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Transverse force on sheet beams by applied electric field

 Transverse component of static electric field:

𝐸𝐸𝑥𝑥 𝑥𝑥, 𝑧𝑧 ≈ −𝑥𝑥
𝜕𝜕𝐸𝐸𝑧𝑧(0, 𝑧𝑧)

𝜕𝜕𝑧𝑧
 Change in the kinetic energy by axial electric field:

𝜕𝜕(𝛾𝛾𝑚𝑚0𝑐𝑐2)
𝜕𝜕𝑧𝑧

= 𝑞𝑞𝐸𝐸𝑧𝑧(0, 𝑧𝑧)

 The applied transverse electric force on the envelope:

𝐹𝐹𝑥𝑥 ≅ −𝑋𝑋 𝑚𝑚0𝑐𝑐2 𝛾𝛾′′
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Transverse force on sheet beams by applied magnetic field

 Because there are no y-directed forces, the canonical momentum of particles in 
y is a conserved quantity:

𝑃𝑃𝑦𝑦 = 𝛾𝛾𝑚𝑚0𝑣𝑣𝑦𝑦 + 𝑞𝑞𝐴𝐴𝑦𝑦 ≈ 𝛾𝛾𝑚𝑚0𝑣𝑣𝑦𝑦 + 𝑞𝑞𝐵𝐵𝑧𝑧𝑥𝑥 = 𝑃𝑃0
 If there is no magnetic field at the source and particles leave perpendicular to the 

surface (𝑣𝑣𝑦𝑦 = 0), then all particles have zero canonical momentum, 𝑃𝑃0 = 0, then:

𝑣𝑣𝑦𝑦 𝑧𝑧 ≈ −
𝑞𝑞𝐵𝐵𝑧𝑧(0, 𝑧𝑧)
𝛾𝛾𝑚𝑚0

𝑋𝑋

 The applied transverse magnetic force on the envelope:

𝐹𝐹𝑥𝑥 ≅ −
𝑞𝑞2𝐵𝐵𝑧𝑧2(0, 𝑧𝑧)

𝛾𝛾𝑚𝑚0
𝑋𝑋
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Transverse force on sheet beams by self-generating forces

 The electric and magnetic forces acting on the envelope of a sheet beam 
carrying a current per unit length (along 𝑦𝑦) of 𝐽𝐽 (A/m) is:

 The total beam-generated force on the envelope:

𝐹𝐹𝑥𝑥 = 𝛾𝛾𝑚𝑚0 𝛽𝛽𝑐𝑐 2𝐾𝐾𝑥𝑥

𝐹𝐹𝑥𝑥0(𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐) = 𝑞𝑞𝐸𝐸𝑥𝑥0 =
𝑞𝑞𝐽𝐽

2𝜖𝜖0𝛽𝛽𝑐𝑐
𝐹𝐹𝑥𝑥0 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐 = −𝑞𝑞𝑣𝑣𝑧𝑧𝐵𝐵𝑦𝑦0 = −

𝑞𝑞𝛽𝛽𝑐𝑐𝜇𝜇0𝐽𝐽
2

𝐾𝐾𝑥𝑥 ≡
𝑞𝑞𝐽𝐽

2𝜖𝜖0𝑚𝑚0𝛽𝛽𝛾𝛾𝑐𝑐
(𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑧𝑧𝑒𝑒𝑔𝑔 𝑝𝑝𝑒𝑒𝑒𝑒𝑣𝑣𝑒𝑒𝑚𝑚𝑚𝑚𝑐𝑐𝑒𝑒)
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Envelope equation for sheet beams

 The beam envelope follows an equation of motion of the form:

𝑔𝑔
𝑔𝑔𝑒𝑒

𝛾𝛾𝑚𝑚0
𝑔𝑔𝑋𝑋
𝑔𝑔𝑒𝑒

=
𝑔𝑔
𝑔𝑔𝑒𝑒

𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐𝑋𝑋′ = 𝑚𝑚0𝛽𝛽𝑐𝑐2 𝛾𝛾𝛽𝛽𝑋𝑋′′ + 𝛾𝛾𝛽𝛽′𝑋𝑋′ + 𝛾𝛾′𝛽𝛽𝑋𝑋′ = �𝐹𝐹𝑥𝑥

𝛾𝛾𝛽𝛽′ + 𝛽𝛽𝛾𝛾′ = 𝛾𝛾′/𝛽𝛽
 We obtain the following equation:

𝛾𝛾𝑚𝑚0 𝛽𝛽𝑐𝑐 2 𝑋𝑋′′ +
𝛾𝛾′

𝛾𝛾𝛽𝛽2 𝑋𝑋
′ = −𝑋𝑋 𝑚𝑚0𝑐𝑐2 𝛾𝛾′′ −

𝑞𝑞2𝐵𝐵𝑧𝑧2 0, 𝑧𝑧
𝛾𝛾𝑚𝑚0

𝑋𝑋 + 𝛾𝛾𝑚𝑚0 𝛽𝛽𝑐𝑐 2𝐾𝐾𝑥𝑥 + 𝜖𝜖𝑥𝑥2
𝛾𝛾𝑚𝑚0 𝛽𝛽𝑐𝑐 2

𝑋𝑋3

 Finally, we obtain the envelop equation for sheet beams:

𝑋𝑋′′ = −
𝛾𝛾′

𝛾𝛾𝛽𝛽2 𝑋𝑋
′ −

𝛾𝛾′′

𝛾𝛾𝛽𝛽2 𝑋𝑋 −
𝑞𝑞𝐵𝐵𝑧𝑧

𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2

𝑋𝑋 + 𝐾𝐾𝑥𝑥 +
𝜖𝜖𝑥𝑥2

𝑋𝑋3

Decrease in the envelope 
angle by beam acceleration

Focusing by electrostatic 
lens

Focusing by magnetic lens

Defocusing by beam-generated 
forces

Emittance force
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Paraxial ray equation

 In a cylindrical system, symmetry permits only certain components of electric 
and magnetic field:

1. axial and radial components of the applied electric field,
2. radial electric field resulting from space-charge,
3. axial and radial magnetic field components generated by axi-centered 

circular coils, and
4. beam-generated toroidal magnetic field.

 In the paraxial limit, we can relate the radial components of applied fields to the 
axial field by:

 Particles gain azimuthal velocity when they move through the radial magnetic 
fields of a solenoidal lens. For forces with cylindrical symmetry, the canonical 
angular momentum is a constant of particle motion:

𝐸𝐸𝑟𝑟 𝑒𝑒, 𝑧𝑧 ≈ −
𝑒𝑒
2

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝑧𝑧 𝑟𝑟=0

𝐵𝐵𝑟𝑟 𝑒𝑒, 𝑧𝑧 ≈ −
𝑒𝑒
2

𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑧𝑧 𝑟𝑟=0

𝛾𝛾𝑚𝑚0𝑒𝑒𝑣𝑣𝜃𝜃 + 𝑞𝑞𝑒𝑒𝐴𝐴𝜃𝜃 = 𝑃𝑃𝜃𝜃 = constant
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Paraxial ray equation

 We can derive the following equation for axial variation of the envelope of a 
cylindrical beam:

𝑅𝑅′′ = −
𝛾𝛾′

𝛾𝛾𝛽𝛽2 𝑅𝑅
′ −

𝛾𝛾′′

2𝛾𝛾𝛽𝛽2 𝑅𝑅 −
𝑞𝑞𝐵𝐵𝑧𝑧

2𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2

𝑅𝑅 +
𝜖𝜖2

𝑅𝑅3 +
𝑞𝑞𝜓𝜓0

2𝜋𝜋𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2 1
𝑅𝑅3

+
𝐾𝐾
𝑅𝑅

Decrease in the envelope 
angle by beam acceleration

Electrostatic focusing from 
radial components of 
applied electric fields

Magnetic focusing from 
applied solenoidal fields

Emittance force
Defocusing by beam-
generated forces

Non-zero angular momentum

𝜓𝜓0 = �
0

𝑅𝑅𝑠𝑠
2𝜋𝜋𝑅𝑅𝐵𝐵𝑧𝑧 𝑅𝑅,𝑍𝑍𝑠𝑠 𝑔𝑔𝑅𝑅
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Addition of approximate term for periodic focusing systems

 The displacement of a particle orbit at the boundary of the 𝑚𝑚th lens in an array 
obeys the equation:

Einzel lens array Periodic permanent magnet array

𝑒𝑒𝑛𝑛 = 𝑒𝑒0 cos(𝑚𝑚𝜇𝜇0 + 𝜙𝜙) 𝜇𝜇0: vacuum phase advance per lens
 If the length of a focusing cell is 𝐿𝐿, the long-term harmonic motion follows the 

equation:
𝑒𝑒(𝑧𝑧) ≅ 𝑒𝑒0 cos( ⁄𝜇𝜇0 𝐿𝐿 𝑧𝑧 + 𝜙𝜙) 𝑒𝑒′′ = − ⁄𝜇𝜇0 𝐿𝐿 2𝑒𝑒

 The paraxial ray equation when considering only periodic forces:

𝑅𝑅′′ = −
𝜇𝜇0
𝐿𝐿

2
𝑅𝑅 +

𝜖𝜖2

𝑅𝑅3 +
𝐾𝐾
𝑅𝑅
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Limiting current for paraxial beams with a uniform solenoid 
field
 Radial force balance for a cylindrical, paraxial electron beam in a uniform 

solenoid field 𝐵𝐵0.

𝑅𝑅′′ = −
𝑞𝑞𝐵𝐵0

2𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2

𝑅𝑅 +
𝜖𝜖2

𝑅𝑅3 +
𝐾𝐾
𝑅𝑅

= 0

𝐾𝐾 =
𝛼𝛼2

𝑅𝑅2 −
𝜖𝜖2

𝑅𝑅2 =
𝑒𝑒𝐼𝐼

2𝜋𝜋𝜖𝜖0𝑚𝑚0 𝛽𝛽𝛾𝛾𝑐𝑐 3

 The acceptance 𝛼𝛼 is defined as the allowed beam emittance for a given 
envelope radius when there are no beam-generated forces, i.e. 𝐾𝐾 = 0:

𝛼𝛼2 =
𝑞𝑞𝐵𝐵0

2𝛾𝛾𝑚𝑚0𝛽𝛽𝑐𝑐

2

𝑅𝑅4

 Using the expression for the generalized perveance, we obtain the matched 
beam current:

𝐼𝐼 =
𝜋𝜋𝜖𝜖0𝑒𝑒𝑐𝑐
2𝑚𝑚0

𝛽𝛽𝛾𝛾 𝐵𝐵0𝑅𝑅 2 1 −
𝜖𝜖2

𝛼𝛼2

 If there is no emittance, the beam-generated forces exactly balance the focusing 
force of the axial magnetic field. Here, particle flow is laminar and the allowed 
current has a maximum value.
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Limiting current for paraxial beams with an array of 
solenoidal lens
 The on-axis magnetic field has variation

𝐵𝐵𝑧𝑧(0, 𝑧𝑧) ≅ 𝐵𝐵0 sin
𝜋𝜋𝑧𝑧
𝑒𝑒

 If the beam envelope oscillations are much smaller than 𝑅𝑅, the limiting current is 
given approximately by

𝐼𝐼 =
𝜋𝜋𝜖𝜖0𝑒𝑒𝑐𝑐
2𝑚𝑚0

𝛽𝛽𝛾𝛾 𝐵𝐵0𝑅𝑅 2 sin2
𝜋𝜋𝑧𝑧
𝑒𝑒 1 −

𝜖𝜖2

𝛼𝛼2

𝑒𝑒 𝐵𝐵0
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Multiple-beam ion transport

 One strategy to increase the limiting current in a high-flux ion accelerator is to 
divide a beam into many segments, each with its own focusing system.

 Electrostatic quadrupole focusing has two advantages for high-current ion beam 
transport; (1) Electric fields deflect nonrelativistic ions more effectively than 
magnetic fields. (2) Miniature magnetic quadrupole lenses are difficult to 
fabricate and to operate because of cooling problems.

𝐼𝐼 = 𝑁𝑁𝑒𝑒
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Longitudinal space-charge limits in RF accelerators and 
induction linacs
 Beam-generated axial electric fields can limit the beam current in RF 

accelerators and induction linacs.

 Ions in RF accelerators must remain in specific phase regions of the accelerating 
wave. The electric field of a traveling wave can provide stable axial confinement 
for ions that are localized along z and have a small spread in kinetic energy.

 The wave creates a potential well for ion confinement called an RF bucket. Ions 
that escape from the bucket quickly lose their synchronization with the wave and 
are no longer accelerated. Space-charge electric fields can drive ions out of an 
RF bucket. This process set limits on the current in the accelerator.
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Longitudinal space-charge limits in RF accelerators and 
induction linacs
 The total potential energy for particles in the wave frame:

𝑈𝑈𝑡𝑡 ∆𝑧𝑧 =
𝑒𝑒𝐸𝐸0𝑣𝑣𝑠𝑠
𝜔𝜔 1 − cos

𝜔𝜔∆𝑧𝑧
𝑣𝑣𝑠𝑠

+ 𝑒𝑒𝐸𝐸0∆𝑧𝑧 sin𝜙𝜙𝑠𝑠

 The depth of the confining potential 
well:

∆𝑈𝑈𝑐𝑐 =
2𝑒𝑒𝐸𝐸0𝑣𝑣𝑠𝑠
𝜔𝜔

Ψ(𝜙𝜙𝑠𝑠)

 The beam-generated electric 
potential:

𝑒𝑒∆𝜙𝜙 =
𝑒𝑒𝐼𝐼0

4𝜋𝜋𝜖𝜖0𝛽𝛽𝑐𝑐
1 + 2 ln

𝑒𝑒𝑤𝑤
𝑒𝑒0

 The beam-generated electric force 
pushes particles out of the bucket if 
𝑒𝑒∆𝜙𝜙 > ∆𝑈𝑈𝑐𝑐, giving a peak current:

𝐼𝐼0 ≤
8𝜋𝜋𝜖𝜖0𝛽𝛽𝑐𝑐Ψ(𝜙𝜙𝑠𝑠)𝐸𝐸0𝑣𝑣𝑠𝑠
𝜔𝜔 1 + 2 ln ⁄𝑒𝑒𝑤𝑤 𝑒𝑒0
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