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B-Rep Structure – review

2

Body

Face

Edge

Vertex Vertex

List of faces

List of 
edges

End vertices

< Topology >< Geometry >

Surface Eqn.

Curve Eqn.

X,Y,Z 
Position

Geometry vs. Topology



Types of curve equations

 Parametric equation
 x=x(t), y=y(t), z=z(t)

 Ex) x=Rcos, y=Rsin, z=0 (02)

 Implicit nonparametric


 F(x, y, z)=0, G(x, y, z)=0 

 Intersection of two surfaces

 Ambiguous independent parameters

 Explicit nonparametric


 Should choose proper neighboring point during curve 
generation
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Conic curves

 Curves obtained by intersecting a cone with a plane

 Circle (circular arc), ellipse, hyperbola, parabola

 Ex) Circle (circular arc)

 Circle in xy-plane with center (xc, yc) and radius R

 x  =  Rcos +  xc

 y  =  Rsin +  yc

 z  =  0

 Points on the circle are generated by incrementing 

by △θ from 0, points are connected by line segments

 Equation of a circle lying on an arbitrary plane can be 

derived by transformation
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Conic curves – cont’
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Hermite curves

 Parametric eq. is preferred in  CAD systems

 Polynomial form of degree 3 is preferred : 

 C2 continuity is guaranteed when two curves are connected

 Impossible to predict the shape change from change 

in coefficients⇒ not intuitive

 Bad for interactive manipulation 
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Hermite curves – cont’

 Apply Boundary conditions to replace algebraic 

coefficients

 Use                             ⇒ Substitute in Eq(1)
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Hermite curves – cont’

 Solve for                        in Eq (2)
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Hermite curves – cont’

 Substitute (3) into  (1)

 It is possible to predict the curve shape change from 

the change in P0, P1, P0, P1 to some extent
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Hermite curves – cont’
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Hermite curves – cont’



determine the curve shape by blending the effects of  

P0,  P1,  P0,  P1→ blending function
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Bezier curves

 It is difficult to realize a curve in one’s mind by 

changing size and direction of P0,  P1 in Hermite 

curves

 Bezier curves

 Invented by Bezier at Renault

 Use polygon that enclose a curve approximately

 control polygon, control point
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Bezier curves – cont’

 Passes through 1st and last vertex of control polygon

 Tangent vector at the starting point is in the direction of 

1st segment of control polygon

 Tangent vector at the ending point is in the direction of 

the last segment

 Useful feature for smooth connection of two Bezier curves

 The n-th derivative at starting or ending point is 

determined by the first or last (n+1) vertices of control 

polygon

 Bezier curve resides completely inside its convex hull

 Useful property for efficient calculation of intersection points
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Bezier curves – cont’
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Bezier curves – cont’
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↑  Control Point

: Straight line from P0 to P1 satisfies the desired   

qualities including convex hull property

satisfies the desired qualities



Bezier curves – cont’

 Highest term is        for the curve defined by (n+1) control 

points

 Polynomial of degree n 

 Degree of curve is determined by number of control 

points

 Large number of control points are needed to represent a 

curve of complex shape → high degree is necessary.

 Heavy computation, oscillation

 Better to connect multiple Bezier curves

 Global modification property (not local modification)

 Difficult to result a curve of desired shape by modifying portions
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Blending functions in Bezier curve
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for degree 3



Bezier curves – cont’
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Bezier Curve does NOT have local modification property


