SOLUTION METHODS FOR THE EQUATIONS OF RADIATIVE TRANSFER

- Optically Thin Approximation
- Optically Thick Approximation
- Exponential Kernel Approximation
- Differential Approximations
 - Milne-Eddington Approximation
 - Spherical Harmonics Approximation (P-N Approximation)
 - Shuster-Schwarzchild Approximation (two-flux model)
 - Discrete Ordinate Method (S-N Approximation)

Planar medium with isotropic scattering or non-scattering and diffuse boundaries

Optically Thin Approximation

$$\tau_{\lambda} \ll 1$$

$$q_{\lambda}''(\tau_{\lambda}) = 2\pi \left[i_{\lambda}^{+}(0)E_{3}(\tau_{\lambda}) + \int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda}')E_{2}(\tau_{\lambda} - \tau_{\lambda}')d\tau_{\lambda}' \right]$$

$$-2\pi \left[i_{\lambda}^{-}(\tau_{\lambda})E_{3}(\tau_{\lambda 0} - \tau_{\lambda}) + \int_{\tau_{\lambda}}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}')E_{2}(\tau_{\lambda}' - \tau_{\lambda})d\tau_{\lambda}' \right]$$

$$E_{2}(\tau) = \int_{0}^{1} e^{-\frac{\tau}{\mu}} d\mu = \int_{0}^{1} \left[1 + O\left(\frac{\tau}{\mu}\right) \right] d\mu = 1 + O(\tau)$$

$$f_{\lambda}^{1} = -\frac{\tau}{\mu} = 1$$

$$E_{3}(\tau) = \int_{0}^{1} \mu e^{-\mu} d\mu = \frac{1}{2} - \tau + O(\tau^{2})$$

$$q_{\lambda}'' = 2\pi \left[i_{\lambda}^{+}(0) \left(\frac{1}{2} - \tau_{\lambda} \right) + \int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda}') d\tau_{\lambda}' \right]$$
$$-2\pi \left[i_{\lambda}^{-}(\tau_{\lambda 0}) \left(\frac{1}{2} - \tau_{\lambda 0} + \tau_{\lambda} \right) + \int_{0}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}') d\tau_{\lambda}' \right]$$

neglecting terms of $O(\tau_{\lambda 0})$,

$$q_{\lambda}'' = \pi \Big[i_{\lambda}^{+}(0) - i_{\lambda}^{-}(\tau_{\lambda 0}) \Big]$$
$$i_{\lambda}^{+}(0) = \varepsilon_{\lambda 1} i_{\lambda b 1} + (1 - \varepsilon_{\lambda 1}) G_{\lambda 1}$$
$$i_{\lambda}^{-}(\tau_{\lambda 0}) = \varepsilon_{\lambda 2} i_{\lambda b 2} + (1 - \varepsilon_{\lambda 2}) G_{\lambda 2}$$

boundary surface intensities-diffuse surface

$$G_{\lambda 1} = \int_{\omega=2\pi} i_{\lambda}^{-}(0,-\mu')\cos\theta' d\omega'$$

$$i_{\lambda}^{-}(\tau_{\lambda},-\mu) = i_{\lambda}^{-}(\tau_{\lambda 0},-\mu)\exp\left[-\frac{1}{\mu}(\tau_{\lambda 0}-\tau_{\lambda})\right]$$

$$+\int_{\tau_{\lambda}}^{\tau_{\lambda 0}} \frac{1}{\mu}S(\tau_{\lambda}',-\mu)\exp\left[-\frac{1}{\mu}(\tau_{\lambda}'-\tau_{\lambda})\right]d\tau_{\lambda}', \ \mu > 0$$

isotropic scattering and diffuse boundary

$$i_{\lambda}^{-}(0,-\mu) = i_{\lambda}^{-}(\tau_{\lambda 0}) \exp\left(-\frac{\tau_{\lambda 0}}{\mu}\right) + \int_{0}^{\tau_{\lambda 0}} \frac{1}{\mu} S(\tau_{\lambda}') \exp\left(-\frac{\tau_{\lambda}'}{\mu}\right) d\tau_{\lambda}'$$

$$\begin{aligned} G_{\lambda 1} &= \int_{\omega=2\pi} \left\{ i_{\lambda}^{-}(\tau_{\lambda 0}) \exp\left(-\frac{\tau_{\lambda 0}}{\mu'}\right) \right. \\ &+ \int_{0}^{\tau_{\lambda 0}} \frac{1}{\mu} S(\tau_{\lambda}') \exp\left(-\frac{\tau_{\lambda}}{\mu}\right) d\tau_{\lambda}' \right\} \cos\theta' d\omega' \\ &\int_{\omega=2\pi} i_{\lambda}^{-}(\tau_{\lambda 0}) \exp\left(-\frac{\tau_{\lambda 0}}{\mu'}\right) \cos\theta' d\omega' \\ &= 2\pi i_{\lambda}^{-}(\tau_{\lambda 0}) \int_{0}^{1} \mu' \exp\left(-\frac{\tau_{\lambda 0}}{\mu'}\right) d\mu' = 2\pi i_{\lambda}^{-}(\tau_{\lambda 0}) E_{3}(\tau_{\lambda 0}) \\ &\int_{\omega=2\pi} \int_{0}^{\tau_{\lambda 0}} \frac{1}{\mu'} S(\tau_{\lambda}') \exp\left(-\frac{\tau_{\lambda}'}{\mu'}\right) d\tau_{\lambda}' \cos\theta' d\omega' \\ &= \int_{0}^{\tau_{\lambda 0}} S(\tau_{\lambda}') \left\{ \int_{\omega=2\pi} \exp\left(-\frac{\tau_{\lambda}'}{\mu}\right) d\omega' \right\} d\tau_{\lambda}' = 2\pi \int_{0}^{\tau_{\lambda 0}} S(\tau_{\lambda}') E_{2}(\tau_{\lambda}') d\tau_{\lambda}' \end{aligned}$$

$$G_{\lambda 1} = 2\pi i_{\lambda}^{-}(\tau_{\lambda 0})E_{3}(\tau_{\lambda 0}) + 2\pi \int_{0}^{\tau_{\lambda 0}} S(\tau_{\lambda}')E_{2}(\tau_{\lambda}')d\tau_{\lambda}'$$

$$i_{\lambda}^{+}(\mathbf{0}) = \varepsilon_{\lambda 1} i_{\lambda b 1} + 2 \Big(1 - \varepsilon_{\lambda 1} \Big) \bigg[i_{\lambda}^{-}(\tau_{\lambda 0}) E_{3}(\tau_{\lambda 0}) + \int_{0}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}') E_{2}(\tau_{\lambda}') d\tau_{\lambda}' \bigg] i_{\lambda}^{-}(\tau_{\lambda 0}) = \varepsilon_{\lambda 2} i_{\lambda b 2} + 2 \Big(1 - \varepsilon_{\lambda 2} \Big) \bigg[i_{\lambda}^{+}(\mathbf{0}) E_{3}(\tau_{\lambda 0}) + \int_{0}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}') E_{2}(\tau_{\lambda 0} - \tau_{\lambda}') d\tau_{\lambda}' \bigg]$$

optically thin, neglecting the terms of order τ_{λ}

$$i_{\lambda}^{+}(0) = \varepsilon_{\lambda 1}i_{\lambda b 1} + (1 - \varepsilon_{\lambda 1})i_{\lambda}^{-}(\tau_{\lambda 0}) \qquad \left(E_{3}(0) = \frac{1}{2}\right)$$
$$i_{\lambda}^{-}(\tau_{\lambda 0}) = \varepsilon_{\lambda 2}i_{\lambda b 2} + (1 - \varepsilon_{\lambda 2})i_{\lambda}^{+}(0)$$

$$i_{\lambda}^{+}(\mathbf{0}) = \frac{\varepsilon_{\lambda 1} i_{\lambda b 1} + (1 - \varepsilon_{\lambda 1}) \varepsilon_{\lambda 2} i_{\lambda b 2}}{1 - (1 - \varepsilon_{\lambda 1})(1 - \varepsilon_{\lambda 2})}$$
$$i_{\lambda}^{-}(\tau_{\lambda 0}) = \frac{\varepsilon_{\lambda 2} i_{\lambda b 2} + (1 - \varepsilon_{\lambda 2}) \varepsilon_{\lambda 1} i_{\lambda b 1}}{1 - (1 - \varepsilon_{\lambda 1})(1 - \varepsilon_{\lambda 2})}$$

$$q_{\lambda}'' = \pi \left[i_{\lambda}^{+}(\mathbf{0}) - i_{\lambda}^{-}(\tau_{\lambda 0}) \right]$$

In the optically thin limit: $\tau_{\lambda} \rightarrow 0$

$$q_{\lambda 1}'' = \frac{\pi \left[i_{\lambda b 1}(T_1) - i_{\lambda b 2}(T_2) \right]}{\frac{1}{\varepsilon_{\lambda 1}} + \frac{1}{\varepsilon_{\lambda 2}} - 1} = \frac{\frac{e_{\lambda b 1} - e_{\lambda b 2}}{\frac{1}{\varepsilon_{\lambda 1}} + \frac{1}{\varepsilon_{\lambda 2}} - 1}$$

Optically Thick Approximation

Rosseland or diffusion approximation

$$q_{\lambda}''(\tau_{\lambda}) = 2\pi \left[i_{\lambda}^{+}(0)E_{3}(\tau_{\lambda}) + \int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda}')E_{2}(\tau_{\lambda} - \tau_{\lambda}')d\tau_{\lambda}' \right]$$
$$-2\pi \left[i_{\lambda}^{-}(\tau_{\lambda0})E_{3}(\tau_{\lambda0} - \tau_{\lambda}) + \int_{\tau_{\lambda}}^{\tau_{\lambda0}} S_{\lambda}(\tau_{\lambda}')E_{2}(\tau_{\lambda}' - \tau_{\lambda}')d\tau_{\lambda}' \right]$$

Let
$$z = \tau_{\lambda} - \tau'_{\lambda}$$
 then $\tau'_{\lambda} = \tau_{\lambda} - z$, $d\tau'_{\lambda} = -dz$
$$\int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau'_{\lambda}) E_{2}(\tau_{\lambda} - \tau'_{\lambda}) d\tau'_{\lambda} = \int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda} - z) E_{2}(z) dz$$

Let $z = \tau'_{\lambda} - \tau_{\lambda}$ then $\tau'_{\lambda} = \tau_{\lambda} + z$, $d\tau'_{\lambda} = dz$ $\int_{\tau_{\lambda}}^{\tau_{\lambda 0}} S_{\lambda}(\tau'_{\lambda}) E_{2}(\tau'_{\lambda} - \tau_{\lambda}) d\tau'_{\lambda} = \int_{0}^{\tau_{\lambda 0} - \tau_{\lambda}} S_{\lambda}(\tau_{\lambda} + z) E_{2}(z) dz$

$$q_{\lambda}''(\tau_{\lambda}) = 2\pi \left[i_{\lambda}^{+}(0)E_{3}(\tau_{\lambda}) + \int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda} - z)E_{2}(z)dz \right]$$
$$-2\pi \left[i_{\lambda}^{-}(\tau_{\lambda 0})E_{3}(\tau_{\lambda 0} - \tau_{\lambda}) + \int_{0}^{\tau_{\lambda 0} - \tau_{\lambda}} S_{\lambda}(\tau_{\lambda} + z)E_{2}(z)dz \right]$$

For a large optical distance away from the wall $\tau_{\lambda} >> 1$, $\tau_{\lambda 0} - \tau_{\lambda} >> 1$

$$\lim_{x\to\infty} E_n(x) = 0$$

$$q_{\lambda}''(\tau_{\lambda}) = 2\pi \int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda} - z) E_{2}(z) dz$$

$$-2\pi \int_0^{\tau_{\lambda 0}-\tau_{\lambda}} S_{\lambda}(\tau_{\lambda}+z) E_2(z) dz$$

expand $S_{\lambda}(\tau_{\lambda} \pm z)$ into a Taylor series

$$S_{\lambda}(\tau_{\lambda} \pm z) = S_{\lambda}(\tau_{\lambda}) \pm \frac{dS_{\lambda}}{d\tau_{\lambda}}z + \frac{1}{2}\frac{d^{2}S_{\lambda}}{d\tau_{\lambda}^{2}}z^{2} \pm \cdots$$

when
$$\tau_{\lambda} \gg 1$$
, $\tau_{\lambda 0} - \tau_{\lambda} \gg 1$
 $q_{\lambda}''(\tau_{\lambda}) = 2\pi \left[S_{\lambda}(\tau_{\lambda}) \int_{0}^{\infty} E_{2}(z) dz - \frac{dS_{\lambda}}{d\tau_{\lambda}} \int_{0}^{\infty} zE_{2}(z) dz + \cdots \right]$
 $-2\pi \left[S_{\lambda}(\tau_{\lambda}) \int_{0}^{\infty} E_{2}(z) dz + \frac{dS_{\lambda}}{d\tau_{\lambda}} \int_{0}^{\infty} zE_{2}(z) dz + \cdots \right]$
 $= -4\pi \frac{dS_{\lambda}}{d\tau_{\lambda}} \int_{0}^{\infty} zE_{2}(z) dz + O\left(\frac{1}{\tau_{\lambda}^{3}}\right) \left(\int_{0}^{\infty} zE_{2}(z) dz = \frac{1}{3} \right)$
 $= -\frac{4\pi}{3} \frac{dS_{\lambda}}{d\tau_{\lambda}}$

For a non-scattering medium

$$S_{\lambda} = i_{\lambda b}$$

$$q_{\lambda}''(\tau_{\lambda}) = -\frac{4\pi}{3} \frac{dS_{\lambda}}{d\tau_{\lambda}} = -\frac{4\pi}{3} \frac{di_{\lambda b}}{d\tau_{\lambda}} = -\frac{4}{3} \frac{de_{\lambda b}}{d\tau_{\lambda}}$$

For an isotropic scattering medium

$$G_{\lambda}(\tau_{\lambda}) = 2\pi \left[\int_{0}^{1} i_{\lambda}^{+}(\tau_{\lambda},\mu) d\mu + \int_{0}^{1} i_{\lambda}^{-}(\tau_{\lambda},-\mu) d\mu \right]$$
$$i_{\lambda}^{+}(\tau_{\lambda},\mu) = i_{\lambda}^{+}(0) \exp \left(-\frac{\tau_{\lambda}}{\mu}\right)$$
$$+ \int_{0}^{\tau_{\lambda}} \frac{1}{\mu} S(\tau_{\lambda}') \exp \left[-\frac{1}{\mu}(\tau_{\lambda}-\tau_{\lambda}')\right] d\tau_{\lambda}'$$

$$i_{\lambda}^{-}(\tau_{\lambda},-\mu) = i_{\lambda}^{-}(\tau_{\lambda0}) \exp\left[-\frac{1}{\mu}(\tau_{\lambda0}-\tau_{\lambda})\right]$$
$$+ \int_{\tau_{\lambda}}^{\tau_{\lambda0}} \frac{1}{\mu} S(\tau_{\lambda}') \exp\left[-\frac{1}{\mu}(\tau_{\lambda}'-\tau_{\lambda})\right] d\tau_{\lambda}'$$
$$\int_{0}^{1} i_{\lambda}^{+}(\tau_{\lambda},\mu) d\mu = \int_{0}^{1} i_{\lambda}^{+}(0) \exp\left(-\frac{\tau_{\lambda}}{\mu}\right) d\mu$$
$$+ \int_{0}^{1} \int_{0}^{\tau_{\lambda}} \frac{1}{\mu} S(\tau_{\lambda}') \exp\left[-\frac{1}{\mu}(\tau_{\lambda}-\tau_{\lambda}')\right] d\tau_{\lambda}' d\mu$$
$$= i_{\lambda}^{+}(0) E_{2}(\tau_{\lambda}) + \int_{0}^{\tau_{\lambda}} S(\tau_{\lambda}') E_{1}(\tau_{\lambda}-\tau_{\lambda}') d\tau_{\lambda}'$$

$$\int_{0}^{1} i_{\lambda}^{-}(\tau_{\lambda},-\mu)d\mu = \int_{0}^{1} i_{\lambda}^{-}(\tau_{\lambda 0}) \exp\left[-\frac{1}{\mu}(\tau_{\lambda 0}-\tau_{\lambda})\right]d\mu$$
$$+ \int_{0}^{1} \int_{\tau_{\lambda}}^{\tau_{\lambda 0}} \frac{1}{\mu} S(\tau_{\lambda}') \exp\left[-\frac{1}{\mu}(\tau_{\lambda}'-\tau_{\lambda})\right]d\tau_{\lambda}'d\mu$$
$$= i_{\lambda}^{-}(\tau_{\lambda 0})E_{2}(\tau_{\lambda 0}-\tau_{\lambda}) + \int_{\tau_{\lambda}}^{\tau_{\lambda 0}} S(\tau_{\lambda}')E_{1}(\tau_{\lambda}'-\tau_{\lambda})d\tau_{\lambda}'$$
$$G_{\lambda}(\tau_{\lambda}) = 2\pi\left[i_{\lambda}^{+}(0)E_{2}(\tau_{\lambda}) + \int_{0}^{\tau_{\lambda}} S(\tau_{\lambda}')E_{1}(\tau_{\lambda}-\tau_{\lambda}')d\tau_{\lambda}'\right]$$
$$+ 2\pi\left[i_{\lambda}^{-}(\tau_{\lambda 0})E_{2}(\tau_{\lambda 0}-\tau_{\lambda}) + \int_{\tau_{\lambda}}^{\tau_{\lambda 0}} S(\tau_{\lambda}')E_{1}(\tau_{\lambda}'-\tau_{\lambda}')d\tau_{\lambda}'\right]$$

when
$$\tau_{\lambda} \gg 1$$
, $\tau_{\lambda 0} - \tau_{\lambda} \gg 1$
 $G_{\lambda}(\tau_{\lambda}) = 2\pi \int_{0}^{\tau_{\lambda}} S(\tau_{\lambda}') E_{1}(\tau_{\lambda} - \tau_{\lambda}') d\tau_{\lambda}'$
 $+ 2\pi \int_{\tau_{\lambda}}^{\tau_{\lambda 0}} S(\tau_{\lambda}') E_{1}(\tau_{\lambda}' - \tau_{\lambda}) d\tau_{\lambda}'$
 $z = \tau_{\lambda} - \tau_{\lambda}'$
 $\int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda}') E_{1}(\tau_{\lambda} - \tau_{\lambda}') d\tau_{\lambda}' = \int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda} - z) E_{1}(z) dz$
 $z = \tau_{\lambda}' - \tau_{\lambda}$
 $\int_{\tau_{\lambda}}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}') E_{1}(\tau_{\lambda}' - \tau_{\lambda}) d\tau_{\lambda}' = \int_{0}^{\tau_{\lambda 0} - \tau_{\lambda}} S_{\lambda}(\tau_{\lambda} + z) E_{1}(z) dz$
 $G_{\lambda}(\tau_{\lambda}) = 2\pi \left[S_{\lambda}(\tau_{\lambda}) \int_{0}^{\infty} E_{1}(z) dz - \frac{dS_{\lambda}}{d\tau_{\lambda}} \int_{0}^{\infty} z E_{1}(z) dz + \cdots \right]$
 $+ 2\pi \left[S_{\lambda}(\tau_{\lambda}) \int_{0}^{\infty} E_{1}(z) dz + \frac{dS_{\lambda}}{d\tau_{\lambda}} \int_{0}^{\infty} z E_{1}(z) dz + \cdots \right]$

$$G_{\lambda}(\tau_{\lambda}) = 4\pi S_{\lambda}(\tau_{\lambda}) \int_{0}^{\infty} E_{1}(z) dz + O\left(\frac{1}{\tau_{\lambda}^{2}}\right)$$
$$\int_{0}^{\infty} E_{1}(z) dz = 1$$

$$G_{\lambda}(\tau_{\lambda}) = 4\pi S_{\lambda}(\tau_{\lambda})$$

$$S_{\lambda}(\tau_{\lambda}) = (1 - \omega_{0\lambda})i_{\lambda b} + \frac{\omega_{0\lambda}}{4\pi}G_{\lambda} = (1 - \omega_{0\lambda})i_{\lambda b} + \omega_{0\lambda}S_{\lambda}$$
$$S_{\lambda} = i_{\lambda b}$$
$$q_{\lambda}''(\tau_{\lambda}) = -\frac{4\pi}{3}\frac{dS_{\lambda}}{d\tau_{\lambda}} = -\frac{4\pi}{3}\frac{di_{\lambda b}}{d\tau_{\lambda}} = -\frac{4}{3}\frac{de_{\lambda b}}{d\tau_{\lambda}}$$

total radiative heat flux

$$q'' = -\frac{4}{3}\pi \int_0^\infty \frac{di_{\lambda b}}{d\tau_\lambda} d\lambda$$

$$\tau_\lambda = \int_0^x \kappa_\lambda(x') dx' \to d\tau_\lambda = \kappa_\lambda(x) dx$$

$$q''(x) = -\frac{4\pi}{3} \int_0^\infty \frac{1}{\kappa_\lambda} \frac{di_{\lambda b}(x)}{dx} d\lambda$$

but $\frac{di_{\lambda b}}{dx} = \frac{di_{\lambda b}}{di_b} \frac{di_b}{dx}$

$$q''(x) = -\frac{4\pi}{3} \frac{di_b}{dx} \int_0^\infty \frac{1}{\kappa_\lambda} \frac{di_{\lambda b}}{di_b} d\lambda$$

Rosseland mean extinction coefficient :

$$\frac{1}{K_{R}} = \int_{0}^{\infty} \frac{1}{\kappa_{\lambda}} \frac{di_{\lambda b}}{di_{b}} d\lambda = \int_{0}^{\infty} \frac{1}{\kappa_{\lambda}} \frac{de_{\lambda b}}{de_{b}}$$

$$q''(x) = -\frac{4\pi}{3K_{R}} \frac{di_{b}}{dx} = -\frac{4\sigma}{3K_{R}} \frac{d\left(n^{2}T^{4}\right)}{dx} \quad \left(i_{b} = \frac{n^{2}\sigma T^{4}}{\pi}\right)$$

$$= -\frac{16n^{2}\sigma T^{3}}{3K_{R}} \frac{dT}{dx}$$
radiative conductivity: $\frac{16n^{2}\sigma T^{3}}{3K_{R}}$
in general, $q''_{\lambda} = -\frac{4\pi}{3\kappa_{\lambda}} \nabla i_{\lambda b}, q'' = -\frac{4\pi}{3K_{R}} \nabla i_{b}$

Radiation slip : temperature jump condition at walls modified diffusion approximation

$$q_{\lambda}''(\tau_{\lambda}) = 2\pi \left[i_{\lambda}^{+}(0)E_{3}(\tau_{\lambda}) + \int_{0}^{\tau_{\lambda}} S_{\lambda}(\tau_{\lambda}')E_{2}(\tau_{\lambda} - \tau_{\lambda}')d\tau_{\lambda}' \right]$$
$$-2\pi \left[i_{\lambda}^{-}(\tau_{\lambda0})E_{3}(\tau_{\lambda0} - \tau_{\lambda}) + \int_{\tau_{\lambda}}^{\tau_{\lambda0}} S_{\lambda}(\tau_{\lambda}')E_{2}(\tau_{\lambda}' - \tau_{\lambda}')d\tau_{\lambda}' \right]$$

at
$$\tau_{\lambda} = 0$$
 $E_3(\tau) = \int_0^1 \mu \exp\left(-\frac{\tau}{\mu}\right) d\mu \to E_3(0) = \frac{1}{2}$

$$q_{\lambda}''(0) = \pi i_{\lambda}^{+}(0) - 2\pi \left[i_{\lambda}^{-}(\tau_{\lambda 0}) E_{3}(\tau_{\lambda 0}) + \int_{0}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}') E_{2}(\tau_{\lambda}') d\tau_{\lambda}' \right]$$

boundary surface intensity

$$i_{\lambda}^{+}(\mathbf{0}) = \varepsilon_{\lambda 1} i_{\lambda b 1}$$

+2(1 - $\varepsilon_{\lambda 1}$) $\left[i_{\lambda}^{-}(\tau_{\lambda 0}) E_{3}(\tau_{\lambda 0}) + \int_{0}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}') E_{2}(\tau_{\lambda}') d\tau_{\lambda}' \right]$
$$q_{\lambda}''(\mathbf{0}) = \pi i_{\lambda}^{+}(\mathbf{0}) - 2\pi \left[i_{\lambda}^{-}(\tau_{\lambda 0}) E_{3}(\tau_{\lambda 0}) + \int_{0}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}') E_{2}(\tau_{\lambda}') d\tau_{\lambda}' \right]$$

$$q_{\lambda}''(\mathbf{0}) = \pi \varepsilon_{\lambda 1} \left[i_{\lambda b 1} - 2i_{\lambda}^{-}(\tau_{\lambda 0}) E_{3}(\tau_{\lambda 0}) - 2\int_{0}^{\tau_{\lambda 0}} S_{\lambda}(\tau_{\lambda}') E_{2}(\tau_{\lambda}') d\tau_{\lambda}' \right]$$

for optically thick medium

$$E_{3}(\tau_{\lambda 0}) \rightarrow 0 \text{ as } \tau_{\lambda 0} \rightarrow \infty \text{ and } S_{\lambda}(\tau_{\lambda}) = i_{\lambda b}(\tau_{\lambda})$$
$$q_{\lambda}''(0) = -\frac{4\pi}{3} \frac{di_{\lambda b}}{d\tau_{\lambda}}\Big|_{\tau_{\lambda}=0}$$

$$q_{\lambda}''(0) = -\frac{4\pi}{3} \frac{di_{\lambda b}}{d\tau_{\lambda}} \bigg|_{\tau_{\lambda}=0}$$

= $\pi \varepsilon_{\lambda 1} \bigg[i_{\lambda b1} - 2 \int_{0}^{\tau_{\lambda 0}} i_{\lambda b}(\tau_{\lambda}') E_{2}(\tau_{\lambda}') d\tau_{\lambda}' \bigg]$
 $i_{\lambda b}(\tau_{\lambda}') = i_{\lambda b}(0) + \tau_{\lambda}' \frac{di_{\lambda b}}{d\tau_{\lambda}} \bigg|_{\tau_{\lambda}=0} + \frac{\tau_{\lambda}'^{2}}{2!} \frac{d^{2}i_{\lambda b}}{d\tau_{\lambda}^{2}} \bigg|_{\tau_{\lambda}=0} + \cdots$

for large τ

$$\int_0^\infty E_2(\tau')d\tau' = \frac{1}{2}, \ \int_0^\infty \tau' E_2(\tau')d\tau' = \frac{1}{3}, \ \int_0^\infty \tau'^2 E_2(\tau')d\tau' = \frac{1}{2}$$

$$-\frac{4\pi}{3}\frac{di_{\lambda b}}{d\tau_{\lambda}}\Big|_{\tau_{\lambda}=0} = \pi\varepsilon_{\lambda 1}\left[i_{\lambda b1}-i_{\lambda b}(0)-\frac{2}{3}\frac{di_{\lambda b}}{d\tau_{\lambda}}\Big|_{\tau_{\lambda}=0}-\frac{1}{2}\frac{d^{2}i_{\lambda b}}{d\tau_{\lambda}^{2}}\Big|_{\tau_{\lambda}=0}-\cdots\right]$$

neglecting second and higher order terms

$$-\frac{4\pi}{3}\frac{di_{\lambda b}}{d\tau_{\lambda}}\Big|_{\tau_{\lambda}=0} = \pi\varepsilon_{\lambda 1}\left[i_{\lambda b1}-i_{\lambda b}(0)-\frac{2}{3}\frac{di_{\lambda b}}{d\tau_{\lambda}}\Big|_{\tau_{\lambda}=0}\right]$$
$$= \pi\varepsilon_{\lambda 1}\left[i_{\lambda b1}-i_{\lambda b}(0)\right]-\pi\varepsilon_{\lambda 1}\frac{2}{3}\frac{di_{\lambda b}}{d\tau_{\lambda}}\Big|_{\tau_{\lambda}=0}$$
$$\left(-\frac{4\pi}{3}+\pi\varepsilon_{\lambda 1}\frac{2}{3}\right)\frac{di_{\lambda b}}{d\tau_{\lambda}}\Big|_{\tau_{\lambda}=0} = \pi\varepsilon_{\lambda 1}\left[i_{\lambda b1}-i_{\lambda b}(0)\right]$$
$$\pi\left[i_{\lambda b1}-i_{\lambda b}(0)\right] = -\left(\frac{1}{\varepsilon_{\lambda 1}}-\frac{1}{2}\right)\frac{4\pi}{3}\frac{di_{\lambda b}}{d\tau_{\lambda}}\Big|_{\tau_{\lambda}=0}$$
$$Or \qquad \pi\left[i_{\lambda b1}-i_{\lambda b}(0)\right] = \left(\frac{1}{\varepsilon_{\lambda 1}}-\frac{1}{2}\right)q_{\lambda}''(0)$$

similarly

$$\pi \left[i_{\lambda b}(\tau_{\lambda 0}) - i_{\lambda b 2} \right] = -\left(\frac{1}{\varepsilon_{\lambda 2}} - \frac{1}{2} \right) \frac{4\pi}{3} \frac{di_{\lambda b}}{d\tau_{\lambda}} \Big|_{\tau_{0}}$$

Or
$$\pi \left[i_{\lambda b}(\tau_{\lambda 0}) - i_{\lambda b 2} \right] = \left(\frac{1}{\varepsilon_{\lambda 2}} - \frac{1}{2} \right) q_{\lambda}''(\tau_{\lambda 0})$$

total quantities

$$\sigma \left[T_1^4 - T^4(0) \right] = \left(\frac{1}{\varepsilon_1} - \frac{1}{2} \right) q''$$
$$\sigma \left[T^4(\tau_0) - T_2^4 \right] = \left(\frac{1}{\varepsilon_2} - \frac{1}{2} \right) q''$$

radiative equilibrium

$$q'' = -\frac{4\pi}{3} \frac{di_b}{d\tau} = \text{constant}$$

$$\int_{0}^{\tau_{0}} q'' d\tau = \int_{0}^{\tau_{0}} -\frac{4\pi}{3} di_{b}$$

$$\tau_0 q'' = -\frac{4\pi}{3} \left[i_b(\tau_0) - i_b(0) \right]$$

when
$$i_b(0) = i_{b1}(T_1), \ i_b(\tau_0) = i_{b2}(T_2)$$

 $q'' = \frac{4\pi}{3\tau_0} \Big[i_{b1}(T_1) - i_{b2}(T_2) \Big] = \frac{4\pi}{3\tau_0} \Big(\sigma T_1^4 - \sigma T_2^4 \Big)$
 $\frac{q''}{\sigma \Big(T_1^4 - T_2^4\Big)} = \frac{4}{3} \frac{1}{\tau_0}$

with slip condition

Temperature distribution

$$\begin{split} q'' &= -\frac{4\pi}{3} \frac{di_b}{d\tau} = -\frac{4\sigma}{3} \frac{dT^4}{d\tau} \\ \int_{\tau}^{\tau_0} q'' d\tau' &= -\frac{4\sigma}{3} \int_{\tau}^{\tau_0} dT^4, \quad q'' (\tau_0 - \tau) = \frac{4\sigma}{3} \Big[T^4(\tau) - T^4(\tau_0) \Big] \\ \sigma \Big[T^4(\tau_0) - T_2^4 \Big] &= \left(\frac{1}{\varepsilon_2} - \frac{1}{2} \right) q'', \quad T^4(\tau_0) = T_2^4 + \frac{1}{\sigma} \left(\frac{1}{\varepsilon_2} - \frac{1}{2} \right) q'' \\ q'' (\tau_0 - \tau) &= \frac{4\sigma}{3} \Big[T^4(\tau) - T_2^4 \Big] - \frac{4}{3} \Big(\frac{1}{\varepsilon_2} - \frac{1}{2} \Big) q'' \\ \sigma \Big[T^4(\tau) - T_2^4 \Big] &= \left(\frac{1}{\varepsilon_2} - \frac{1}{2} \right) q'' + \frac{3}{4} q'' (\tau_0 - \tau) \end{split}$$

$$\sigma \left[T^4(\tau) - T_2^4 \right] = \left(\frac{1}{\varepsilon_2} - \frac{1}{2} \right) q'' + \frac{3}{4} q'' \left(\tau_0 - \tau \right)$$

$$\frac{T^{4}(\tau) - T_{2}^{4}}{T_{1}^{4} - T_{2}^{4}} = \frac{\frac{1}{\varepsilon_{2}} - \frac{1}{2} + \frac{3}{4}(\tau_{0} - \tau)}{\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$$

$$T^{4}(0) - T_{2}^{4} = \left(\frac{1}{\varepsilon_{2}} - \frac{1}{2} + \frac{3}{4}\tau_{0}\right) \frac{T_{1}^{4} - T_{2}^{4}}{\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$$

$$T^{4}(0) - T_{2}^{4} = \left(\frac{1}{\varepsilon_{2}} - \frac{1}{2} + \frac{3}{4}\tau_{0}\right) \frac{T_{1}^{4} - T_{2}^{4}}{\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$$

$$T^{4}(0) - T_{1}^{4} = -\left(T_{1}^{4} - T_{2}^{4}\right) + \left(\frac{1}{\varepsilon_{2}} - \frac{1}{2} + \frac{3}{4}\tau_{0}\right) \frac{T_{1}^{4} - T_{2}^{4}}{\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$$

$$= \left[\frac{1}{\varepsilon_{2}} - \frac{1}{2} + \frac{3}{4}\tau_{0} - \left(\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1\right)\right] \frac{T_{1}^{4} - T_{2}^{4}}{\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$$
$$T^{4}(0) - T_{1}^{4} = \left(\frac{1}{2} - \frac{1}{\varepsilon_{1}}\right) \frac{T_{1}^{4} - T_{2}^{4}}{\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$$

Figure 15-6 Validity of diffusion solution for energy transfer through gray gas between parallel gray plates.

Figure 15-10 Comparison of solutions of energy transfer between infinitely long concentric black cylinders enclosing gray medium; $D_{inner}/D_{outer} = 0.5$.

Figure 15-11 Comparison of solutions of energy transfer between black concentric spheres enclosing a gray medium.

Exponential Kernel Approximation

Krook, 1955 exponential integral function $E_2(\tau) \cong \sum_{j=1}^n a_j e^{-b_j \tau}$ one-term representation

$$E_{2}(\tau) = ae^{-b\tau}, \quad E_{3}(\tau) = -\int E_{2}(\tau)d\tau = \frac{a}{b}e^{-b\tau}$$

a, *b* can be determined by equating area and the first moment over $\tau = 0$ to $\tau = \infty$

Lick:
$$E_2(\tau) \cong e^{-\frac{3}{2}\tau}, \ E_3(\tau) \cong \frac{1}{2}e^{-\frac{3}{2}\tau}$$

Vicenti and Baldwin: $E_2(\tau) = 0.813e^{-1.562\tau}$

Eddington approx.: $E_2(\tau) \approx e^{-\sqrt{3}\tau}$

for an absorbing and emitting medium, diffuse boundaries

$$q''(\tau) = 2\pi \left[i^{+}(0)E_{3}(\tau) - i^{-}(\tau_{0})E_{3}(\tau_{0} - \tau) \right]$$

+
$$2\pi \left[\int_{0}^{\tau} i_{b}(\tau')E_{2}(\tau - \tau')d\tau' - \int_{\tau}^{\tau_{0}} i_{b}(\tau')E_{2}(\tau' - \tau)d\tau' \right]$$

using kernel approximation

$$q''(\tau) = 2\pi \frac{a}{b} \left[i^{+}(0)e^{-b\tau} - i^{-}(\tau_{0})e^{-b(\tau_{0}-\tau)} \right] -2\pi a \left[\int_{0}^{\tau} i_{b}(\tau')e^{-b(\tau-\tau')}d\tau' - \int_{\tau}^{\tau_{0}} i_{b}(\tau')e^{-b(\tau'-\tau)}d\tau' \right]$$

differentiation yields

$$\frac{d^2 q''(\tau)}{d\tau^2} = 4\pi a \frac{di_b(\tau)}{d\tau} + b^2 q''(\tau) = 4a\sigma \frac{dT^4(\tau)}{d\tau} + b^2 q''(\tau)$$

for radiative equilibrium
$$\frac{dq''}{d\tau} = 0$$
$$\frac{d^2q''(\tau)}{d\tau^2} = 4a\sigma \frac{dT^4(\tau)}{d\tau} + b^2q''(\tau)$$
with $a = \frac{3}{4}, \ b = \frac{3}{2}, \ 3\sigma \frac{dT^4}{d\tau} + \frac{9}{4}q'' = 0, \ \frac{d}{d\tau}(\sigma T^4) = -\frac{3}{4}q''$

In dimensionless form

$$\begin{split} \varPhi(\tau) &= \frac{\sigma T^4(\tau) - J_2}{J_1 - J_2}, \ \psi = \frac{q''}{J_1 - J_2} \\ \frac{d\Phi}{d\tau} &= \frac{1}{J_1 - J_2} \frac{d}{d\tau} \left(\sigma T^4\right) = \frac{1}{J_1 - J_2} \left(-\frac{3}{4}q''\right) \end{split}$$

$$=\frac{1}{J_1-J_2}\left(-\frac{3}{4}\right)\left(J_1-J_2\right)\psi=-\frac{3}{4}\psi \quad \rightarrow \Phi(\tau)=C-\frac{3}{4}\psi\tau$$

$$q''(\tau) = 2\pi \frac{a}{b} \bigg[i^{+}(0)e^{-b\tau} - i^{-}(\tau_{0})e^{-b(\tau_{0}-\tau)} \bigg] -2\pi a \bigg[\int_{0}^{\tau} i_{b}(\tau')e^{-b(\tau-\tau')}d\tau' - \int_{\tau}^{\tau_{0}} i_{b}(\tau')e^{-b(\tau'-\tau)}d\tau' \bigg] a = \frac{3}{4}, \ b = \frac{3}{2} q''(\tau) = J_{1}e^{-\frac{3}{2}\tau} - J_{2}e^{-\frac{3}{2}(\tau_{0}-\tau)} -\frac{3}{2}\int_{0}^{\tau}\sigma T^{4}(\tau')e^{-\frac{3}{2}(\tau-\tau')}d\tau' + \frac{3}{2}\int_{\tau}^{\tau_{0}}\sigma T^{4}(\tau')e^{-\frac{3}{2}(\tau'-\tau)}d\tau' \psi = e^{-\frac{3}{2}\tau} + \frac{3}{2}e^{-\frac{3}{2}\tau}\int_{0}^{\tau}\Phi(\tau')e^{\frac{3}{2}\tau'}d\tau' - \frac{3}{2}e^{\frac{3}{2}\tau}\int_{\tau}^{\tau_{0}}\Phi(\tau')e^{-\frac{3}{2}\tau'}d\tau'$$

$$\psi = e^{-\frac{3}{2}\tau} + \frac{3}{2}e^{-\frac{3}{2}\tau}\int_0^\tau \Phi(\tau')e^{\frac{3}{2}\tau'}d\tau' - \frac{3}{2}e^{\frac{3}{2}\tau}\int_\tau^{\tau_0}\Phi(\tau')e^{-\frac{3}{2}\tau'}d\tau'$$

$$\varPhi(\tau) = C - \frac{3}{4}\psi\tau$$

at $\tau = 0$ $\psi = 1 - \frac{3}{2} \int_{0}^{\tau_{0}} \left(C - \frac{3}{4} \psi \tau' \right) e^{-\frac{3}{2}\tau'} d\tau'$ $= 1 + C e^{-\frac{3}{2}\tau_{0}} - C - \frac{3\psi}{4} \tau_{0} e^{-\frac{3}{2}\tau_{0}} - \frac{\psi}{2} e^{-\frac{3}{2}\tau_{0}} + \frac{\psi}{2}$

at $\tau = \tau_0$

$$\begin{split} J_{1} &= \sigma T_{1}^{4} - \frac{\left(1 - \varepsilon_{1}\right)}{\varepsilon_{1}} q'' \\ J_{2} &= \sigma T_{2}^{4} + \frac{\left(1 - \varepsilon_{2}\right)}{\varepsilon_{2}} q'' \\ J_{1} - J_{2} &= \sigma \left(T_{1}^{4} - T_{2}^{4}\right) - \left[\frac{\left(1 - \varepsilon_{1}\right)}{\varepsilon_{1}} + \frac{\left(1 - \varepsilon_{2}\right)}{\varepsilon_{2}}\right] q'' \\ &= \sigma \left(T_{1}^{4} - T_{2}^{4}\right) - \left(\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 2\right) q'' \\ q'' &= \frac{J_{1} - J_{2}}{1 + \frac{3}{4}\tau_{0}} = \frac{\sigma \left(T_{1}^{4} - T_{2}^{4}\right)}{1 + \frac{3}{4}\tau_{0}} - \frac{\left(1/\varepsilon_{1} + 1/\varepsilon_{2} - 2\right)}{1 + \frac{3}{4}\tau_{0}} q'' \end{split}$$

Temperature distribution

$$\sigma T^{4}(\tau) - \sigma T_{2}^{4} = \frac{(1 - \varepsilon_{2})}{\varepsilon_{2}} q'' + q'' \left(\frac{1}{\psi} - \frac{1}{2} - \frac{3}{4}\tau\right)$$
$$\frac{q''}{\sigma\left(T_{1}^{4} - T_{2}^{4}\right)} = \frac{1}{\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1} \equiv \alpha$$
$$\frac{T^{4}(\tau) - T_{2}^{4}}{T_{1}^{4} - T_{2}^{4}} = \left(\frac{1}{\varepsilon_{2}} - \frac{3}{2} + \frac{1}{\psi} - \frac{3}{4}\tau\right)\alpha, \quad \psi = \frac{1}{1 + \frac{3}{4}\tau_{0}}$$
$$= \left(\frac{1}{\varepsilon_{2}} - \frac{3}{2} + 1 + \frac{3}{4}\tau_{0} - \frac{3}{4}\tau\right)\alpha = \left[\frac{1}{\varepsilon_{2}} - \frac{1}{2} + \frac{3}{4}(\tau_{0} - \tau)\right]\alpha$$

$$T^{4}(0) - T_{1}^{4} = \left(\frac{1}{2} - \frac{1}{\varepsilon_{1}}\right) \frac{T_{1}^{4} - T_{2}^{4}}{\frac{3}{4}\tau_{0} + \frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$$

Milne-Eddington Approximation

RTE for an isotropic scattering planar medium

$$\mu \frac{di(\tau,\mu)}{d\tau} + i(\tau,\mu) = \left(1 - \omega_0\right) i_b(\tau) + \frac{\omega_0}{2} \int_{-1}^{1} i(\tau,\mu') d\mu'$$

apply both sides by the operator $2\pi \int_{-1}^{1} d\mu$

$$2\pi \int_{-1}^{1} \mu \frac{di(\tau,\mu)}{d\tau} d\mu = \frac{d}{d\tau} \left(2\pi \int_{-1}^{1} \mu i(\tau,\mu) d\mu \right) = \frac{dq''(\tau)}{d\tau}$$

$$2\pi \int_{-1}^{1} i(\tau,\mu) d\mu = G(\tau)$$

$$2\pi \int_{-1}^{1} i_b(\tau) d\mu = i_b(\tau) 2\pi \int_{-1}^{1} d\mu = 4\pi i_b(\tau)$$

$$2\pi \int_{-1}^{1} \int_{-1}^{1} i(\tau,\mu') d\mu' d\mu = \int_{-1}^{1} G(\tau) d\mu = 2G(\tau)$$

$$\frac{dq''(\tau)}{d\tau} + G(\tau) = 4\pi \left(1 - \omega_0\right) i_b(\tau) + \omega_0 G(\tau)$$

or
$$\frac{dq''(\tau)}{d\tau} = \left(1 - \omega_0\right) \left[4\pi i_b(\tau) - G(\tau)\right]$$

next apply by the operator $2\pi \int_{-1}^{1} \mu d\mu$ $2\pi \int_{-1}^{1} \mu^2 \frac{di(\tau,\mu)}{d\tau} d\mu = \frac{d}{d\tau} \left(2\pi \int_{-1}^{1} \mu^2 i(\tau,\mu) d\mu \right)$

$$= c \frac{dP_r(\tau)}{d\tau}$$

radiative pressure

$$P_{r}(\tau) = \frac{1}{c} 2\pi \int_{-1}^{1} \mu^{2} i(\tau, \mu) d\mu$$

$$2\pi \int_{-1}^{1} \mu i(\tau,\mu) d\mu = q''(\tau)$$

$$2\pi \int_{-1}^{1} \mu i_b(\tau) d\mu = i_b(\tau) 2\pi \int_{-1}^{1} \mu d\mu = 0$$

$$2\pi \int_{-1}^{1} \mu \left(\int_{-1}^{1} i(\tau,\mu') d\mu' \right) d\mu = G(\tau) 2\pi \int_{-1}^{1} \mu d\mu = 0$$

then,
$$c \frac{dP_r(\tau)}{d\tau} = -q''(\tau)$$

now we have three unknowns $q''(\tau), G(\tau), P_r(\tau)$, but have only two equations.

additional relation ⇒ Milne-Eddington approximation separating intensities

$$G(\tau) = 2\pi \left[\int_{-1}^{0} i^{-}(\tau,\mu) d\mu + \int_{0}^{1} i^{+}(\tau,\mu) d\mu \right]$$
$$q''(\tau) = 2\pi \left[\int_{-1}^{0} \mu i^{-}(\tau,\mu) d\mu + \int_{0}^{1} \mu i^{+}(\tau,\mu) d\mu \right]$$
$$P_{r}(\tau) = \frac{1}{c} 2\pi \left[\int_{-1}^{0} \mu^{2} i^{-}(\tau,\mu) d\mu + \int_{0}^{1} \mu^{2} i^{+}(\tau,\mu) d\mu \right]$$

Assume that the intensity components are independent of direction.

$$i^{+}(\tau,\mu) = i^{+}(\tau), \ i^{-}(\tau,\mu) = i^{-}(\tau)$$

then,
$$G(\tau) = 2\pi \left[i^+(\tau) + i^-(\tau) \right]$$

 $q''(\tau) = \pi \left[i^+(\tau) - i^-(\tau) \right]$
 $P_r(\tau) = \frac{2\pi}{3c} \left[i^+(\tau) + i^-(\tau) \right]$

Any two of these three relations can be used. for example,

$$P_{r}(\tau) = \frac{1}{3c}G(\tau) \Rightarrow \frac{dP_{r}(\tau)}{d\tau} = \frac{1}{3c}\frac{dG(\tau)}{d\tau} = -\frac{1}{c}q''(\tau)$$
$$\Rightarrow \frac{1}{3}\frac{dG(\tau)}{d\tau} = -q''(\tau)$$

remark:
$$c \frac{dr_r(\tau)}{d\tau} = -q''(\tau)$$

$$\frac{dq''(\tau)}{d\tau} = \left(1 - \omega_0\right) \left[4\pi i_b(\tau) - G(\tau)\right]$$

Differentiating w.r.t. τ

$$\frac{d^2 q''(\tau)}{d\tau^2} = \left(1 - \omega_0\right) \left[4\pi \frac{di_b(\tau)}{d\tau} - \frac{dG(\tau)}{d\tau} \right]$$
$$\frac{1}{3} \frac{dG(\tau)}{d\tau} = -q''(\tau)$$

Milne-Eddington approximation

$$\frac{d^2 q''(\tau)}{d\tau^2} = \left(1 - \omega_0\right) \left[4\pi \frac{di_b(\tau)}{d\tau} + 3q''(\tau)\right]$$

or for
$$G(\tau)$$
 $\frac{1}{3} \frac{dG(\tau)}{d\tau} = -q''(\tau)$
 $\frac{dq''(\tau)}{d\tau} = (1 - \omega_0) [4\pi i_b(\tau) - G(\tau)]$
 $\frac{d^2 G(\tau)}{d\tau^2} = -3 \frac{dq''(\tau)}{d\tau} = 3(1 - \omega_0) [G(\tau) - 4\pi i_b(\tau)]$

Note: neglecting second order term from Milne-Eddington approximation

$$\frac{d^2 q''(\tau)}{d\tau^2} = (1 - \omega_0) \left[4\pi \frac{di_b(\tau)}{d\tau} + 3q''(\tau) \right]$$

 $q''(\tau) = -\frac{4\pi}{3} \frac{di_b(\tau)}{d\tau}$: diffusion approximation

Spherical Harmonics Approximation

- **P-N Approximation**
- **Spherical harmonics**

in spherical coordinate system

 $\nabla^2 F(r,\theta,\phi) = 0$

separation of variables $F(r,\theta,\phi) = R(r)G(\theta,\phi)$ eigenfunction solution : $G(\theta,\phi)$ surface harmonics (associated Legendre function)

that is, $G(\theta, \phi) = \Theta(\theta) \Phi(\phi)$

$$\Phi'' + m^2 \Phi = 0$$

$$\left(1 - x^2\right) \frac{d^2 \Theta}{dx^2} - 2x \frac{d\Theta}{dx} + \left[n(n+1) - \frac{m^2}{1 - x^2}\right] \Theta = 0,$$

$$x = \cos \theta$$

solution

$$Y_{n}^{m}(\theta,\phi) = \left[\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!}\right]^{1/2} e^{im\phi} P_{n}^{m}(\cos\theta)$$
$$= (-1)^{(n+|m|)/2} \left[\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!}\right]^{1/2} e^{im\phi} P_{n}^{|m|}(\cos\theta)$$

conjugate of $Y_n^m(\theta,\phi)$

$$Y_n^{m^*}(\theta,\phi) = (-1)^m Y_n^{-m}(\theta,\phi)$$

orthogonality

$$\int_{4\pi} Y_n^m(\omega) Y_r^{s^*}(\omega) d\omega = \delta_{nr} \delta_{ms}$$

P-N approximation

$$i(\vec{r},\hat{\Omega}) = \sum_{n=0}^{N} \sum_{m=-n}^{n} A_n^m(\vec{r}) Y_n^m(\hat{\Omega})$$

Using orthogonality

$$A_n^m(\vec{r}) = \int_{4\pi} (-1)^m Y_n^{-m}(\hat{\Omega}) i(\vec{r},\hat{\Omega}) d\omega$$

$$= (-1)^{(n+|m|)/2} \left[\frac{2n+1}{4\pi} \frac{(n-m)!}{(n+m)!} \right]^{1/2} \int_{4\pi} i(\vec{r},\hat{\Omega}) e^{-im\phi} P_n^{|m|}(\cos\theta) d\omega$$

moments of intensity

$$I_{0} = \int_{4\pi} i(\vec{r}, \hat{\Omega}) d\omega, \quad I_{i} = \int_{4\pi} i(\vec{r}, \hat{\Omega}) \ell_{i} d\omega,$$
$$I_{ij} = \int_{4\pi} i(\vec{r}, \hat{\Omega}) \ell_{i} \ell_{j} d\omega, \quad \cdots$$

physical meaning of moments

$$I_0 = G, I_i = q_i''$$

Example: non-scattering planar medium with diffuse boundaries

$$\mu \frac{\partial i}{\partial \tau} + i = i_b, \quad \mu = \cos \theta = \ell_1$$

$$\int_{4\pi} \mu \frac{\partial i}{\partial \tau} d\omega + \int_{4\pi} i d\omega = \int_{4\pi} i_b d\omega \rightarrow \frac{dI_1}{d\tau} + I_0 = 4\pi i_b$$
$$\int_{4\pi} \mu^2 \frac{\partial i}{\partial \tau} d\omega + \int_{4\pi} \mu i d\omega = \int_{4\pi} \mu i_b d\omega \rightarrow \frac{dI_{11}}{d\tau} + I_1 = 0$$

closure condition

$$i(\vec{r},\Omega) = \frac{1}{4\pi} \Big[I_0(\vec{r}) + 3 \Big(I_1(\vec{r})\ell_1 + I_2(\vec{r})\ell_2 + I_3(\vec{r})\ell_3 \Big) \Big]$$

$$\int_{4\pi} \ell_1^2 i(\vec{r},\hat{\Omega}) d\omega$$

$$= \frac{1}{4\pi} \int_{4\pi} \ell_1^2 \Big[I_0(\vec{r}) + 3 \Big\{ I_1(\vec{r})\ell_1 + I_2(\vec{r})\ell_2 + I_3(\vec{r})\ell_3 \Big\} \Big] d\omega$$

$$\begin{split} \int_{4\pi} \ell_1^2 i(\vec{r}, \hat{\Omega}) d\omega &= I_{11} \\ &= \frac{1}{4\pi} \int_{4\pi} \ell_1^2 \Big[I_0(\vec{r}) + 3 \Big\{ I_1(\vec{r}) \ell_1 + I_2(\vec{r}) \ell_2 + I_3(\vec{r}) \ell_3 \Big\} \Big] d\omega \\ &= \frac{1}{4\pi} \int_{4\pi} \ell_1^2 I_0(\vec{r}) d\omega = \frac{1}{2} I_0 \int_0^{\pi} \cos^2 \theta \sin \theta d\theta \\ &= \frac{1}{2} I_0 \int_{-1}^1 t^2 dt = \frac{1}{2} I_0 \frac{2}{3} = \frac{1}{3} I_0 \end{split}$$

$$\int_{4\pi} \ell_1^3 I_1(\vec{r}) d\omega = \int_{4\pi} \ell_1^2 \ell_2 I_2(\vec{r}) d\omega = \int_{4\pi} \ell_1^2 \ell_3 I_3(\vec{r}) d\omega = 0$$

$$I_{11} = \frac{1}{3}I_0$$

$$I_{11} = \frac{1}{3}I_{0}$$

$$\frac{dI_{1}}{d\tau} + I_{0} = 4\pi i_{b}, \quad \frac{dI_{11}}{d\tau} + I_{1} = 0$$
therefore, $\frac{1}{3}\frac{dI_{0}}{d\tau} + I_{1} = 0$ or $I_{1} = -\frac{1}{3}\frac{dI_{0}}{d\tau}$
finally
$$\frac{d^{2}I_{0}}{d\tau^{2}} - 3I_{0} = -12\pi i_{b}$$
 $q''(\tau) = I_{1}(\tau) = -\frac{1}{3}\frac{dI_{0}}{d\tau},$
 $\frac{dq''}{d\tau} = -\frac{1}{3}\frac{d^{2}I_{0}}{d\tau^{2}} = \frac{dI_{1}}{d\tau} = 4\pi i_{b} - I_{0}$

Marshak's boundary condition

$$i(0,\mu) = f_1(\mu) \quad \mu > 0, \quad i(\tau_0,\mu) = f_2(\mu) \quad \mu < 0$$
$$\int_0^1 i(0,\mu)\mu^{2i-1}d\mu = \int_0^1 f_1(\mu)\mu^{2i-1}d\mu$$
$$\int_{-1}^0 i(\tau_0,\mu)\mu^{2i-1}d\mu = \int_{-1}^0 f_2(\mu)\mu^{2i-1}d\mu$$
$$i = 1, 2, 3, \dots, \frac{1}{2}(N+1)$$

P-1 approximation

$$\int_{0}^{1} i(0,\mu)\mu d\mu = \int_{0}^{1} f_{1}(\mu)\mu d\mu$$
$$\int_{-1}^{0} i(\tau_{0},\mu)\mu d\mu = \int_{-1}^{0} f_{2}(\mu)\mu d\mu$$

$$J_{1} = \varepsilon_{1}e_{b1} + \rho_{1}G_{1} \quad \text{or} \quad \pi i^{+}(0) = \varepsilon_{1}\pi i_{b1} + \rho_{1}G_{1}$$
$$i^{+}(0) = \varepsilon_{1}i_{b1} + \frac{\rho_{1}}{\pi}\int_{\omega=2\pi}i^{-}(0,\theta)\cos\theta d\omega$$
$$\int_{\omega=2\pi}i^{-}(0,\theta)\cos\theta d\omega = 2\pi\int_{0}^{\pi/2}i^{-}(0,\theta)\cos\theta\sin\theta d\theta$$

let $\theta = \pi - \theta'$

$$2\pi \int_0^{\pi/2} i^{-}(0,\theta) \cos\theta \sin\theta d\theta$$

= $2\pi \int_{\pi}^{\pi/2} i^{-}(0,\theta') \cos(\pi-\theta') \sin(\pi-\theta') (-d\theta')$

$$= 2\pi \int_{\pi}^{\pi/2} i^{-}(0,\theta') \cos\theta' \sin\theta' d\theta'$$

$$= 2\pi \int_{\pi/2}^{\pi} i^{-}(0,\theta') \cos\theta' d(\cos\theta')$$

$$i(\vec{r},\hat{\Omega}) = \frac{1}{4\pi} \Big[I_0(\vec{r}) + 3 \Big(I_1(\vec{r})\ell_1 + I_2(\vec{r})\ell_2 + I_3(\vec{r})\ell_3 \Big) \Big]$$

$$= 2\pi \int_{\pi/2}^{\pi} \frac{1}{4\pi} \Big[I_0(0) + 3 \Big(I_1(0) \cos\theta' + I_2(0) \sin\theta' \cos\phi' + I_3(0) \sin\theta' \sin\phi' \Big) \Big] \cos\theta' d(\cos\theta')$$

$$= \frac{1}{2} \int_{0}^{-1} \Big(I_0 + 3I_1\mu \Big) \mu d\mu$$

$$= \frac{1}{2} \Big[I_0 \frac{\mu^2}{2} + I_1\mu^3 \Big]_{0}^{-1} = \frac{1}{2} \Big(\frac{1}{2} I_0 - I_1 \Big)$$

$$i^{+}(0) = \varepsilon_{1}i_{b1} + \frac{\rho_{1}}{\pi}\frac{1}{2}\left(\frac{1}{2}I_{0} - I_{1}\right)$$

apply Marshak's boundary condition

$$\int_{0}^{1} i(0,\mu) \mu d\,\mu = \int_{0}^{1} f_{1}(\mu) \mu d\,\mu$$

$$\int_{0}^{1} \frac{1}{4\pi} \Big[I_{0} + 3 \big(I_{1} \cos \theta + I_{2} \sin \theta \cos \phi + I_{3} \sin \theta \sin \phi \big) \Big] \mu d \mu$$

$$= \int_{0}^{1} \left[\varepsilon_{1} i_{b1} + \frac{\rho_{1}}{\pi} \frac{1}{2} \left(\frac{1}{2} I_{0} - I_{1} \right) \right] \mu d \mu$$

$$\frac{1}{4\pi}\int_0^1 (I_0 + 3I_1\mu)\,\mu d\,\mu = \left[\varepsilon_1 i_{b1} + \frac{\rho_1}{2\pi} \left(\frac{1}{2}I_0 - I_1\right)\right]\int_0^1 \mu d\,\mu$$

$$\frac{1}{4\pi} \left[I_0 \frac{\mu^2}{2} + I_1 \mu^3 \right]_0^1 = \frac{1}{2} \left[\varepsilon_1 i_{b1} + \frac{\rho_1}{2\pi} \left(\frac{1}{2} I_0 - I_1 \right) \right]$$

$$\frac{1}{2}I_0 + I_1 = 2\pi\varepsilon_1 i_{b1} + \frac{\rho_1}{2}I_0 - \rho_1 I_1$$

$$\frac{\varepsilon_1}{2}I_0 + (1+\rho_1)I_1 = 2\pi\varepsilon_1 i_{b1}$$

or
$$I_0 + 2\frac{1+\rho_1}{\varepsilon_1}I_1 = 4\pi i_{b1}$$

let $\frac{1+\rho_1}{\varepsilon_1} = \frac{1+(1-\varepsilon_1)}{\varepsilon_1} = \frac{2-\varepsilon_1}{\varepsilon_1} \equiv 1+2\lambda_1,$
 $\lambda_1 = \frac{\rho_1}{\varepsilon_1} = \frac{1-\varepsilon_1}{\varepsilon_1}$

then,
$$I_0 + 2(1+2\lambda_1)I_1 = 4\pi i_{b1}$$

but
$$I_1 = -\frac{1}{3} \frac{dI_0}{d\tau}$$

thus, at $\tau = 0$,

$$I_{0} - \frac{2}{3} (1 + 2\lambda_{1}) \frac{dI_{0}}{d\tau} = 4\pi i_{b1}$$

similarly at $\tau = \tau_0$,

$$I_{0} + \frac{2}{3} (1 + 2\lambda_{2}) \frac{dI_{0}}{d\tau} = 4\pi i_{b2}$$

radiative equilibrium

$$\frac{dq''}{d\tau} = 4\pi i_b - I_0 = 0 \implies i_b = \frac{I_0}{4\pi} \quad \text{or} \quad I_0(\tau) = 4\sigma T^4(\tau)$$

$$\frac{d^2 I_0}{d\tau^2} - 3I_0 = -12\pi i_b \quad \text{thus}, \quad \frac{d^2 I_0}{d\tau^2} = 0$$
general solution $I_0(\tau) = A\tau + B$
boundary conditions
$$I_0 - \frac{2}{3}(1 + 2\lambda_1)\frac{dI_0}{d\tau} = 4\pi i_{b1}$$

$$B - \frac{2}{3}(1 + 2\lambda_1)A = 4\sigma T_1^4, \quad I_0 + \frac{2}{3}(1 + 2\lambda_2)\frac{dI_0}{d\tau} = 4\pi i_{b2}$$

$$A\tau_0 + B + \frac{2}{3}(1 + 2\lambda_2)A = 4\sigma T_2^4, \quad \lambda_1 = \frac{1}{\varepsilon_1} - 1$$
solution
$$\frac{q''}{\sigma(T_1^4 - T_2^4)} = \frac{1}{\frac{3}{4}\tau_0 + \frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

Figure 15-10 Comparison of solutions of energy transfer between infinitely long concentric black cylinders enclosing gray medium; $D_{inner}/D_{outer} = 0.5$.

Figure 15-11 Comparison of solutions of energy transfer between black concentric spheres enclosing a gray medium.

Shuster-Schwarzchild Approximation

two-flux model radiation stream

$$j^{+}(\tau) \equiv \int_{0}^{1} i^{+}(\tau,\mu) d\mu, \quad 0 \le \mu \le 1$$
$$j^{-}(\tau) \equiv \int_{-1}^{0} i^{-}(\tau,\mu) d\mu, \quad -1 \le \mu \le 0$$

$$\mu \frac{di(\tau,\mu)}{d\tau} + i(\tau,\mu) = \left(1 - \omega_0\right) i_b(\tau) + \frac{\omega_0}{2} \int_{-1}^1 i(\tau,\mu') d\mu'$$

$$\mu \frac{di^{+}(\tau,\mu)}{d\tau} + i^{+}(\tau,\mu) = (1 - \omega_0)i_b(\tau) + \frac{\omega_0}{2}(j^{+}(\tau) + j^{-}(\tau))(1)$$

$$\mu \frac{di^{-}(\tau,\mu)}{d\tau} + i^{-}(\tau,\mu) = \left(1 - \omega_0\right) i_b(\tau) + \frac{\omega_0}{2} \left(j^{+}(\tau) + j^{-}(\tau)\right) (2)$$

operate eq.(1) by
$$\int_{0}^{1} d\mu$$
 and eq.(2) by $\int_{-1}^{0} d\mu$

$$\mu \frac{di^{+}(\tau,\mu)}{d\tau} + i^{+}(\tau,\mu) = (1-\omega_{0})i_{b}(\tau) + \frac{\omega_{0}}{2}(j^{+}(\tau)+j^{-}(\tau))(1)$$

$$\frac{d}{d\tau} \left[\int_{0}^{1} \mu i^{+}(\tau,\mu) d\mu \right] + j^{+}(\tau)$$

$$= (1-\omega_{0})i_{b}(\tau) + \frac{\omega_{0}}{2}(j^{+}(\tau)+j^{-}(\tau))$$

$$\mu \frac{di^{-}(\tau,\mu)}{d\tau} + i^{-}(\tau,\mu) = (1-\omega_{0})i_{b}(\tau) + \frac{\omega_{0}}{2}(j^{+}(\tau)+j^{-}(\tau))(2)$$

$$\frac{d}{d\tau} \left[\int_{-1}^{0} \mu i^{-}(\tau,\mu) d\mu \right] + j^{-}(\tau)$$

$$= (1-\omega_{0})i_{b}(\tau) + \frac{\omega_{0}}{2}(j^{+}(\tau)+j^{-}(\tau))$$

Shuster-Schwartzchild approximation

$$\int_{0}^{1} \mu i^{+}(\tau,\mu) d\mu \cong \frac{1}{2} \int_{0}^{1} i^{+}(\tau,\mu) d\mu = \frac{1}{2} j^{+}(\tau)$$
$$\int_{-1}^{0} \mu i^{-}(\tau,\mu) d\mu \cong -\frac{1}{2} \int_{-1}^{0} i^{-}(\tau,\mu) d\mu = -\frac{1}{2} j^{-}(\tau)$$

$$\frac{d}{d\tau} \left[\int_0^1 \mu i^+(\tau,\mu) d\mu \right] = \frac{1}{2} \frac{dj^+}{d\tau}$$

$$\frac{1}{2}\frac{dj^{+}}{d\tau} + j^{+} = (1 - \omega_{0})i_{b} + \frac{\omega_{0}}{2}(j^{+} + j^{-})$$

$$\frac{d}{d\tau} \left[\int_{-1}^{0} \mu i^{-}(\tau,\mu) d\mu \right] = -\frac{1}{2} \frac{dj^{-}}{d\tau}$$

$$-\frac{1}{2}\frac{dj^{-}}{d\tau} + j^{-} = (1 - \omega_0)i_b + \frac{\omega_0}{2}(j^{+} + j^{-})$$

Heat flux

$$q''(\tau) = 2\pi \int_{-1}^{1} \mu i(\tau, \mu) d\mu$$

= $2\pi \left[\int_{0}^{1} \mu i^{+}(\tau, \mu) d\mu + \int_{-1}^{0} \mu i^{-}(\tau, \mu) d\mu \right]$
= $\pi \left(j^{+} - j^{-} \right)$

$$\frac{dq''}{d\tau} = (1-\omega_0)[4\pi i_b - G]$$

$$G = 2\pi \int_{-1}^{1} i(\tau, \mu') d\mu' = 2\pi \left(j^{+} + j^{-} \right)$$

$$\frac{dq''}{d\tau} = 2\pi \left(1 - \omega_0\right) \left[2i_b - \left(j^+ + j^-\right)\right]$$

$$= 2\pi \int_{\pi}^{\pi/2} i^{-}(0,\theta') \cos \theta' \sin \theta' d\theta'$$

$$= -2\pi \int_{\pi}^{\pi/2} i^{-}(0,\theta') \cos \theta' d (\cos \theta')$$

$$= -2\pi \int_{-1}^{0} i^{-}(0,\mu) \mu d \mu$$

$$\pi i^{+}(0) = \varepsilon_{1} \sigma T_{1}^{4} + (1-\varepsilon_{1}) \int_{\omega=2\pi} i^{-}(0,\theta) \cos \theta d\omega$$

$$i^{+}(0) = \frac{\varepsilon_{1} \sigma T_{1}^{4}}{\pi} - 2(1-\varepsilon_{1}) \int_{-1}^{0} \mu i^{-}(0,\mu) d\mu$$

similarly

$$i^{-}(\tau_{0}) = \frac{\varepsilon_{2}\sigma T_{2}^{4}}{\pi} + 2(1-\varepsilon_{1})\int_{0}^{1}\mu i^{+}(\tau_{0},\mu)d\mu$$

$$i^{+}(0) = \frac{\varepsilon_{1}\sigma T_{1}^{4}}{\pi} - 2(1-\varepsilon_{1})\int_{-1}^{0}\mu i^{-}(0,\mu)d\mu$$
$$i^{-}(\tau_{0}) = \frac{\varepsilon_{2}\sigma T_{2}^{4}}{\pi} + 2(1-\varepsilon_{1})\int_{0}^{1}\mu i^{+}(\tau_{0},\mu)d\mu$$

introducing approximation

$$i^{+}(0) = \frac{\varepsilon_{1}\sigma T_{1}^{4}}{\pi} + (1 - \varepsilon_{1})j^{-}(0)$$

$$i^{-}(\tau_{0}) = \frac{\varepsilon_{2}\sigma T_{2}^{4}}{\pi} + (1 - \varepsilon_{2})j^{+}(\tau_{0})$$
operate $\int_{0}^{1} d\mu$ and $\int_{-1}^{0} d\mu$

$$j^{+}(0) = \frac{\varepsilon_{1}\sigma T_{1}^{4}}{\pi} + (1 - \varepsilon_{1})j^{-}(0)$$

$$j^{-}(\tau_{0}) = \frac{\varepsilon_{2}\sigma T_{2}^{4}}{\pi} + (1 - \varepsilon_{2})j^{+}(\tau_{0})$$
Example: non-scattering planar medium with diffuse boundaries RTE

$$\frac{1}{2}\frac{dj^{+}}{d\tau} + j^{+} = (1 - \omega_{0})i_{b} + \frac{\omega_{0}}{2}(j^{+} + j^{-}) \rightarrow \frac{1}{2}\frac{dj^{+}}{d\tau} + j^{+} = i_{b}$$
$$-\frac{1}{2}\frac{dj^{-}}{d\tau} + j^{-} = (1 - \omega_{0})i_{b} + \frac{\omega_{0}}{2}(j^{+} + j^{-}) \rightarrow -\frac{1}{2}\frac{dj^{-}}{d\tau} + j^{-} = i_{b}$$

radiative equilibrium

$$\frac{dq''}{d\tau} = 2\pi \left(1 - \omega_0\right) \left[2i_b - \left(j^+ + j^-\right)\right]$$
$$\frac{dq''}{d\tau} = 0 \Longrightarrow 2i_b - \left(j^+ + j^-\right) = 0 \Longrightarrow i_b = \frac{1}{2} \left(j^+ + j^-\right)$$

$$\frac{1}{2}\frac{dj^+}{d\tau} + j^+ = i_b \rightarrow \frac{1}{2}\frac{dj^+}{d\tau} + j^+ = \frac{1}{2}\left(j^+ + j^-\right)$$

$${dj^+\over d\, au} + j^+ = j^-$$

$$-\frac{1}{2}\frac{dj^{-}}{d\tau} + j^{-} = i_{b} \rightarrow -\frac{1}{2}\frac{dj^{-}}{d\tau} + j^{-} = \frac{1}{2}\left(j^{+} + j^{-}\right)$$

$$-\frac{dj^-}{d\tau}+j^-=j^+$$

general solution

$$j^+ = A\tau + B, \quad j^- = A\tau + (A + B)$$

boundary conditions

$$j^+(\mathbf{0}) = \frac{\varepsilon_1 \sigma T_1^4}{\pi} + (1 - \varepsilon_1) j^-(\mathbf{0})$$

$$j^{-}(\tau_{0}) = \frac{\varepsilon_{2}\sigma T_{2}^{4}}{\pi} + (1 - \varepsilon_{2})j^{+}(\tau_{0})$$

$$j^+ = A\tau + B, \ j^- = A\tau + (A + B)$$

$$B = \frac{\varepsilon_1 \sigma T_1^4}{\pi} + (1 - \varepsilon_1)(A + B)$$

$$A\tau_0 + A + B = \frac{\varepsilon_2 \sigma T_2^4}{\pi} + (1 - \varepsilon_2) (A\tau_0 + B)$$

solution

$$q''(\tau) = 2\pi \int_{-1}^{1} \mu i(\tau, \mu) d\mu = \pi \left(j^{+} - j^{-} \right)$$

$$\frac{q''}{\sigma(T_1^4 - T_2^4)} = \frac{1}{\tau_0 + \frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

Discrete Ordinate Method

S-N Approximation

a discrete representation of the directional variation of the radiative intensity: a finite differencing of the directional dependence of the equation of transfer

$$\frac{di}{ds} = \hat{\Omega} \cdot \nabla i(\vec{r}, \hat{\Omega}) = -\kappa(\vec{r})i(\vec{r}, \hat{\Omega}) + a(\vec{r})i_b(\vec{r}) + \frac{\sigma_s(\vec{r})}{4\pi} \int_{4\pi} i(\vec{r}, \hat{\Omega}')P(\vec{r}, \hat{\Omega}', \hat{\Omega})d\omega'$$

for diffusely emitting and reflecting walls $i(\vec{r}_{w}, \hat{\Omega}')$ $i(\vec{r}_{w}) = \varepsilon(\vec{r}_{w})i_{b}(\vec{r}_{w}) + \frac{\rho(\vec{r}_{w})}{\pi} \int_{\Omega} i(\vec{r}_{w}, \hat{\Omega}') |\hat{\Omega}' \cdot \hat{n}| d\omega'$

Discrete ordinate equations for a set of *n* different directions $\hat{\Omega}_i$, $i = 1, 2, \dots, n$

$$\int_{4\pi} f(\hat{\Omega}) d\omega \simeq \sum_{i=1}^n w_i f(\hat{\Omega}_i)$$

 w_i : quadrature weights associated with the direction $\hat{\Omega}_i$

$$\begin{split} \vec{\Omega}_i \cdot \nabla i(\vec{r}, \hat{\Omega}_i) &= -\kappa(\vec{r})i(\vec{r}, \hat{\Omega}_i) + a(\vec{r})i_b(\vec{r}) \\ &+ \frac{\sigma_s(\vec{r})}{4\pi} \sum_{j=1}^n w_j i(\vec{r}, \hat{\Omega}_j) P(\vec{r}, \hat{\Omega}_i, \hat{\Omega}_j) \\ i(\vec{r}_w) &= \varepsilon(\vec{r}_w)i_b(\vec{r}_w) + \frac{\rho(\vec{r}_w)}{\pi} \sum_{\hat{n} \cdot \hat{\Omega}_j < 0} w_j i(\vec{r}_w, \hat{\Omega}_j) \left| \hat{n} \cdot \Omega_j \right|, \hat{n} \cdot \hat{\Omega}_i > 0 \\ n \text{ simultaneous, first order, linear differential equations for the unknown } i_i(\vec{r}) &= i(\vec{r}, \hat{\Omega}_i) \end{split}$$

 $\hat{\Omega}_i$ intersects the enclosure twice: emanates from the wall $(\hat{n} \cdot \hat{\Omega}_i > 0)$, and strikes the wall to be absorbed or reflected $(\hat{n} \cdot \hat{\Omega}_i < 0)$

$$\vec{q}''(\vec{r}) = \int_{4\pi} i(\vec{r}, \hat{\Omega}) \hat{\Omega} d\omega \simeq \sum_{i=1}^{n} w_i i_i(\vec{r}) \hat{\Omega}_i$$

$$G(\vec{r}) = \int_{4\pi} i(\vec{r}, \hat{\Omega}) d\omega \simeq \sum_{i=1} w_i i_i(\vec{r})$$

Selection of discrete ordinate directions

the choice of quadrature scheme: arbitrary

- different sets of ordinates may results in considerably different accuracy
- directions $\hat{\Omega}_i$ and quadrature weights w_i
- customary conditions
- 1) completely symmetric (sets that are invariant after any rotation of 90°): symmetry requirement
- 2) zeroth, first and second moments: moment equation
- 3) half-moment equation: a half range of 2π at the walls

$$\int_{4\pi} d\omega = 4\pi = \sum_{i=1}^{n} w_{i}$$

$$\int_{4\pi} \hat{\Omega} d\omega = \vec{0} = \sum_{i=1}^{n} w_{i} \hat{\Omega}_{i}$$

$$\int_{4\pi} \hat{\Omega} \hat{\Omega} d\omega = \frac{4\pi}{3} \delta = \sum_{i=1}^{n} w_{i} \hat{\Omega}_{i} \hat{\Omega}_{i}$$

$$\hat{x}_{1} = \sin\theta \cos\phi, \quad \ell_{2} = \sin\theta \sin\phi, \quad \ell_{3} = \cos\theta$$

$$\int_{4\pi} (\sin\theta \cos\phi \hat{i} + \sin\theta \sin\phi \hat{j} + \cos\theta \hat{k}) d\omega$$

$$\int_{0}^{2\pi} \int_{0}^{\pi} \sin\theta \cos\phi \hat{i} \sin\theta d\theta d\phi = 0 \quad \cdots$$

$$\ell_{1} = \sin\theta\cos\phi, \ \ell_{2} = \sin\theta\sin\phi, \ \ell_{3} = \cos\theta$$

$$\int_{4\pi} \hat{\Omega}\hat{\Omega}d\omega$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \left(\begin{array}{c} \sin^{2}\theta\cos^{2}\phi & \sin^{2}\theta\sin\phi\cos\phi & \sin\theta\cos\theta\sin\phi \\ \sin^{2}\theta\sin\phi\cos\phi & \sin^{2}\theta\sin^{2}\phi & \sin\theta\cos\theta\sin\phi \\ \sin\theta\cos\theta\cos\phi & \sin\theta\cos\theta\sin\phi & \cos^{2}\theta \end{array} \right) \sin\theta d\theta d\phi$$

$$= \int_{0}^{\pi} \left(\begin{array}{c} \pi\sin^{2}\theta & 0 & 0 \\ 0 & \pi\sin^{2}\theta & 0 \\ 0 & 0 & 2\pi\cos^{2}\theta \end{array} \right) \sin\theta d\theta$$

$$= \frac{4\pi}{3} \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) = \frac{4\pi}{3} \delta$$

$$\int_{0}^{\pi}\sin^{3}\theta d\theta = \frac{4}{3}, \ \int_{0}^{\pi}\cos^{2}\theta\sin\theta d\theta = \frac{2}{3}$$

first moment over a half range at walls

$$\int_{\hat{n}\cdot\hat{\Omega}<0} \left| \hat{n}\cdot\hat{\Omega} \right| d\omega = \int_{\hat{n}\cdot\hat{\Omega}>0} \hat{n}\cdot\hat{\Omega} d\omega = \pi = \sum_{\hat{n}\cdot\hat{\Omega}_i>0} w_i \hat{n}\cdot\hat{\Omega}_i$$

in Table

$$\hat{\Omega}_{i} = \left(\hat{\Omega}_{i}\cdot\hat{i}\right)\hat{i} + \left(\hat{\Omega}_{i}\cdot\hat{j}\right)\hat{j} + \left(\hat{\Omega}_{i}\cdot\hat{k}\right)\hat{k} = \xi_{i}\hat{i} + \eta_{i}\hat{j} + \mu_{i}\hat{k}$$

Table: covering one eighth of the total range of solid angle 4π

→ each row of ordinates contains 8 different directions

Since symmetric S_2 -approximation does not satisfy the half-moment condition, a non-symmetric S_2 approximation is also included.

Order of		Weights		
Approximation	ξ	η	μ	W
S_2 (symmetric)	0.5773503	0.5773503	0.5773503	1.5707963
S_2 (nonsymmetric)	0.5000000	0.7071068	0.5000000	1.5707963
S_4	0.2958759	0.2958759	0.9082483	0.5235987
1521.20	0.2958759	0.9082483	0.2958759	0.5235987
	0.9082483	0.2958759	0.2958759	0.5235987
S ₆	0.1838670	0.1838670	0.9656013	0.1609517
	0.1838670	0.6950514	0.6950514	0.3626469
for example, by Lee [2]	0.1838670	0.9656013	0.1838670	0.1609517
	0.6950514	0.1838670	0.6950514	0.3626469
	0.6950514	0.6950514	0.1838670	0.3626469
vall, and (ii) the important	0.9656013	0.1838670	0.1838670	0.1609517
S ₈	0.1422555	0.1422555	0.9795543	0.1712359
	0.1422555	0.5773503	0.8040087	0.0992284
	0.1422555	0.8040087	0.5773503	0.0992284
	0.1422555	0.9795543	0.1422555	0.1712359
r = 12.5663706	0.5773503	0.1422555	0.8040087	0.0992284
	0.5773503	0.5773503	0.5773503	0.4617179
	0.5773503	0.8040087	0.1422555	0.0992284
	0.8040087	0.1422555	0.5773503	0.0992284
	0.8040087	0.5773503	0.1422555	0.0992284
	0.9795543	0.1422555	0.1422555	0.1712359

TABLE

Ex)
$$S_2$$
 approximation (symmetric)
 $\xi = \eta = \mu = 0.5773503$
 $\hat{\Omega}_1 = 0.5773503(\hat{i} + \hat{j} + \hat{k}), \quad \hat{\Omega}_2 = 0.5773503(\hat{i} + \hat{j} - \hat{k})$
 $\hat{\Omega}_3 = 0.5773503(\hat{i} - \hat{j} + \hat{k}), \quad \hat{\Omega}_4 = 0.5773503(\hat{i} - \hat{j} - \hat{k})$
 $\hat{\Omega}_5 = 0.5773503(-\hat{i} + \hat{j} + \hat{k}), \quad \hat{\Omega}_6 = 0.5773503(-\hat{i} + \hat{j} - \hat{k})$
 $\hat{\Omega}_7 = 0.5773503(-\hat{i} - \hat{j} + \hat{k}), \quad \hat{\Omega}_8 = 0.5773503(-\hat{i} - \hat{j} - \hat{k})$

S_N approximation indicates N different direction cosines are used for each principal direction

number of directions: n = N(N+2)

Ex)
$$S_4: \xi_i = \pm 0.295876$$
 and ± 0.908248
 $S_6: \xi_i = \pm 0.1838670, \pm 6950514$
and ± 0.9656013

One-dimensional planar medium with isotropic scattering

$$\mu \frac{di(\tau,\mu)}{d\tau} + i(\tau,\mu) = \left(1 - \omega_0\right) i_b(\tau) + \frac{\omega_0}{4\pi} \int_{\omega'=4\pi} i(\tau,\hat{\Omega}') d\omega'$$

$$\mu_{i} \frac{di_{i}}{d\tau} + i_{i} = (1 - \omega_{0})i_{b} + \frac{\omega_{0}}{4\pi} \sum_{j=1}^{N} w'_{j}i_{j} \qquad i = 1, 2, \cdots, N$$

summed quadrature weights w'_{j}

one-dimensional $\hat{\Omega}_i = \xi_i \hat{i} + \eta_i \hat{j} + \mu_i \hat{k} = \mu_i \hat{k}$

$$\int_{4\pi} d\omega = 4\pi = \sum_{i=1}^{N} w'_i$$

$$\int_{4\pi} \hat{\Omega} d\omega = \vec{\mathbf{0}} = \sum_{i=1}^{N} w_i' \hat{\Omega}_i = \sum_{i=1}^{N} w_i' \mu_i \hat{k}$$

	S		Order of	Ordinates			Weights
L7)	J ₄		Approximation	ξ	$\eta = \eta$	$\Omega \setminus \mu$	w
			S_2 (symmetric)	0.5773503	0.5773503	0.5773503	1.5707963
		150	S_2 (nonsymmetric)	0.5000000	0.7071068	0.5000000	1.5707963
			<i>S</i> ₄	0.2958759	0.2958759	0.9082483	0.5235987
			211	0.2958759	0.9082483	0.2958759	0.5235987
				0.9082483	0.2958759	0.2958759	0.5235987

$$\mu = 0.2958759$$

$$w' = 4 \times (0.5235987 + 0.5235987) = 4.1887902$$

$$= \frac{4\pi}{3} (= 4.1987902)$$

$$\mu = 0.9082435$$

$$w' = 4 \times 0.5235987 = 2.0943948$$

$$= \frac{2\pi}{3} (= 2.0943951)$$

TABLE 15.2 Discrete Ordinates for the One-Dimensional S_N -approximation (N = 2, 4, 6, 8).

	Order of Approximation	Ordinates μ	Weights w'	
	S_2 (symmetric)	0.5773503	6.2831853	
(15.18)	S_2 (nonsymmetric)	0.5000000	6.2831853	-
another with the	S ₄	0.2958759	4.1887902	in viers with
		0.9082483	2.0943951	
e terms involving	S ₆ del	0.1838670	2.7382012	umer to sh
		0.6950514	2.9011752	
		0.9656013	0.6438068	
eral times Fach	S ₈	0.1422555	2.1637144	with the
	a-values separately)	0.5773503	2.6406988	
		0.8040087	0.7938272	
		0.9795543	0.6849436	
boding to a single	anne verbug coneso	ADBOD VOT TOS	N. 1.81 M.	10 Strie of 18

$4\pi = 12.5663706$

N different intensities

- $\frac{N}{2}$ from the wall at $\tau = 0$ ($\mu_i > 0$)
- $\frac{N}{2} \quad \text{from the wall at} \quad \tau = \tau_0 \quad (\mu_i < 0)$
- let $i_1^+, i_2^+, \cdots, i_{N/2}^+, i_1^-, i_2^-, \cdots, i_{N/2}^-$

$$\mu_{i}\frac{di_{i}^{+}}{d\tau}+i_{i}^{+}=\left(1-\omega_{0}\right)i_{b}+\frac{\omega_{0}}{4\pi}\sum_{j=1}^{N/2}w_{j}\left(i_{j}^{+}+i_{j}^{-}\right)$$

$$-\mu_{i}\frac{di_{i}^{-}}{d\tau}+i_{i}^{-}=\left(1-\omega_{0}\right)i_{b}+\frac{\omega_{0}}{4\pi}\sum_{j=1}^{N/2}w_{j}\left(i_{j}^{+}+i_{j}^{-}\right)$$

 $i = 1, 2, \dots, N/2$ $\mu_i > 0$

boundary conditions

$$\begin{split} &\int_{-i}^{-i} \cos\theta d\omega = \varepsilon_{1} \int_{-i}^{-i} i_{b1} \cos\theta d\omega + (1 - \varepsilon_{1}) \int_{-i}^{-i} \cos\theta' d\omega' \\ &q_{1}^{"} = \int_{-i}^{-i} i^{c} \cos\theta d\omega - \int_{-i}^{-i} i^{c} \cos\theta' d\omega' \\ &\rightarrow \int_{-i}^{-i} \cos\theta' d\omega' = \int_{-i}^{-i} i^{c} \cos\theta d\omega - q_{1}^{"} \\ &\pi i^{+} = \varepsilon_{1} \pi i_{b1} + (1 - \varepsilon_{1}) (\pi i^{+} - q_{1}^{"}) \\ &\text{at } \tau = 0, \quad i_{i}^{+} = i_{b1} - \frac{1 - \varepsilon_{1}}{\varepsilon_{1} \pi} q_{1}^{"} \\ &\text{at } \tau = \tau_{0}, \quad i_{i}^{-} = i_{b2} + \frac{1 - \varepsilon_{2}}{\varepsilon_{2} \pi} q_{2}^{"} \\ &q_{1}^{"} = \sum_{i=1}^{N/2} w_{i}' \mu_{i} (i_{i}^{+} - i_{i}^{-}), \quad G = \sum_{i=1}^{N/2} w_{i}' (i_{i}^{+} + i_{i}^{-}) \end{split}$$

surface heat flux

$$\underline{q}'' \cdot \hat{n}(\underline{r}_{w}) = \varepsilon(\underline{r}_{w}) \Big[\pi i_{b}(\underline{r}_{w}) - G(\underline{r}_{w}) \Big]$$
$$\simeq \varepsilon(\underline{r}_{w}) \Big[\pi i_{b}(\underline{r}_{w}) - \sum_{\hat{n} \cdot \Omega_{i} < 0} w_{i} i_{i}(\underline{r}_{w})) \Big| \hat{n} \cdot \Omega_{i} \Big| \Big]$$

at
$$\tau = 0$$
, $q_1'' = q''(0) = \varepsilon_1 \left(e_{b1} - \sum_{i=1}^{N/2} w_i' \mu_i i_i^- \right)$

at
$$\tau = \tau_0$$
, $q_2'' = -q''(\tau_0) = -\varepsilon_2 \left(e_{b2} - \sum_{i=1}^{N/2} w_i' \mu_i i_i^+ \right)$

at
$$\tau = 0$$
, $i_1^+ = \frac{J_1}{\pi} = i_{b1} - \frac{1 - \varepsilon_1}{\varepsilon_1 \pi} q_1'$

at
$$\tau = \tau_0$$
, $i_1^- = \frac{J_2}{\pi} = i_{b2} + \frac{1 - \varepsilon_2}{\varepsilon_2 \pi} q_2''$

since
$$w_i = 2\pi$$
 for S_2 -approximation
 $G = 2\pi \left(i_1^+ + i_1^- \right)$
 $q'' = 2\pi \mu_1 \left(i_1^+ - i_1^- \right)$

from two equations for i_1^+ and $i_1^$ eliminate i_1^+, i_1^-

$$\mu_1 \frac{d}{d\tau} \left(i_1^+ + i_1^- \right) + \left(i_1^+ - i_1^- \right) = 0 \longrightarrow \mu_1 \frac{dG}{d\tau} + \frac{1}{\mu_1} q'' = 0$$

or
$$\frac{dG}{d\tau} = -\frac{1}{\mu_1^2}q''$$

 $G = A - \frac{1}{\mu_1^2}q''\tau$

from equations for G and q''

$$\mu_1 G = 2\pi \mu_1 \left(i_1^+ + i_1^- \right)$$
$$q'' = 2\pi \mu_1 \left(i_1^+ - i_1^- \right)$$

$$\mu_1 G + q'' = 4\pi \mu_1 i_1^+$$

or
$$i_1^+ = \frac{1}{4\pi} \left(G + \frac{q''}{\mu_1} \right)$$

$$\mu_1 G - q'' = 4\pi \mu_1 i_1^-$$
or
$$i_1^- = \frac{1}{4\pi} \left(G - \frac{q''}{\mu_1} \right)$$

at walls

at
$$\tau = 0$$
, $i_1^+ = \frac{1}{4\pi} \left(G + \frac{q''}{\mu_1} \right) = \frac{J_1}{\pi}$
at $\tau = \tau_0$, $i_1^- = \frac{1}{4\pi} \left(G - \frac{q''}{\mu_1} \right) = \frac{J_2}{\pi}$

$$G = A - \frac{1}{\mu_1^2} q'' \tau$$

at
$$\tau = 0$$
, $\frac{1}{4\pi} \left(A + \frac{q''}{\mu_1} \right) = \frac{J_1}{\pi}$
at $\tau = \tau_0$, $\frac{1}{4\pi} \left(A - \frac{1}{\mu_1^2} q'' \tau_0 - \frac{q''}{\mu_1} \right) = \frac{J_2}{\pi}$

$$4J_{1} = A + \frac{1}{\mu_{1}}q''$$
$$4J_{2} = A - \frac{1}{\mu_{1}^{2}}q''\tau_{0} - \frac{q''}{\mu_{1}}$$

$$4J_1 - 4J_2 = \frac{1}{\mu_1}q'' + \frac{1}{\mu_1^2}q''\tau_0 + \frac{q''}{\mu_1} = \left(\frac{2}{\mu_1} + \frac{\tau_0}{\mu_1^2}\right)q''$$

$$q'' = \frac{4(J_1 - J_2)}{\frac{2}{\mu_1} + \frac{\tau_0}{\mu_1^2}}$$

non-symmetric $\mu = 0.5$

$$q'' = \frac{4(J_1 - J_2)}{4 + 4\tau_0} = \frac{J_1 - J_2}{\tau_0 + 1}$$

$$J_1 = \pi i_{b1} - \frac{1 - \varepsilon_1}{\varepsilon_1} q'', \quad J_2 = \pi i_{b2} + \frac{1 - \varepsilon_2}{\varepsilon_2} q''$$

$$J_1 - J_2 = \sigma \left(T_1^4 - T_2^4\right) - \left(\frac{1 - \varepsilon_1}{\varepsilon_1} + \frac{1 - \varepsilon_2}{\varepsilon_2}\right)q''$$

$$= \sigma \left(T_1^4 - T_2^4\right) - \left(\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 2\right) q''$$

$$q'' = \frac{\sigma(T_1^4 - T_2^4) - \left(\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 2\right)q''}{\tau_0 + 1}$$

$$(\tau_0+1)q''=\sigma(T_1^4-T_2^4)-\left(\frac{1}{\varepsilon_1}+\frac{1}{\varepsilon_2}-2\right)q''$$

$$\left(\tau_0+1+\frac{1}{\varepsilon_1}+\frac{1}{\varepsilon_2}-2\right)q''=\sigma\left(T_1^4-T_2^4\right)$$

$$\frac{q''}{\sigma(T_1^4 - T_2^4)} = \frac{1}{\tau_0 + \frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

Figure 15-14 Radiative behavior in a gray square enclosure with wall emissivity ϵ_w , filled with a medium that scatters only. One side of the enclosure is at uniform temperature $T_{w,1}$; the other three sides are at zero temperature [67]. (a) Average incident scattered intensity along centerline; (b) Local heat transfer rate at the hot surface.