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Transverse force on sheet beams by applied electric field

® Transverse component of static electric field:

E.(x,z) = —x
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® Change in the kinetic energy by axial electric field:
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® The applied transverse electric force on the envelope:
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Transverse force on sheet beams by applied magnetic field

® Because there are no y-directed forces, the canonical momentum of particles in
y is a conserved quantity:

P, = ymyv, + qA, = ymyv, + qB,x = P,

® If there is no magnetic field at the source and particles leave perpendicular to the
surface (v, = 0), then all particles have zero canonical momentum, P, = 0, then:
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Ymg
® The applied transverse magnetic force on the envelope:

v,(z) = —

2Bz 0, Z X Magnet windings
Foa g AT

IR

+

= f“"ﬂ% =
o T G R e T
ﬂﬂﬂﬂﬂﬂﬂ f

o —
e —

gar—"

Magnetic lens

Einzel lens fa)

3/13 Radiation Source Engineering, Fall 2017




Transverse force on sheet beams by self-generating forces

® The electric and magnetic forces acting on the envelope of a sheet beam
carrying a current per unit length (along y) of J (A/m) is:

o _q . qBcuo]
F,o(electric) = qE,o = 2, Fxo(magnetlc) = _quByO = — 7
® The total beam-generated force on the envelope:
E, = ymy(Bc)?K, K, = ZEOTZ]O Bre (generalized perveance)
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Envelope equation for sheet beams

® The beam envelope follows an equation of motion of the form:

d dx d
ymy < )] = —[ymoBcX'] = moBc?lyBX" +yB'X +y'BX'] = z F

dt dt dt
. . . YB'+BYy' =v'/B
® Ve obtain the following equation:
/ 2p2 2
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® Finally, we obtain the envelop equation for sheet beams:
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Paraxial ray equation

® |n a cylindrical system, symmetry permits only certain components of electric
and magnetic field:

1. axial and radial components of the applied electric field,

2. radial electric field resulting from space-charge,

3. axial and radial magnetic field components generated by axi-centered
circular coils, and

4. beam-generated toroidal magnetic field.

® In the paraxial limit, we can relate the radial components of applied fields to the
axial field by:

r (0E, r (0B,
= 1(2%) 5 1(2%)
2\ 0z —0 2\ 0z 0

® Particles gain azimuthal velocity when they move through the radial magnetic
fields of a solenoidal lens. For forces with cylindrical symmetry, the canonical
angular momentum is a constant of particle motion:

ymoyrvg + qrlg = Pg = constant
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Paraxial ray equation

® \We can derive the following equation for axial variation of the envelope of a
cylindrical beam:

Rs
o = f 2nRB,(R, Z)dR
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Addition of approximate term for periodic focusing systems

® The displacement of a particle orbit at the boundary of the nth lens in an array
obeys the equation:

T, = 1o cos(nugy + @) Uo: vacuum phase advance per lens

® [f the length of a focusing cell is L, the long-term harmonic motion follows the
equation:

r(z) =rocos((uo/Lz+¢) I " =—(uo/L)?r

® The paraxial ray equation when considering only periodic forces:
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Limiting current for paraxial beams with a uniform solenoid
field

® Radial force balance for a cylindrical, paraxial electron beam in a uniform
solenoid field B,.

R" = 15 2R+EZ+K—O
— \2ymyfc R3 R

® The acceptance «a is defined as the allowed beam emittance for a given
envelope radius when there are no beam-generated forces, i.e. K = 0:

2
aZ — qBO R4-
2ymyfSc
® Using the expression for the generalized perveance, we obtain the matched
beam current:

K =

a? €2 el [ = |TCoee
R2 R2  2meymy(Byc)3 B

2
(BY)(BoR)? [1 - %]

zmo

® If there is no emittance, the beam-generated forces exactly balance the focusing
force of the axial magnetic field. Here, particle flow is laminar and the allowed
current has a maximum value.
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Limiting current for paraxial beams with an array of
solenoidal lens

® The on-axis magnetic field has variation

Tz Solenoidal magnet coils
B,(0,z) = B, sin (T) /
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® [f the beam envelope oscillations are much smaller than R, the limiting current is
given approximately by

2
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Multiple-beam ion transport

® One strategy to increase the limiting current in a high-flux ion accelerator is to
divide a beam into many segments, each with its own focusing system.

® Electrostatic quadrupole focusing has two advantages for high-current ion beam
transport; (1) Electric fields deflect nonrelativistic ions more effectively than
magnetic fields. (2) Miniature magnetic quadrupole lenses are difficult to
fabricate and to operate because of cooling problems.
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Longitudinal space-charge limits in RF accelerators and
Induction linacs

® Beam-generated axial electric fields can limit the beam current in RF
accelerators and induction linacs.

n-1 n , n+1 n+2

Un

]

Fan ™

dn 4’{
® |ons in RF accelerators must remain in specific phase regions of the accelerating

wave. The electric field of a traveling wave can provide stable axial confinement
for ions that are localized along z and have a small spread in kinetic energy.

I_.n
|

® The wave creates a potential well for ion confinement called an RF bucket. lons
that escape from the bucket quickly lose their synchronization with the wave and
are no longer accelerated. Space-charge electric fields can drive ions out of an
RF bucket. This process set limits on the current in the accelerator.
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Longitudinal space-charge limits in RF accelerators and
Induction linacs

® The total potential energy for particles in the wave frame:

eEq v wAz
U;(Az) = (Z > [1 — cos( )

Us

+ eEyAz sin ¢

® The depth of the confining potential
well: Ao

ZeEovS
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AU, = o
a) i rps—z'

® The beam-generated electric

potential:
T, N
1+ 2In <l>] T
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® The beam-generated electric force
pushes particles out of the bucket if
eA¢ > AU,, giving a peak current:
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