterion to each pair of isotherms.

Consider tie triangle $a_4e_4b_4$, and $a_5e_5b_5$

• How to decide the boundary btw eutectic & peritectic?

Reactions in the tie triangle $a_4e_4b_4$, along boundary, β plays no role $\rightarrow l = \alpha$

$$X_{A}^{\alpha} = X_{A}^{l} > X_{A}^{\beta}$$

$$\Delta m_{\beta}(X_{A}^{\alpha} - X_{A}^{\beta}) = m_{\alpha}\Delta X_{A}^{\alpha} + m_{\beta}\Delta X_{A}^{\beta} + m_{l}\Delta X_{A}^{l}$$

$$(\Delta X_{A}^{\alpha} = -1, \Delta X_{A}^{\beta} = 3.5, \Delta X_{A}^{l} = 3) \quad (\text{next page})$$

$$-m_{\alpha} + 3.5m_{\beta} + 3m_{l} = 0 \quad (m_{\alpha} + m_{\beta} + m_{l} = 100)$$

$$-100 + 4.5m_{\beta} + 4m_{l} = 0$$

if $m_{\beta} = 0, m_{l} = 25$
if $m_{l} = 0, m_{\beta} = 22.2$

Initially, peritectic region confined the α corner.

Consideration of three-phase triangles at lower temperatures will indicate that the peritectic region sweeps round from the α corner towards the β and liquid corners. 25

The boundary line can be determined by measuring ΔX_A^{α} , ΔX_A^{β} , and ΔX_A^{l} .

In Fig. 151, $\Delta X_A^{\alpha} = -1$, $\Delta X_A^{\beta} = -3.5$ and $\Delta X_A^{l} = 3$ units.

	<i>X</i> _B ,	X _C		Х _в ,	X _C		Х _В ,	X _C
е.	33,	16	a_1	17,	6	b_1	78,	3
e_{2}	29,	27	a_2	14,	20	b_2	69,	15
e2	26.	37	a_3	15,	31	b_3	62,	22
e _A	25.3.	41	a_4	19,	37	b_4	56,	27
e=	25.	44	a_5	25,	39	b_5	52,	30
ee	25.	47	a_6	34,	39	b_6	45,	34
e ₇	25,	50	$a_{7}(b_{7})$	40,	37			

Figure 151

Table 2

• How to decide the boundary btw eutectic & peritectic?

Reactions in the tie triangle $a_4e_4b_4$, along boundary, β plays no role $\rightarrow l = \alpha$

$$X_{A}^{\alpha} = X_{A}^{l} > X_{A}^{\beta}$$

$$\Delta m_{\beta}(X_{A}^{\alpha} - X_{A}^{\beta}) = m_{\alpha} \Delta X_{A}^{\alpha} + m_{\beta} \Delta X_{A}^{\beta} + m_{l} \Delta X_{A}^{l}$$

$$(\Delta X_{A}^{\alpha} = -1, \Delta X_{A}^{\beta} = 3.5, \Delta X_{A}^{l} = 3)$$

$$-m_{\alpha} + 3.5m_{\beta} + 3m_{l} = 0 \quad (m_{\alpha} + m_{\beta} + m_{l} = 100)$$

$$-100 + 4.5m_{\beta} + 4m_{l} = 0$$

if $m_{\beta} = 0, m_{l} = 25$
if $m_{l} = 0, m_{\beta} = 22.2$

Initially, peritectic region confined the α corner.

Consideration of three-phase triangles at lower temperatures will indicate that the peritectic region sweeps round from the α corner towards the β and liquid corners. 27

Monovariant β curve coincides with the $|\alpha|$ tie line between isotherms $a_5e_5b_5$ and $a_6e_6b_6$ Second peritectic reaction area appears at the β corner of the three-phase triangle

To summarise, the three-phase reaction is initially eutectic for all alloys untill the temperature of the three phase triangle $a_4e_4b_{4,}$ is reached. From that temperature until the end of the three-phase reaction at the tie line $e_7a_7(b_7)$, the reaction type is dependent on the alloy composition within the sequence of the three-phase triangles. 28