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Transverse force on sheet beams by applied electric field

 Transverse component of static electric field:

𝐸𝐸𝑥𝑥 𝑥𝑥, 𝑧𝑧 ≈ −𝑥𝑥
𝜕𝜕𝐸𝐸𝑧𝑧(0, 𝑧𝑧)

𝜕𝜕𝜕𝜕
 Change in the kinetic energy by axial electric field:

𝜕𝜕(𝛾𝛾𝑚𝑚0𝑐𝑐2)
𝜕𝜕𝜕𝜕

= 𝑞𝑞𝐸𝐸𝑧𝑧(0, 𝑧𝑧)

 The applied transverse electric force on the envelope:

𝐹𝐹𝑥𝑥 ≅ −𝑋𝑋 𝑚𝑚0𝑐𝑐2 𝛾𝛾′′
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Transverse force on sheet beams by applied magnetic field

 Because there are no y-directed forces, the canonical momentum of particles in 
y is a conserved quantity:

𝑃𝑃𝑦𝑦 = 𝛾𝛾𝑚𝑚0𝑣𝑣𝑦𝑦 + 𝑞𝑞𝐴𝐴𝑦𝑦 ≈ 𝛾𝛾𝑚𝑚0𝑣𝑣𝑦𝑦 + 𝑞𝑞𝐵𝐵𝑧𝑧𝑥𝑥 = 𝑃𝑃0
 If there is no magnetic field at the source and particles leave perpendicular to the 

surface (𝑣𝑣𝑦𝑦 = 0), then all particles have zero canonical momentum, 𝑃𝑃0 = 0, then:

𝑣𝑣𝑦𝑦 𝑧𝑧 ≈ −
𝑞𝑞𝐵𝐵𝑧𝑧(0, 𝑧𝑧)
𝛾𝛾𝑚𝑚0

𝑋𝑋

 The applied transverse magnetic force on the envelope:

𝐹𝐹𝑥𝑥 ≅ −
𝑞𝑞2𝐵𝐵𝑧𝑧2(0, 𝑧𝑧)

𝛾𝛾𝑚𝑚0
𝑋𝑋
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Transverse force on sheet beams by self-generating forces

 The electric and magnetic forces acting on the envelope of a sheet beam 
carrying a current per unit length (along 𝑦𝑦) of 𝐽𝐽 (A/m) is:

 The total beam-generated force on the envelope:

𝐹𝐹𝑥𝑥 = 𝛾𝛾𝑚𝑚0 𝛽𝛽𝑐𝑐 2𝐾𝐾𝑥𝑥

𝐹𝐹𝑥𝑥𝑥(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑞𝑞𝐸𝐸𝑥𝑥𝑥 =
𝑞𝑞𝑞𝑞

2𝜖𝜖0𝛽𝛽𝑐𝑐
𝐹𝐹𝑥𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑞𝑞𝑣𝑣𝑧𝑧𝐵𝐵𝑦𝑦𝑦 = −

𝑞𝑞𝛽𝛽𝑐𝑐𝜇𝜇0𝐽𝐽
2

𝐾𝐾𝑥𝑥 ≡
𝑞𝑞𝑞𝑞

2𝜖𝜖0𝑚𝑚0𝛽𝛽𝛽𝛽𝑐𝑐
(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
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Envelope equation for sheet beams

 The beam envelope follows an equation of motion of the form:

𝑑𝑑
𝑑𝑑𝑑𝑑

𝛾𝛾𝑚𝑚0
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑
𝑑𝑑𝑑𝑑

𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐𝑋𝑋′ = 𝑚𝑚0𝛽𝛽𝑐𝑐2 𝛾𝛾𝛾𝛾𝑋𝑋′′ + 𝛾𝛾𝛽𝛽′𝑋𝑋′ + 𝛾𝛾′𝛽𝛽𝑋𝑋′ = �𝐹𝐹𝑥𝑥

𝛾𝛾𝛽𝛽′ + 𝛽𝛽𝛾𝛾′ = 𝛾𝛾′/𝛽𝛽
 We obtain the following equation:

𝛾𝛾𝑚𝑚0 𝛽𝛽𝑐𝑐 2 𝑋𝑋′′ +
𝛾𝛾′

𝛾𝛾𝛽𝛽2 𝑋𝑋
′ = −𝑋𝑋 𝑚𝑚0𝑐𝑐2 𝛾𝛾′′ −

𝑞𝑞2𝐵𝐵𝑧𝑧2 0, 𝑧𝑧
𝛾𝛾𝑚𝑚0

𝑋𝑋 + 𝛾𝛾𝑚𝑚0 𝛽𝛽𝑐𝑐 2𝐾𝐾𝑥𝑥 + 𝜖𝜖𝑥𝑥2
𝛾𝛾𝑚𝑚0 𝛽𝛽𝑐𝑐 2

𝑋𝑋3

 Finally, we obtain the envelop equation for sheet beams:

𝑋𝑋′′ = −
𝛾𝛾′

𝛾𝛾𝛽𝛽2 𝑋𝑋
′ −

𝛾𝛾′′

𝛾𝛾𝛽𝛽2 𝑋𝑋 −
𝑞𝑞𝐵𝐵𝑧𝑧

𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2

𝑋𝑋 + 𝐾𝐾𝑥𝑥 +
𝜖𝜖𝑥𝑥2

𝑋𝑋3

Decrease in the envelope 
angle by beam acceleration

Focusing by electrostatic 
lens

Focusing by magnetic lens

Defocusing by beam-generated 
forces

Emittance force
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Paraxial ray equation

 In a cylindrical system, symmetry permits only certain components of electric 
and magnetic field:

1. axial and radial components of the applied electric field,
2. radial electric field resulting from space-charge,
3. axial and radial magnetic field components generated by axi-centered 

circular coils, and
4. beam-generated toroidal magnetic field.

 In the paraxial limit, we can relate the radial components of applied fields to the 
axial field by:

 Particles gain azimuthal velocity when they move through the radial magnetic 
fields of a solenoidal lens. For forces with cylindrical symmetry, the canonical 
angular momentum is a constant of particle motion:

𝐸𝐸𝑟𝑟 𝑟𝑟, 𝑧𝑧 ≈ −
𝑟𝑟
2

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕 𝑟𝑟=0

𝐵𝐵𝑟𝑟 𝑟𝑟, 𝑧𝑧 ≈ −
𝑟𝑟
2

𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕 𝑟𝑟=0

𝛾𝛾𝑚𝑚0𝑟𝑟𝑣𝑣𝜃𝜃 + 𝑞𝑞𝑞𝑞𝐴𝐴𝜃𝜃 = 𝑃𝑃𝜃𝜃 = constant



7/13 Radiation Source Engineering, Fall 2017

Paraxial ray equation

 We can derive the following equation for axial variation of the envelope of a 
cylindrical beam:

𝑅𝑅′′ = −
𝛾𝛾′

𝛾𝛾𝛽𝛽2 𝑅𝑅
′ −

𝛾𝛾′′

2𝛾𝛾𝛽𝛽2 𝑅𝑅 −
𝑞𝑞𝐵𝐵𝑧𝑧

2𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2

𝑅𝑅 +
𝜖𝜖2

𝑅𝑅3 +
𝑞𝑞𝜓𝜓0

2𝜋𝜋𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2 1
𝑅𝑅3

+
𝐾𝐾
𝑅𝑅

Decrease in the envelope 
angle by beam acceleration

Electrostatic focusing from 
radial components of 
applied electric fields

Magnetic focusing from 
applied solenoidal fields

Emittance force
Defocusing by beam-
generated forces

Non-zero angular momentum

𝜓𝜓0 = �
0

𝑅𝑅𝑠𝑠
2𝜋𝜋𝑅𝑅𝐵𝐵𝑧𝑧 𝑅𝑅,𝑍𝑍𝑠𝑠 𝑑𝑑𝑑𝑑
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Addition of approximate term for periodic focusing systems

 The displacement of a particle orbit at the boundary of the 𝑛𝑛th lens in an array 
obeys the equation:

Einzel lens array Periodic permanent magnet array

𝑟𝑟𝑛𝑛 = 𝑟𝑟0 cos(𝑛𝑛𝜇𝜇0 + 𝜙𝜙) 𝜇𝜇0: vacuum phase advance per lens
 If the length of a focusing cell is 𝐿𝐿, the long-term harmonic motion follows the 

equation:
𝑟𝑟(𝑧𝑧) ≅ 𝑟𝑟0 cos( ⁄𝜇𝜇0 𝐿𝐿 𝑧𝑧 + 𝜙𝜙) 𝑟𝑟′′ = − ⁄𝜇𝜇0 𝐿𝐿 2𝑟𝑟

 The paraxial ray equation when considering only periodic forces:

𝑅𝑅′′ = −
𝜇𝜇0
𝐿𝐿

2
𝑅𝑅 +

𝜖𝜖2

𝑅𝑅3 +
𝐾𝐾
𝑅𝑅
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Limiting current for paraxial beams with a uniform solenoid 
field
 Radial force balance for a cylindrical, paraxial electron beam in a uniform 

solenoid field 𝐵𝐵0.

𝑅𝑅′′ = −
𝑞𝑞𝐵𝐵0

2𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2

𝑅𝑅 +
𝜖𝜖2

𝑅𝑅3 +
𝐾𝐾
𝑅𝑅

= 0

𝐾𝐾 =
𝛼𝛼2

𝑅𝑅2 −
𝜖𝜖2

𝑅𝑅2 =
𝑒𝑒𝐼𝐼

2𝜋𝜋𝜖𝜖0𝑚𝑚0 𝛽𝛽𝛽𝛽𝑐𝑐 3

 The acceptance 𝛼𝛼 is defined as the allowed beam emittance for a given 
envelope radius when there are no beam-generated forces, i.e. 𝐾𝐾 = 0:

𝛼𝛼2 =
𝑞𝑞𝐵𝐵0

2𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2

𝑅𝑅4

 Using the expression for the generalized perveance, we obtain the matched 
beam current:

𝐼𝐼 =
𝜋𝜋𝜖𝜖0𝑒𝑒𝑒𝑒
2𝑚𝑚0

𝛽𝛽𝛽𝛽 𝐵𝐵0𝑅𝑅 2 1 −
𝜖𝜖2

𝛼𝛼2

 If there is no emittance, the beam-generated forces exactly balance the focusing 
force of the axial magnetic field. Here, particle flow is laminar and the allowed 
current has a maximum value.
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Limiting current for paraxial beams with an array of 
solenoidal lens
 The on-axis magnetic field has variation

𝐵𝐵𝑧𝑧(0, 𝑧𝑧) ≅ 𝐵𝐵0 sin
𝜋𝜋𝑧𝑧
𝑙𝑙

 If the beam envelope oscillations are much smaller than 𝑅𝑅, the limiting current is 
given approximately by

𝐼𝐼 =
𝜋𝜋𝜖𝜖0𝑒𝑒𝑒𝑒
2𝑚𝑚0

𝛽𝛽𝛽𝛽 𝐵𝐵0𝑅𝑅 2 sin2
𝜋𝜋𝑧𝑧
𝑙𝑙 1 −

𝜖𝜖2

𝛼𝛼2

𝑙𝑙 𝐵𝐵0
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Multiple-beam ion transport

 One strategy to increase the limiting current in a high-flux ion accelerator is to 
divide a beam into many segments, each with its own focusing system.

 Electrostatic quadrupole focusing has two advantages for high-current ion beam 
transport; (1) Electric fields deflect nonrelativistic ions more effectively than 
magnetic fields. (2) Miniature magnetic quadrupole lenses are difficult to 
fabricate and to operate because of cooling problems.

𝐼𝐼 = 𝑁𝑁𝑁𝑁
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Longitudinal space-charge limits in RF accelerators and 
induction linacs
 Beam-generated axial electric fields can limit the beam current in RF 

accelerators and induction linacs.

 Ions in RF accelerators must remain in specific phase regions of the accelerating 
wave. The electric field of a traveling wave can provide stable axial confinement 
for ions that are localized along z and have a small spread in kinetic energy.

 The wave creates a potential well for ion confinement called an RF bucket. Ions 
that escape from the bucket quickly lose their synchronization with the wave and 
are no longer accelerated. Space-charge electric fields can drive ions out of an 
RF bucket. This process set limits on the current in the accelerator.
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Longitudinal space-charge limits in RF accelerators and 
induction linacs
 The total potential energy for particles in the wave frame:

𝑈𝑈𝑡𝑡 ∆𝑧𝑧 =
𝑒𝑒𝐸𝐸0𝑣𝑣𝑠𝑠
𝜔𝜔 1 − cos

𝜔𝜔∆𝑧𝑧
𝑣𝑣𝑠𝑠

+ 𝑒𝑒𝐸𝐸0∆𝑧𝑧 sin𝜙𝜙𝑠𝑠

 The depth of the confining potential 
well:

∆𝑈𝑈𝑐𝑐 =
2𝑒𝑒𝐸𝐸0𝑣𝑣𝑠𝑠
𝜔𝜔

Ψ(𝜙𝜙𝑠𝑠)

 The beam-generated electric 
potential:

𝑒𝑒∆𝜙𝜙 =
𝑒𝑒𝐼𝐼0

4𝜋𝜋𝜖𝜖0𝛽𝛽𝑐𝑐
1 + 2 ln

𝑟𝑟𝑤𝑤
𝑟𝑟0

 The beam-generated electric force 
pushes particles out of the bucket if 
𝑒𝑒∆𝜙𝜙 > ∆𝑈𝑈𝑐𝑐, giving a peak current:

𝐼𝐼0 ≤
8𝜋𝜋𝜖𝜖0𝛽𝛽𝑐𝑐Ψ(𝜙𝜙𝑠𝑠)𝐸𝐸0𝑣𝑣𝑠𝑠
𝜔𝜔 1 + 2 ln ⁄𝑟𝑟𝑤𝑤 𝑟𝑟0
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