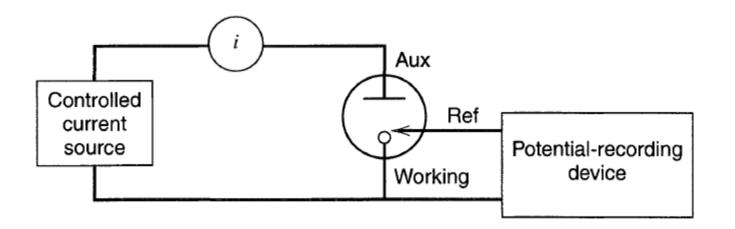
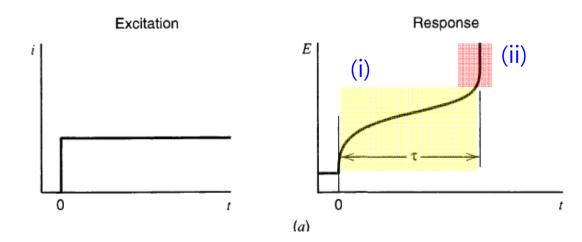
CONTROLLED-CURRENT TECHNIQUES

- Electrochemical methods in Chapters 5-6
 - : the potential (input) of an electrode was controlled as a function of time
 - \rightarrow the current (output) was determined.
- In this chapter
 - : the opposite case
 - : the current is controlled (frequently held constant)
 - \rightarrow the potential is determined as a function of time.

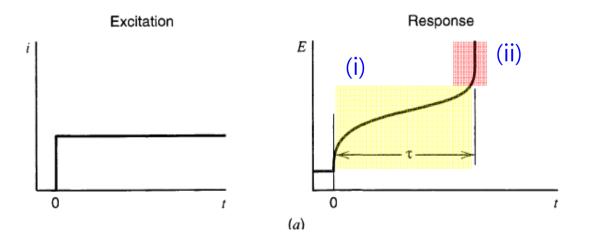
- In the experiment
 - : apply the controlled current between the working and counter electrodes with a current source (called a galvanostat)
 - \rightarrow record the potential between the working and reference electrodes
 - : called chronopotentiometric techniques,
 - \rightarrow because E is determined as a function of time
 - → galvanostatic techniques



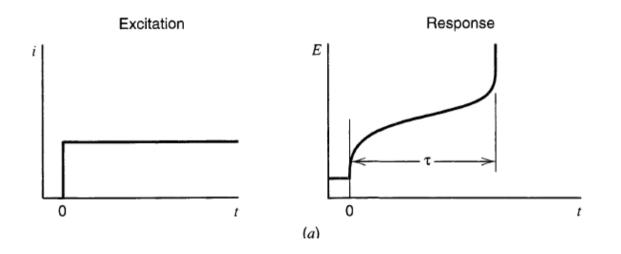
- Various types of controlled-current techniques
- 1) Constant-current chronopotentiometry
- Consider the anthracene (An) system used as an example in Section 5.1.1.
- The steady current, i, applied to the electrode
 - \rightarrow the anthracene to be reduced at a constant rate to the anion radical
- As the anthracene/anthracene radical concentration ratio changes at the electrode surface
 - \rightarrow (i) the potential of the electrode varies with time



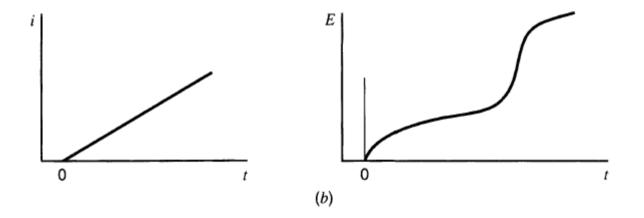
- Eventually, after the concentration of An drops to zero at the electrode surface
 - → the flux of O to the electrode surface is not large enough to satisfy the applied current
 - → (ii) the potential shifts to a more extreme value where another electrode process can occur



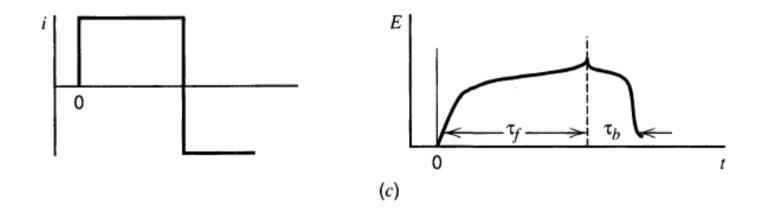
- The time after application of the constant current when this potential transition occurs
 - \rightarrow called the transition time, τ .
 - \rightarrow dependent on the concentration and the diffusion coefficient



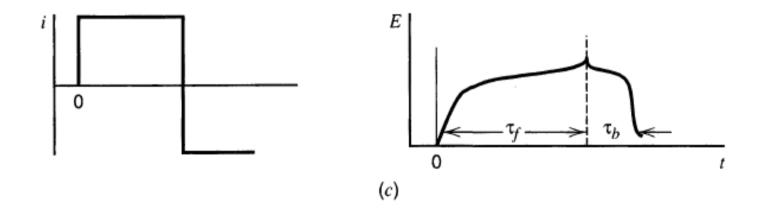
- 2) Programmed current chronopotentiometry
- Instead of a constant current,
 - \rightarrow apply a current that varies as a known function of time



- 3) Current reversal chronopotentiometry
- The current can be reversed after some time
- For example, in the case of An,
 - → if the current is suddenly changed to an anodic current of equal magnitude at, or before, the transition time,
 - : the An radical formed during the forward step will start oxidizing.

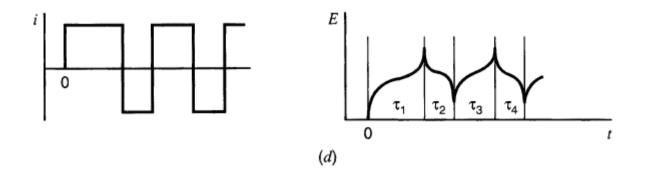


- As the An/An radical concentration ratio increases.
 - \rightarrow the potential will move in a positive direction
- When the An radical concentration falls to zero at the electrode surface
 - \rightarrow a potential increases highly toward positive potentials
 - \rightarrow a reverse transition time can be measured.



4) Cyclic chronopotentiometry

- In an extension of current reversal chronopotentiometry technique,
 - \rightarrow the current can be continuously reversed at each transition
 - \rightarrow repeat the current reversal chronopotentiometry
 - → conventionally used to measure a capacity in the area of rechargeable batteries such as Li-ion batteries



- Consider the simple electron-transfer reaction, $O + ne \rightarrow R$.
 - \rightarrow assumptions:
 - 1) a planar working electrode and an unstirred solution
 - 2) species O initially present at a concentration C_0^*
 - 3) semi-infinite linear diffusion
 - \rightarrow the following diffusion equations and general boundary conditions

$$\frac{\partial C_{O}(x,t)}{\partial t} = D_{O} \frac{\partial^{2} C_{O}(x,t)}{\partial x^{2}} \qquad \frac{\partial C_{R}(x,t)}{\partial t} = D_{R} \frac{\partial^{2} C_{R}(x,t)}{\partial x^{2}}$$
At $t = 0$ (for all x)
and
as $x \to \infty$ (for all t) $\begin{cases} C_{O}(x,t) = C_{O}^{*} \\ C_{O}(x,t) = C_{O}^{*} \end{cases}$

$$D_{\rm O}\left(\frac{\partial C_{\rm O}(x,t)}{\partial x}\right)_{x=0} + D_{\rm R}\left(\frac{\partial C_{\rm R}(x,t)}{\partial x}\right)_{x=0} = 0$$

Since the applied current i(t) is presumed known,

 \rightarrow the flux at the electrode surface is also known at any time

$$D_{\rm O}\left[\frac{\partial C_{\rm O}(x,t)}{\partial x}\right]_{x=0} = \frac{i(t)}{nFA}$$

- For controlled-potential methods (Ch. 5-6),
 - → the concentration-potential boundary condition was required to solve the governing equations
- For controlled-current methods
 - \rightarrow The above boundary condition involving the concentration gradient

• For species O, application of the Laplace transform method to

$$\frac{\partial C_{O}(x,t)}{\partial t} = D_{O} \frac{\partial^{2} C_{O}(x,t)}{\partial x^{2}}$$
At $t = 0$ (for all x)
and
as $x \to \infty$ (for all t)

$$\begin{cases} C_{O}(x,t) = C_{O}^{*} \qquad C_{R}(x,t) = 0 \end{cases} \xrightarrow{\overline{C}_{O}(x,s)} = \frac{C_{O}^{*}}{s} + A(s) \exp\left[-\left(\frac{s}{D_{O}}\right)^{1/2} x\right]$$

$$D_{O}\left[\frac{\partial C_{O}(x,t)}{\partial x}\right]_{x=0} = \frac{i(t)}{nFA} \qquad D_{O}\left[\frac{\partial \overline{C}_{O}(x,s)}{\partial x}\right]_{x=0} = \frac{\overline{i}(s)}{nFA}$$

$$\overrightarrow{C}_{O}(x,s) = \frac{C_{O}^{*}}{s} - \left[\frac{\overline{i}(s)}{nFAD_{O}^{1/2}s^{1/2}}\right] \exp\left[-\left(\frac{s}{D_{O}}\right)^{1/2} x\right]$$

• By substitution of the known function, $\overline{i}(s)$, and employing the inverse transform $\rightarrow C_0(x, t)$ can be obtained

• Similarly, for species R,

• If i(t) is constant, then $\overline{i}(s) = i/s$

$$\overline{C}_{O}(x,s) = \frac{C_{O}^{*}}{s} - \left[\frac{\overline{i}(s)}{nFAD_{O}^{1/2}s^{1/2}}\right] \exp\left[-\left(\frac{s}{D_{O}}\right)^{1/2}x\right]$$
$$\implies \quad \overline{C}_{O}(x,s) = \frac{C_{O}^{*}}{s} - \left[\frac{i}{nFAD_{O}^{1/2}s^{3/2}}\right] \exp\left[-\left(\frac{s}{D_{O}}\right)^{1/2}x\right]$$

• The inverse transform of this equation \rightarrow concentration profiles

$$C_{\rm O}(x,t) = C_{\rm O}^* - \frac{i}{nFAD_{\rm O}} \left\{ 2 \left(\frac{D_{\rm O}t}{\pi} \right)^{1/2} \exp\left(-\frac{x^2}{4D_{\rm O}t} \right) - x \operatorname{erfc}\left[\frac{x}{2(D_{\rm O}t)^{1/2}} \right] \right\}$$

TABLE A.1.1Laplace Transformsof Common Functions (1)

$$\frac{F(t)}{2\left(\frac{kt}{\pi}\right)^{1/2}\exp(-x^2/4kt) - x\operatorname{erfc}[x/2(kt)^{1/2}]} e^{-\beta x}/s\beta$$

- Typical concentration profiles at various times during a constantcurrent electrolysis
 - \rightarrow C₀(0,t) decreases continuously
 - → yet, [dC_O(x, t)/dx]_{x=0} is constant at all times after the onset of electrolysis.

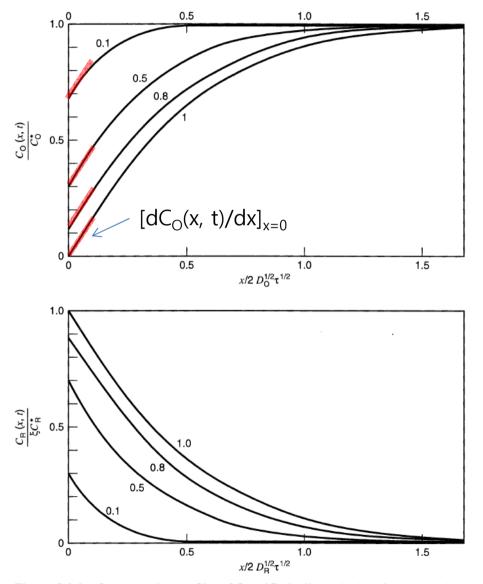


Figure 8.2.1 Concentration profiles of O and R (in dimensionless form) at various values of t/τ indicated on the curves.

• By setting x = 0, an expression for $C_0(0, t)$:

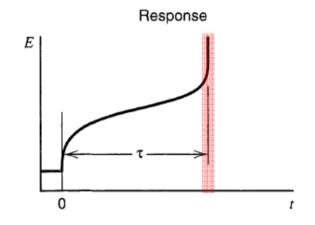
$$C_{\rm O}(x,t) = C_{\rm O}^* - \frac{i}{nFAD_{\rm O}} \left\{ 2 \left(\frac{D_{\rm O}t}{\pi} \right)^{1/2} \exp\left(-\frac{x^2}{4D_{\rm O}t} \right) - x \operatorname{erfc}\left[\frac{x}{2(D_{\rm O}t)^{1/2}} \right] \right\}$$
$$\swarrow \quad C_{\rm O}(0,t) = C_{\rm O}^* - \frac{2it^{1/2}}{nFAD_{\rm O}^{1/2}\pi^{1/2}}$$

1

- At the transition time, $\boldsymbol{\tau},$

 \rightarrow C_O(0, t) drops to zero

$$C_{\rm O}(0,t) = C_{\rm O}^* - \frac{2it^{1/2}}{nFAD_{\rm O}^{1/2}\pi^{1/2}} = 0$$
 (at t= τ)



$$C_{\rm O}(0,t) = C_{\rm O}^* - \frac{2it^{1/2}}{nFAD_{\rm O}^{1/2}\pi^{1/2}} = 0 \qquad (\text{at } t=\tau)$$

$$\frac{i\tau^{1/2}}{C_{\rm O}^*} = \frac{nFAD_{\rm O}^{1/2}\pi^{1/2}}{2} = 85.5 nD_{\rm O}^{1/2}A \frac{\text{mA-s}^{1/2}}{\text{mM}} (\text{with } A \text{ in } \text{cm}^2)$$

: known as the Sand equation

• The measured value of τ at known i (or the values of $i\tau^{1/2}$ obtained at various currents) \rightarrow used to determine n, A, C₀* or D₀