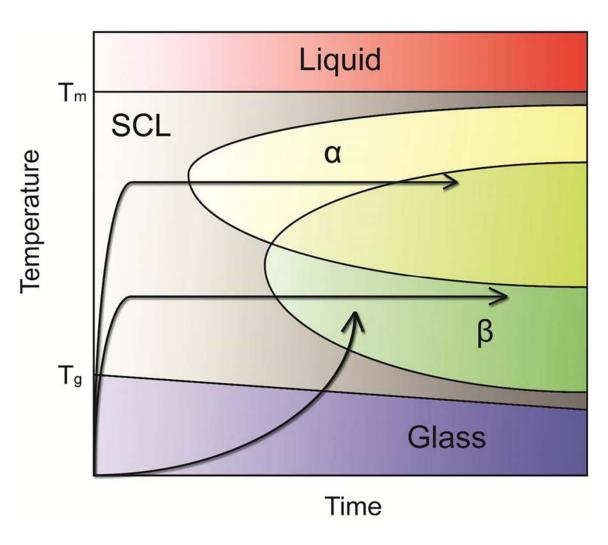
### **2018 Spring**

## "Advanced Physical Metallurgy"

## - Bulk Metallic Glasses -

05,02,2018

**Eun Soo Park** 


Office: 33-313

**Telephone: 880-7221** 

Email: espark@snu.ac.kr

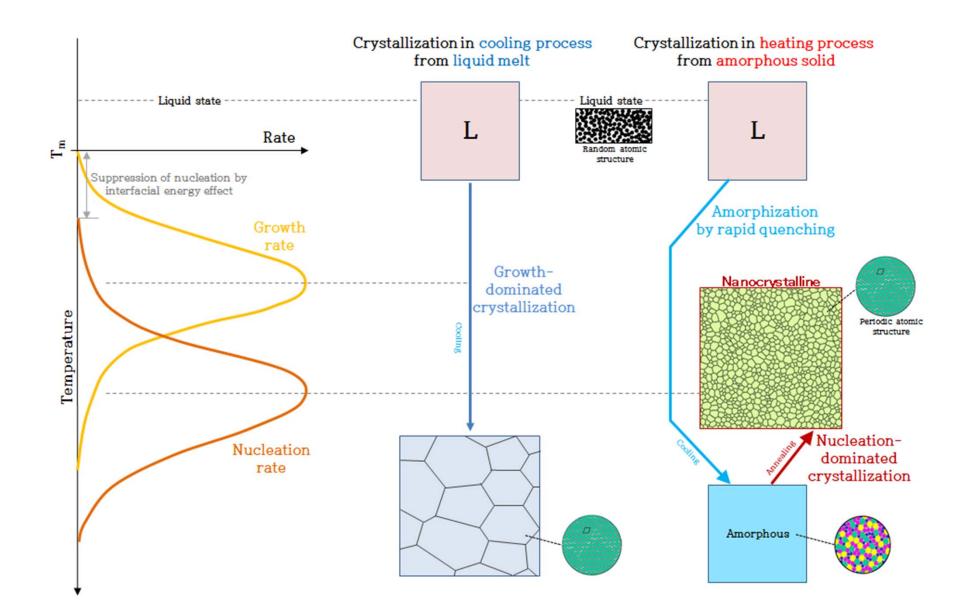
Office hours: by appointment

### Crystallization to Equilibrium or Non-equilibrium Phase.



 $\alpha$ : Equilibrium phase

**β**: Non-Equilibrium phase

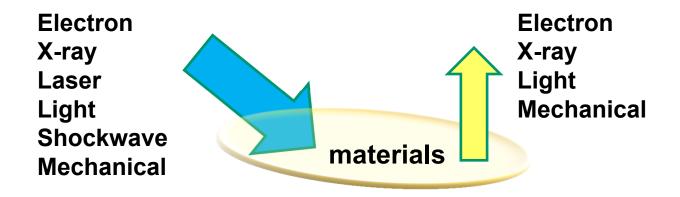

**Cooling Process.** 

Only a phase

**Heating Process.** 

Low T Crystallize to  $\beta$ 

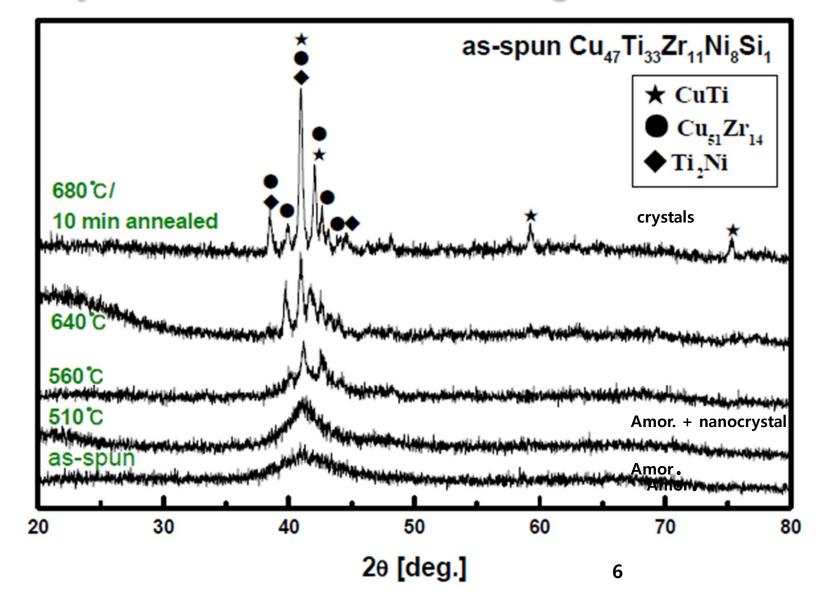
High T Crystallize to  $\alpha$ 



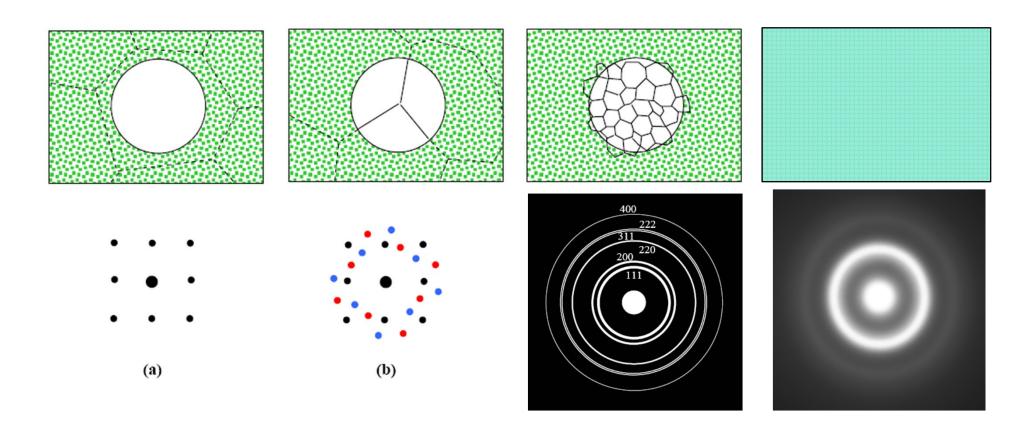

### 5.2.3 Structural Details

## Amorphous vs Nanocrystalline

- 1) Microstructural observation XRD, (HR)TEM, EXAFS ...
- 2) Thermal analysisDSC (Differential Scanning Calorimetry): Measure heat absorbed or liberated during heating or cooling
  - cf) a) glass → nucleation & growth (perfect random)
    - b) *local clustering*: quenched-in nuclei → *only growth*
    - c) Nanocrystalline --> growth

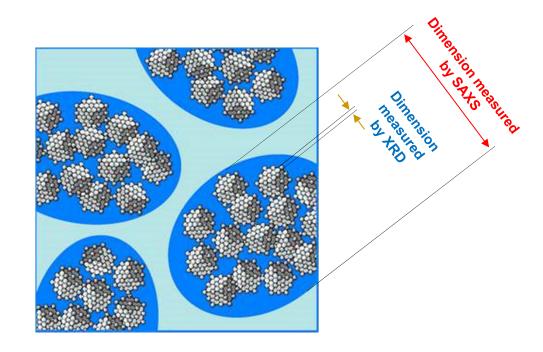

## Simple idea of analytical tools




| Analytical tool                                                   | Abbreviation | Source   | Signal                                | Main<br>Analysis              |  |
|-------------------------------------------------------------------|--------------|----------|---------------------------------------|-------------------------------|--|
| X-ray diffraction                                                 | XRD          | X-ray    | X-ray                                 | Structure                     |  |
| Transmission Electron Microscopy<br>Scanning Electron Microscopy  | TEM<br>SEM   | Electron | Electron,<br>Photon (X-ray,<br>Light) | Structure/<br>Chemistry       |  |
| X-ray Photoelectron Spectroscopy                                  | XPS          | X-ray    | Electron                              | Surface chemistry/<br>bonding |  |
| Auger Electron Spectroscopy                                       | AES          | Electron | Electron                              | Surface chemistry             |  |
| Energy Dispersive Spectroscopy Wavelength Dispersive Spectroscopy | EDS<br>WDS   | Electron | X-ray                                 | Chemistry                     |  |
| Electron BackScattered Diffraction                                | EBSD         | Electron | Electron                              | Structure/<br>chemistry       |  |

## < X-ray diffraction >

## Crystallization after annealing




## Electron Diffraction Pattern--Spot to Ring

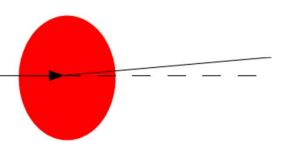


### **Angle range of Small angle scattering**

- Length scale of small angle scattering : 1 1000 um
- Information on relatively large r is contained in I(q) at relatively small q (=4 $\pi$ sin $\theta$ / $\lambda$ )
- Bragg's law :  $sin\theta = \lambda/2d$   $d = few Å \lambda = 1 Å 2\theta = 20$   $d = 100 Å \lambda = 1 Å 2\theta = 0.6$
- Sample contains a scattering length density inhomogeneity of dimension larger than 1 nm, scattering becomes observable in small angle region  $(0 \sim 4^{\circ})$

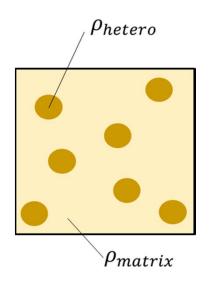


#### Diffraction v.s. Small angle scattering




<u>x-rays</u> scatter from *electrons* 

neutrons scatter from nuclei and magnetic moments


### <u>diffraction</u>

### small-angle scattering



- scattering from *atomic structures*
- size of objects ~  $\lambda$
- small length scale -> large angle

- scattering from *interfaces*
- size of objects  $\gg \lambda$
- large length scale -> small angle



### **Scattering length density** (of heterogeneities)

$$\rho = \frac{\sum_{j}^{n} b_{j}}{\bar{V}}$$

$$\Delta 
ho = 
ho_{hetero} - 
ho_{matrix}$$
  $\bar{v} = \frac{M_w}{N_A \cdot 
ho_{mass}}$ 

$$\bar{V} = \frac{M_w}{N_A \cdot \rho_{mass}}$$

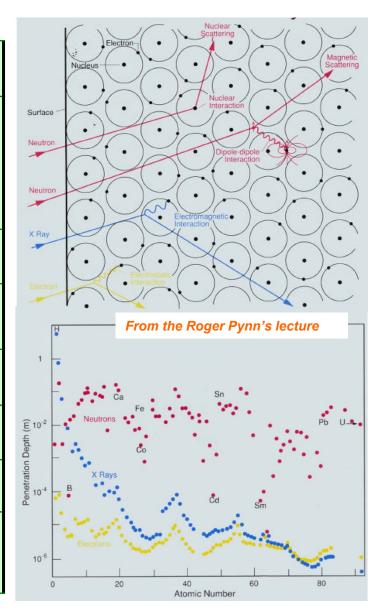
### Intensity in small angle scattering

$$I(q) = \Delta \rho^2 d_N \int_0^R N(r) [V(r)F(q,r)]^2 dr$$

d<sub>N</sub>: number density factor

N(r): normalized size distribution

V(r): Volume


F(q,r): Form factor of particles

$$\Delta \rho = \rho_{hetero} - \rho_{matri}$$

Common factors in both SANS and SAXS

### **Coherent and Incoherent Scattering**

| items                   | X-ray                                                | neutron                                       |  |  |
|-------------------------|------------------------------------------------------|-----------------------------------------------|--|--|
| source                  | collision of electrons with target metals(Cu, Mo, W) | nuclear reactor                               |  |  |
| 334130                  | acceleration of charged particles                    | spallation neutron source (accelerator)       |  |  |
| scattered<br>by         | electrons                                            | atomic nuclei,<br>unpaired spins              |  |  |
| interaction             | EM(electromagnetic)                                  | Nuclear(strong int.)<br>EM                    |  |  |
| scattering<br>amplitude | linearly depend on Z                                 | nearly indep. on Z                            |  |  |
| sample<br>amount        | μg ~ mg                                              | ~g                                            |  |  |
| meas. time              | 10 <sup>1~2</sup> min (step scan: ~hr)               | 10 <sup>0~2</sup> hr                          |  |  |
| hard to see             | relatively light elements (H, Li, B, C, O)           | highly abs. nuclei<br>(Gd, Sm, Eu, Cd,<br>B…) |  |  |



# Characterizing the structure - radial distribution function, also called pair distribution function

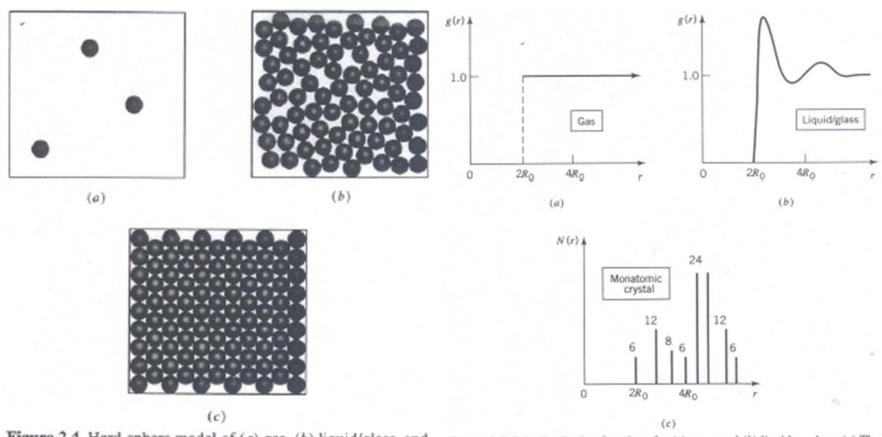
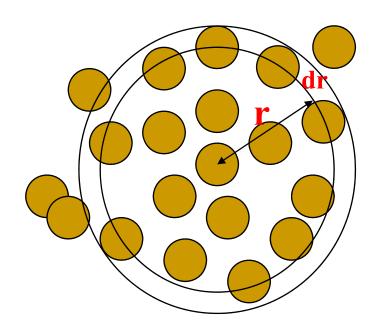



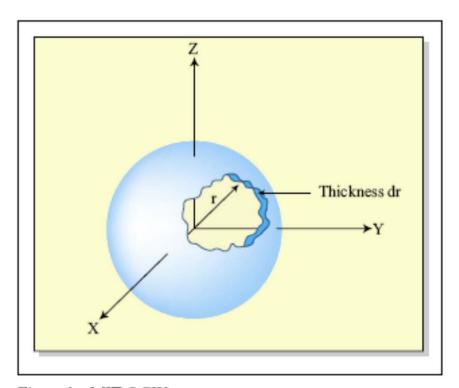

Figure 2.4 Hard-sphere model of (a) gas, (b) liquid/glass, and (c) crystalline solid.

Figure 2.5 Pair-distribution functions for (a) a gas and (b) liquid or glass. (c) The radial dependence of the number of neighbors N(r) for a primitive cubic crystal with one atom per lattice site.

Gas, amorphous/liquid and crystal structures have very different radial distribution function

### Radial distribution function - definition




$$g(r) = \frac{1}{\langle \rho \rangle} \frac{dn(r, r + dr)}{dv(r, r + dr)}$$
 3. Divide by the average atomic density < \rho>

Carve a shell of size r and r + draround a center of an atom.

> The volume of the shell is  $dv = 4\pi r^2 dr$

- 1. Count number of atoms with centers within the shell (dn)
- Average over all atoms in the system
- density < >>

## **RDF:** count the neighbors



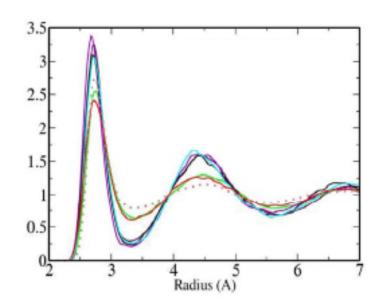



Figure by MIT OCW.

## Properties of the radial distribution function

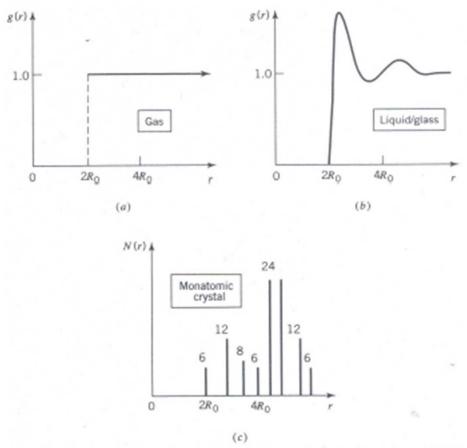
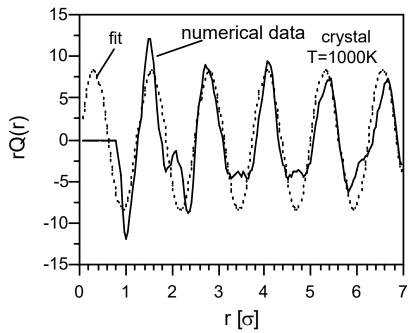
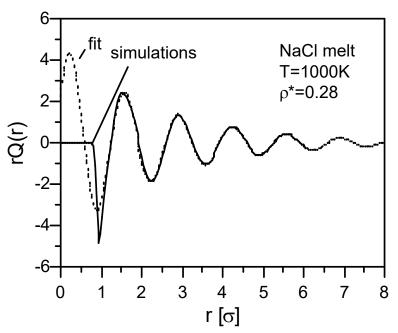



Figure 2.5 Pair-distribution functions for (a) a gas and (b) liquid or glass. (c) The radial dependence of the number of neighbors N(r) for a primitive cubic crystal with one atom per lattice site.

For gases, liquids and amorphous solids g(r) becomes unity for large enough r.


Features in g(r) for liquids and amorphous solids are due to packing (exclude volume) and possibly bonding characteristics.


The distance over which g(r) becomes unity is called the <u>correlation distance</u> which is a measure of the extent of so-called short range order (SRO)

The first peak corresponds to an average nearest neighbor distance.

## Radial Distribution Function - Crystal and Liquid

$$Q(r) = g(r) - 1 \sim \frac{1}{r}\sin(r/d + \varphi)\exp(r/\lambda)$$





- Liquid/amorphous g(r), for large r exhibit oscillatory exponential decay.
- Crystal g(r) does not exhibit an exponential decay  $(\lambda \to \infty)$ .

### Radial distribution functions and the structure factor

 The structure factor, S(k), which can be measured experimentally (e.g. by X-rays) is given by the Fourier transform of the radial distribution function and vice versa.

$$S(k) = 1 + \frac{4\pi\langle\rho\rangle}{k} \int_{0}^{\infty} r[g(r) - 1]\sin(kr)dr$$

Radial distribution functions can be obtained from experiment and compared with that from the structural model.

More detailed structural characterization - Voronoi Polyhedra

Your Assignment 7: study and summary for Voronoi Polyhedra and submit as a ppt file (under 5 pages)

### **5.2.1** Transformation Temperatures

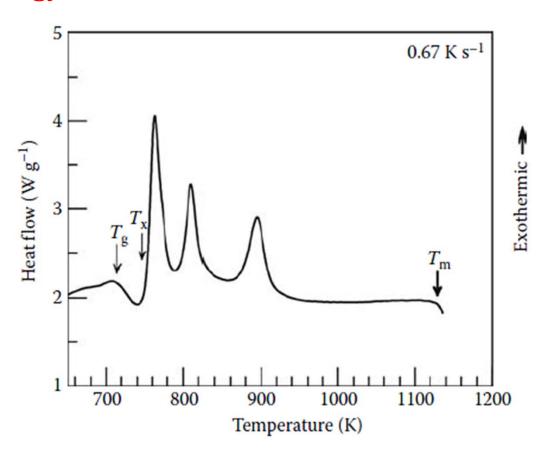
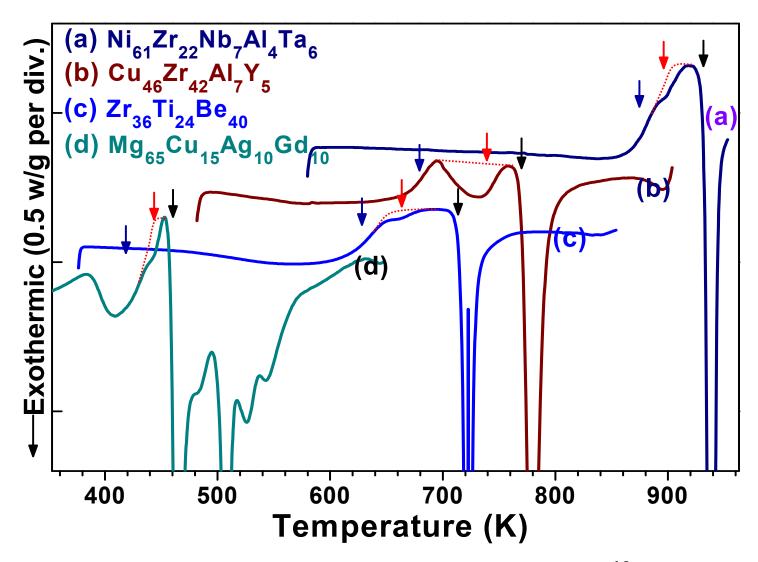
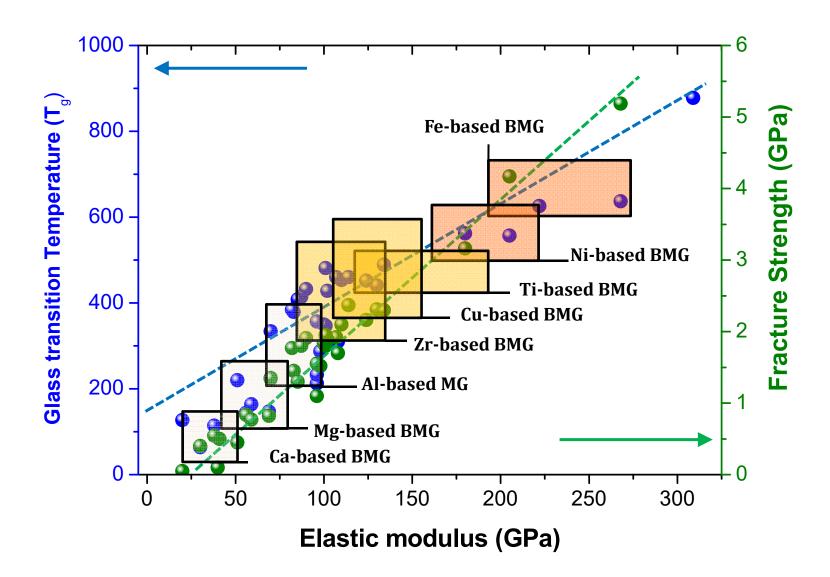





FIGURE 5.1

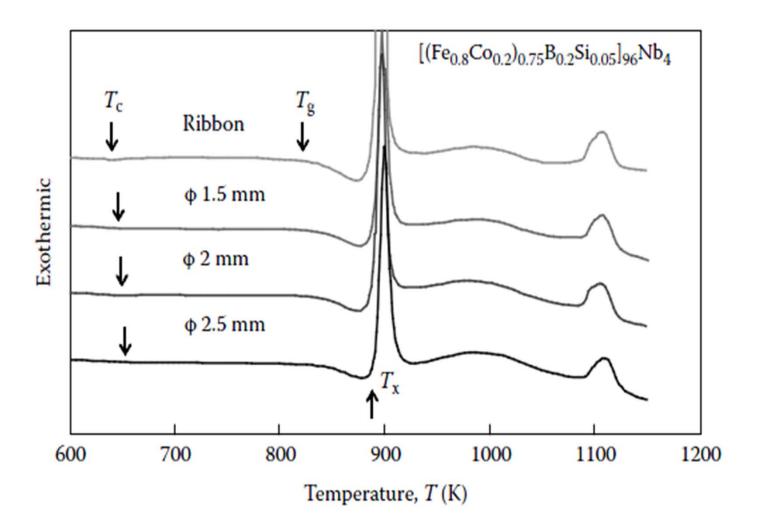
Schematic of a typical differential scanning calorimeter (DSC) curve obtained on heating a BMG alloy from room temperature to high temperatures at a constant heating rate of  $40\,\mathrm{K}$  min<sup>-1</sup>. Note that the curve displays three important temperatures—the glass transition temperature,  $T_{\mathrm{g}}$ , the crystallization temperature,  $T_{\mathrm{x}}$ , and the melting temperature,  $T_{\mathrm{m}}$ . In some cases, there may be more than one crystallization temperature, depending upon the number of stages in which the glass or the supercooled liquid transforms into the crystalline phase(s).

## Variation of $T_a$ depending on alloy compositions $\rightarrow$ Broken Bonds





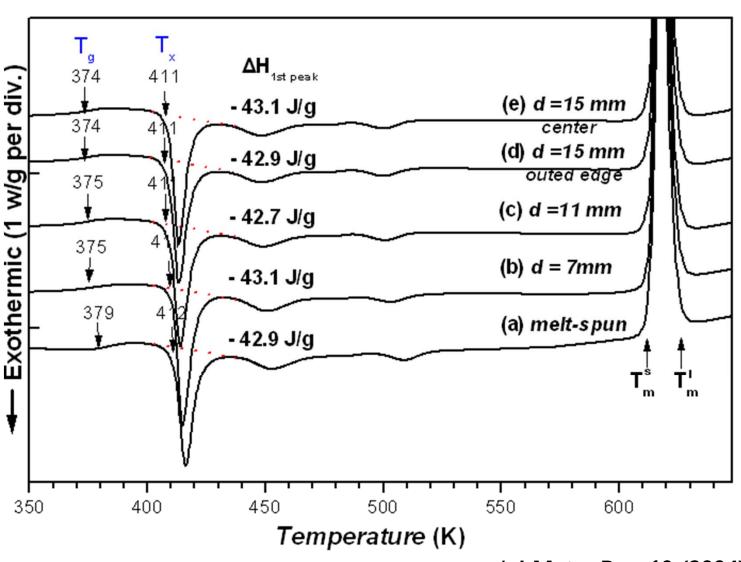
 $\rightarrow$  Almost all of the BMGs exhibit  $T_g$ . But, there are a few exceptions to this. For example, Nd-Fe-Al and Pr-Fe-Al glassy alloys did not exhibit any  $T_g$ , even though  $D_{max} > 10$  mm.


TABLE 5.1
Transformation Temperatures Determined for Some Typical BMG and Melt-Spun Glassy Alloys

| Composition                                           | Glass-Forming Technique                         | $T_{\rm g}({ m K})$ | $T_{x}(\mathbf{K})$ | $(=T_x - T_g) (K)$ | Heating Rate<br>(K s <sup>-1</sup> ) <sup>a</sup> |
|-------------------------------------------------------|-------------------------------------------------|---------------------|---------------------|--------------------|---------------------------------------------------|
| Au <sub>55</sub> Cu <sub>25</sub> Si <sub>20</sub>    | Cu-mold casting low                             | 348                 | 383                 | 35                 | 0.33                                              |
| Ca <sub>66.4</sub> Al <sub>33.6</sub>                 | Cu-mold casting                                 | 528                 | 540                 | 12                 | 0.33                                              |
| Ca60Al30Ag10                                          | Cu-mold casting                                 | 483                 | 531                 | 48                 | 0.33                                              |
| $Ca_{58}Al_{32}Mg_{10}$                               | Cu-mold casting                                 | 513                 | 539                 | 26                 | 0.33                                              |
| $Ca_{65}Mg_{15}Zn_{20}$                               | Cone-shaped Cu-mold casting                     | 374                 | 412                 | 38                 | 0.67                                              |
| $Ce_{60}Al_{10}Ni_{10}Cu_{20}$                        | Suction casting                                 | 374                 | 441                 | 67                 | 0.167                                             |
| $Co_{43}Fe_{20}Ta_{5.5}B_{31.5}$                      | Cu-mold casting high                            | 910                 | 982                 | 72                 | 0.67                                              |
| $Cu_{50}Zr_{50}$                                      | Cu-mold casting                                 | 675                 | 732                 | 57                 | 0.67                                              |
| $Cu_{50}Zr_{50}$                                      | Melt spinning                                   | 686                 | 744                 | 58                 | 0.67                                              |
| $Cu_{60}Zr_{30}Ti_{10}$                               | Cu-mold casting (2.5 mm dia rod)                | 714                 | 758                 | 44                 | 0.67                                              |
| $Cu_{60}Zr_{30}Ti_{10}$                               | Melt spinning                                   | 711                 | 754                 | 43                 | 0.67                                              |
| $Cu_{46}Zr_{42}Al_7Y_5$                               | Injection casting into Cu-mold (10 mm dia rod)  | 672                 | 772                 | 100                | 0.33                                              |
| $Fe_{64}Mo_{14}C_{15}B_{7}$                           | Injection casting into Cu-mold (2.5 mm dia rod) | 793                 | 843                 | 50                 | 0.33                                              |
| $Hf_{52.5}Cu_{17.9}Ni_{14.6}Al_{10}Ti_{5}$            | Suction casting                                 | 767                 | 820                 | 53                 | 0.167                                             |
| $La_{55}Al_{25}Ni_{10}Cu_{10}$                        | High-pressure die casting (9 mm dia rod)        | 460                 | 527                 | 67                 | 0.67                                              |
| La55Al25Ni10Cu10                                      | Melt spinning                                   | 460                 | 550                 | 90                 | 0.67                                              |
| $Mg_{65}Cu_{7.5}Ni_{7.5}Zn_5Ag_5Y_{10}$               | Melt spinning                                   | 430                 | 459                 | 29                 | 0.67                                              |
| Ni <sub>60.25</sub> Nb <sub>39.75</sub>               | Injection casting into Cu-mold (1mm dia rod)    | 891                 | 923                 | 32                 | 0.33                                              |
| $Ni_{62}Nb_{33}Zr_5$                                  | Injection molding (3 mm dia rod)                | 877                 | 917                 | 40                 | 0.33                                              |
| Pd <sub>79</sub> Ag <sub>45</sub> Si <sub>165</sub>   | Splat cooling                                   | 640                 | 672                 | 32                 | 0.33                                              |
| Pd <sub>78</sub> Ag <sub>5.5</sub> Si <sub>16.5</sub> | Dropping a molten droplet onto metal substrate  | 642                 | 683                 | 41                 | 0.33                                              |
| Pd <sub>80</sub> Au <sub>3.5</sub> Si <sub>16.5</sub> | Splat cooling                                   | 644                 | 675                 | 31                 | 0.33                                              |
| Pd <sub>78</sub> Au <sub>4</sub> Si <sub>18</sub>     | Roller quenching                                | 656                 | 696                 | 40                 | 0.67                                              |

TABLE 5.1
Transformation Temperatures Determined for Some Typical BMG and Melt-Spun Glassy Alloys

| Composition                                                                        | Glass-Forming Technique                        | $T_{\rm g}({ m K})$ | $T_x(K)$ | $(=T_x - T_g) (K)$ | Heating Rate<br>(K s <sup>-1</sup> ) <sup>a</sup> |
|------------------------------------------------------------------------------------|------------------------------------------------|---------------------|----------|--------------------|---------------------------------------------------|
| Pd <sub>43</sub> Cu <sub>27</sub> Ni <sub>10</sub> P <sub>20</sub> (fluxed)        | Water quenching                                | 585                 | 716 la   | rgest 131          | 0.67                                              |
| Pd <sub>43</sub> Cu <sub>27</sub> Ni <sub>10</sub> P <sub>20</sub> (foam)          | Water quenching                                | 577                 | 667      | 90                 | 0.33                                              |
| Pd <sub>40</sub> Cu <sub>30</sub> Ni <sub>10</sub> P <sub>20</sub> (unfluxed)      | Melt spinning                                  | 572                 | 663      | 91                 | 0.33                                              |
| $Pd_{40}Cu_{30}Ni_{10}P_{20}$ (fluxed)                                             | Melt spinning                                  | 572                 | 670      | 98                 | 0.33                                              |
| Pd <sub>77.5</sub> Cu <sub>6</sub> Si <sub>16.5</sub>                              | Dropping a molten droplet onto metal substrate | 646                 | 686      | 40                 | 0.33                                              |
| $Pd_{40}Ni_{40}P_{20}$                                                             | Centrifugal spinning                           | 583                 | 650      | 67                 | 0.33                                              |
| $Pd_{40}Ni_{40}P_{20}$ (fluxed)                                                    | Water quenching (7 mm dia rod)                 | 576                 | 678      | 102                | 0.33                                              |
| $Pd_{40}Ni_{40}P_{20}$ (unfluxed)                                                  | Melt spinning                                  | 580                 | 643      | 63                 | 0.33                                              |
| Pd <sub>40</sub> Ni <sub>40</sub> P <sub>20</sub> (fluxed)                         | Melt spinning                                  | 590                 | 671      | 91                 | 0.33                                              |
| Pd <sub>81</sub> Si <sub>19</sub> (fluxed)                                         | Air cooling                                    | 638                 | 696      | 58                 | 0.33                                              |
| Pd <sub>81</sub> Si <sub>19</sub> (fluxed)                                         | Melt spinning                                  | 633                 | 675      | 42                 | 0.33                                              |
| $Pd_{80}Si_{20}$                                                                   | Splat cooling                                  | 655                 | 667      | 12                 | 0.33                                              |
| Pr <sub>60</sub> Cu <sub>20</sub> Ni <sub>10</sub> Al <sub>10</sub>                | Suction casting                                | 409                 | 452      | 43                 | 0.167                                             |
| Pt <sub>57.5</sub> Cu <sub>14.7</sub> Ni <sub>5.3</sub> P <sub>22.5</sub> (fluxed) | Water quenching (16mm dia rod)                 | 508                 | 606      | 98                 | 0.33                                              |
| $Sm_{56}Al_{22}Ni_{22}$                                                            | Suction casting                                | 544                 | 582      | 38                 | 0.33                                              |
| $Ti_{32}Hf_{18}Ni_{35}Cu_{15}$                                                     | Planar flow casting                            | 722                 | 766      | 44                 | 0.167                                             |
| $Ti_{50}Ni_{24}Cu_{20}B_1Si_2Sn_3$                                                 | Cu-mold casting                                | 726                 | 800      | 74                 | 0.67                                              |
| $Ti_{40}Zr_{25}Ni_{2}Cu_{13}Be_{20}$                                               | Cu-mold casting                                | 599                 | 644      | 45                 | 0.33                                              |
| $Y_{36}Sc_{20}Al_{24}Co_{20}$                                                      | _                                              | 645                 | 760      | 115                | 0.67                                              |
| $Zr_{65}Al_{7.5}Ni_{10}Cu_{17.5}$                                                  | Water quenching (16mm dia rod)                 | 625                 | 750      | 125                | 0.67                                              |
| $Zr_{65}Al_{75}Ni_{10}Cu_{175}$                                                    | Melt spinning                                  | 622                 | 749      | 127                | 0.67                                              |
| $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$                                      | Cu-mold casting                                | 625                 | 705      | 80                 | 0.33                                              |


 $<sup>^{</sup>a}$  0.167K  $s^{-1}$  = 10 K min $^{-1}$ ; 0.33K  $s^{-1}$  = 20 K min $^{-1}$ ; and 0.67K  $s^{-1}$  = 40 K min $^{-1}$ .



PIGURE 5.2

DSC curves of bulk glassy [(Fe<sub>0.8</sub>Co<sub>0.2</sub>)<sub>75</sub>B<sub>20</sub>Si<sub>5</sub>]<sub>96</sub>Nb<sub>4</sub> alloy of different diameters (1.5, 2.0, and 2.5 mm) and melt-spun ribbon of the same composition. These curves clearly demonstrate that the transformation temperatures are identical for all the samples and that the transformation temperatures do not depend upon the diameter of the rod or the thickness of the ribbon. (Reprinted from Inoue, A. et al., *Acta Mater.*, 52, 4093, 2004. With permission.)

## \* Typically $T_q$ is ~ 50-60% of the melting point.



\* J Mater Res, 19 (2004) 685.

The glass transition temperature  $T_g$  is a kinetic parameter and its value depends on the cooling rate at which the glass is formed (and also on the heating rate at which the glassy sample is reheated). It was also noted that  $T_{\mathrm{g}}$  was lower when the glass had formed at lower cooling rates. Therefore, it would be possible to assume that the  $T_{\sigma}$  for the melt-spun ribbon and BMG rod will be different. But, this is not true. The reason is that  $T_{\rm g}$ , the temperature at which the glass is formed is estimated during the cooling of the molten alloy. On the other hand,  $T_g$  is usually measured experimentally during the heating of the glassy alloy that has already formed. Once the glass is heated from room temperature to higher temperatures, it is structurally relaxed and, therefore, it does not matter how the glass had initially formed. Accordingly, both types of glasses will have the same  $T_g$  and  $T_x$  temperatures, when measured at the same heating rate. That is, there is no difference between the  $T_{\rm g}$  values of glasses prepared by RSP or slow solidification methods.

## 5.4 Differences in the Crystallization Behavior between Melt-Spun Ribbons and Bulk Metallic Glasses

- (a) The <u>melt-spun metallic glass ribbons</u> solidified at higher cooling rates are farther from equilibrium than the BMGs. → a larger decrease in density and higher energy stored in the melt-spun ribbons → One would expect that, due to the larger departure from equilibrium, the kinetics of crystallization in melt-spun glassy ribbons would be faster than that in BMGs. <u>But this is not necessarily true.</u>
- (b) Once the glass is heated to a temperature above Tg, the glass **becomes a supercooled liquid** (but still exists in the form of a solid). At this stage there is **no difference in the "structure"** between the BMG and the melt-spun metallic glass that was obtained directly by rapidly solidifying the metallic melt, **except that the extent of structural relaxation would be different in the two glasses.** → Therefore, once the BMG has been heated to **above Tg, the crystallization behavior of BMGs and melt-spun metallic glassy ribbons will be identical** (assuming that both the glasses have the same chemical composition).

### **5.2.2** Activation energy for crystallization

### Two different methods: (a) Kissinger method, (b) Ozawa method

(a) Kissinger method 
$$\ln \left( \frac{\beta}{T_p^2} \right) = \left( -\frac{Q}{RT_p} \right) + A$$
 where  $R$  is a constant  $R$  is the universal gas constant

Thus, by plotting  $\ln (\beta/T_p^2)$  against  $1/T_p$ , one obtains a straight line whose slope is -Q/R, from which the activation energy for the transformation, Qcan be calculated (Figure 5.3).

- Could get the required data during continuous heating in a DSC
- Possible to evaluate the individual activation energies for the nucleation and growth stages of the transformation
- May not be useful in all studies of decomposition

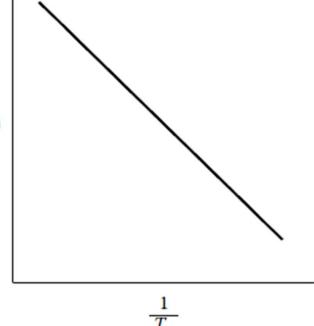



FIGURE 5.3

Kissinger plot in which  $\ln(\beta/T_p^2)$  is plotted against  $1/T_p$ , when a straight line is obtained. The activation energy for crystallization can be calculated from the slope of this straight line.

- Chen & Spaepen (Harvard, 1988)
- a) glass → nucleation & growth (perfect random)
  - Isothermal annealingrapid heating + maintain the temp.



### • Glass:

J-M-A Eq. 
$$x = 1 - \exp(-bt^n)$$
 (n: 2~4, nucleation mechanism) crystallized volume fraction after time t

→ Corresponding heat release

$$-\frac{dH}{dt} = \Delta H (1-x)n \cdot bt^{n-1}$$

(ΔH: total transformation enthalpy)

Fig. 1.4 Isothermal enthalpy release rates for crystallite nucleation and growth (solid line) and crystallite grain-coarsening mechanisms (dashed line)

Glass 
$$-\frac{dH}{dt} = \Delta H (1-x)n \cdot bt^{n-1}$$
  
: exothermic peak at non-zero time Time (min)

Output

Output

Time (min)

Time (min)

• c) Nanocrystalline → grain growth

$$\rightarrow \frac{dr}{dt} = M \cdot \frac{\gamma}{r^m}$$

(M: atomic mobility,  $\gamma$ : interfacial surface tension)

→ corresponding heat release

$$-\frac{dH}{dt} = H(0) \cdot r(0) \cdot M\gamma / r^{m+2}$$

(H(0): zerotime enthalpy of a grain size of r (0))

→ Monotonically decreasing curve

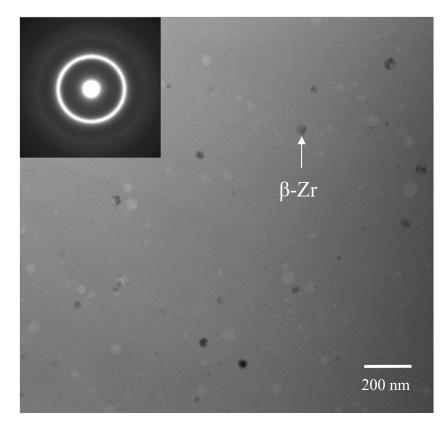
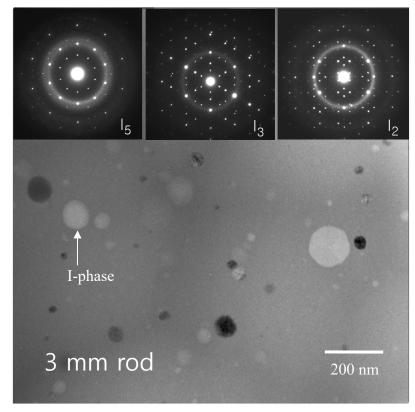



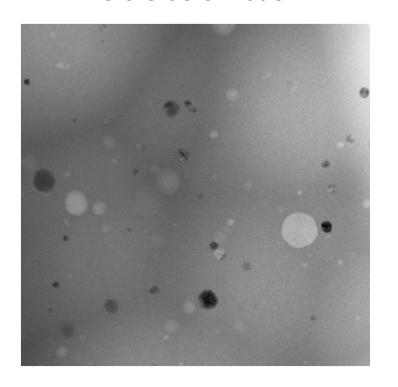

Fig. 1.4 Isothermal enthalpy release rates for crystallite nucleation and growth (solid line) and crystallite grain-coarsening mechanisms (dashed line)

## Effect of quenched-in quasicrystal nuclei

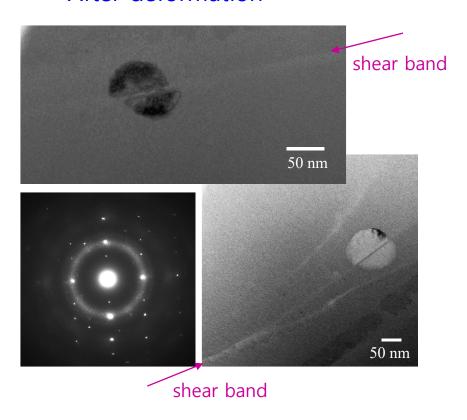

2 mm rod

(a)  $Zr_{63}Ti_5Nb_2Cu_{15.8}Ni_{6.3}Al_{7.9}$ 

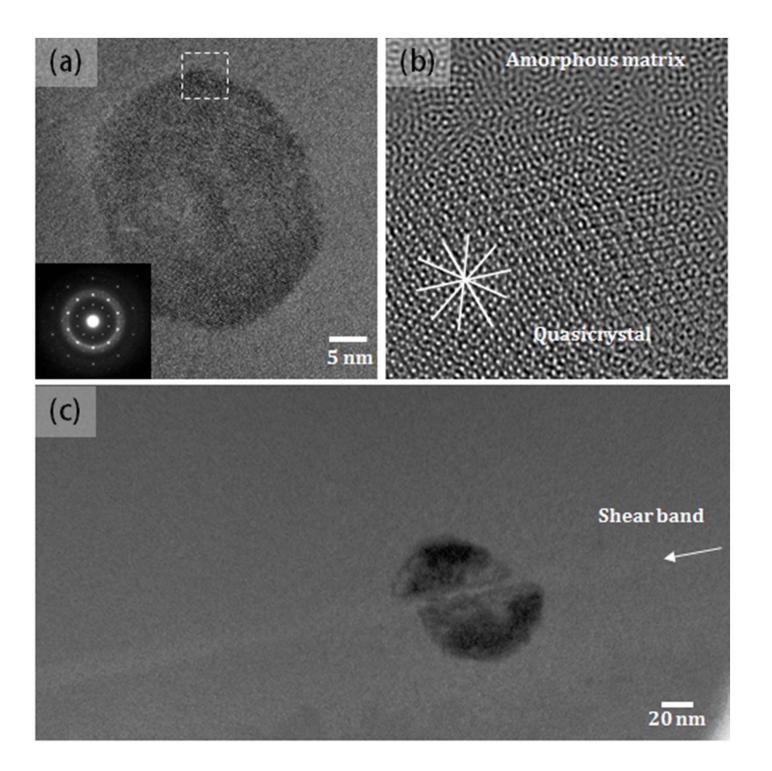


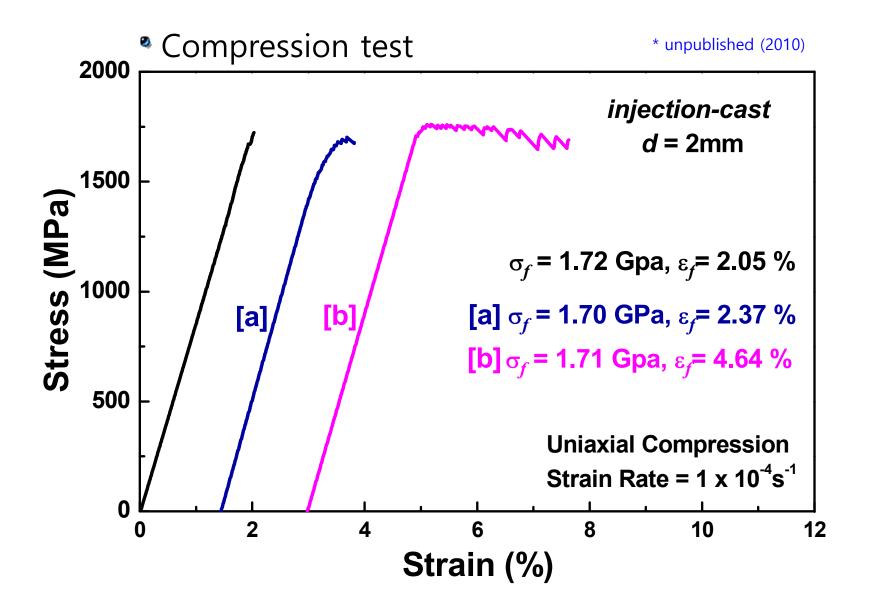

β-Zr particle (~70 nm) in amorphous matrix

(b)  $Zr_{57}Ti_8Nb_{2.5}Cu_{13.9}Ni_{11.1}Al_{7.5}$ 




I-phase particle in amorphous matrix

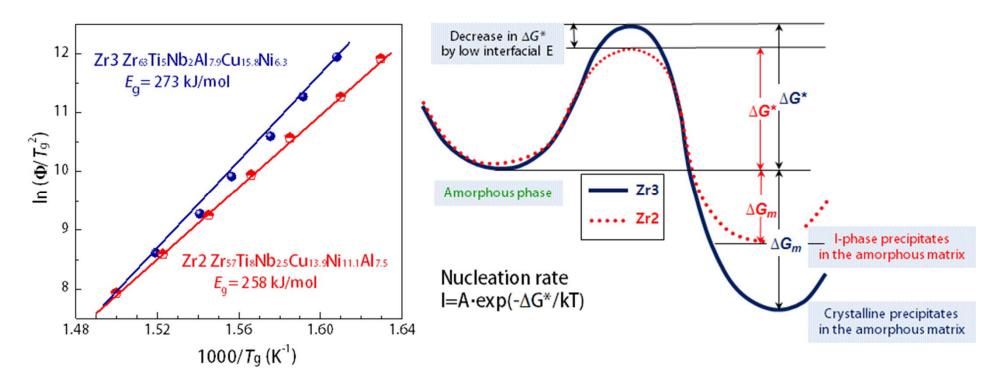

Before deformation




### After deformation



- No distribution of icosahedral particle to blocking the propagation of shear band.
- No enhancement of plasticity in MGMC with icosahedral particle



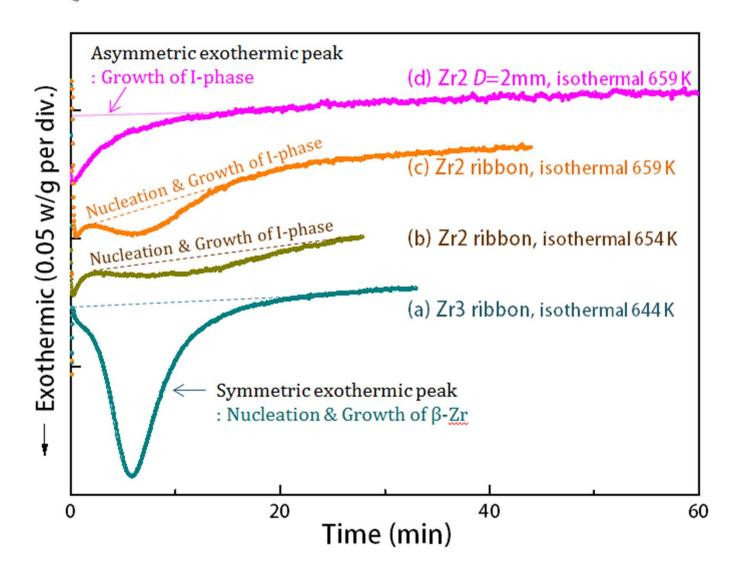



HRTEM image in [b] alloy

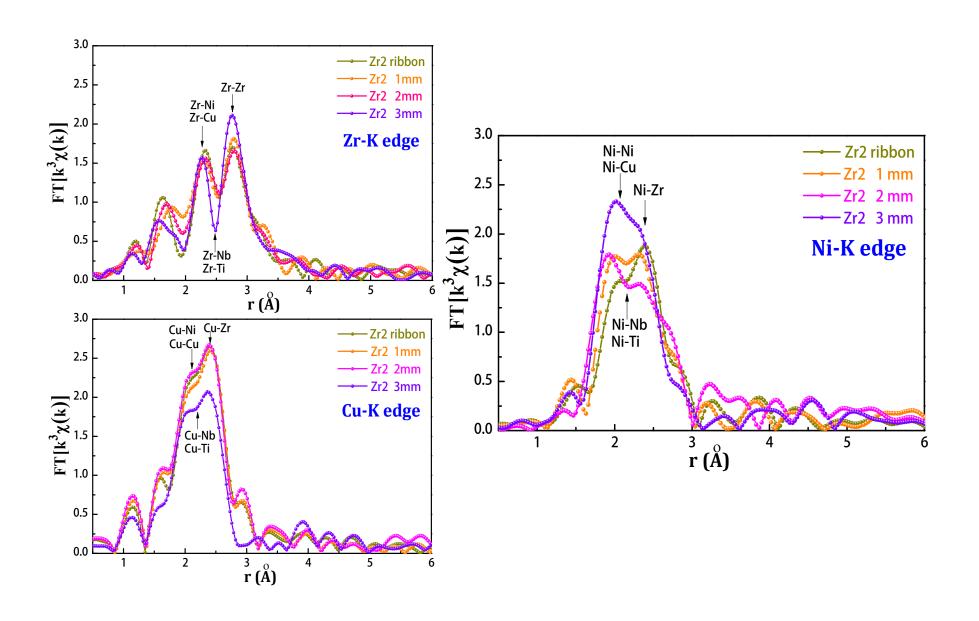
5 nm

## Activation E : driving force for nucleation




Kissinger's equation

$$\ln(\Phi/T_g^2) = -Q/RT_g + const.$$


# Effect of quenched-in quasicrystal nuclei

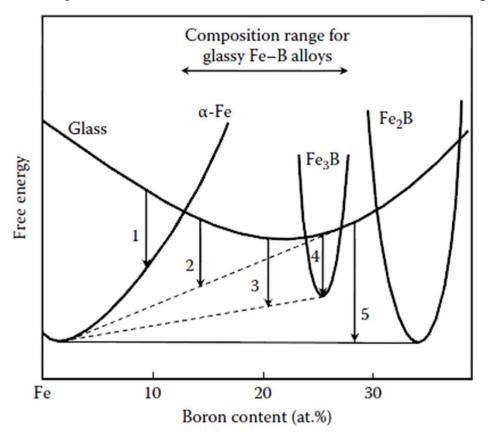
Isotherm in DSC

Isothermal annealing



# Characterizing the structure – Measurement of radial distribution function, also called pair distribution function by EXAFS analysis




### 5.2.3 Structural Details

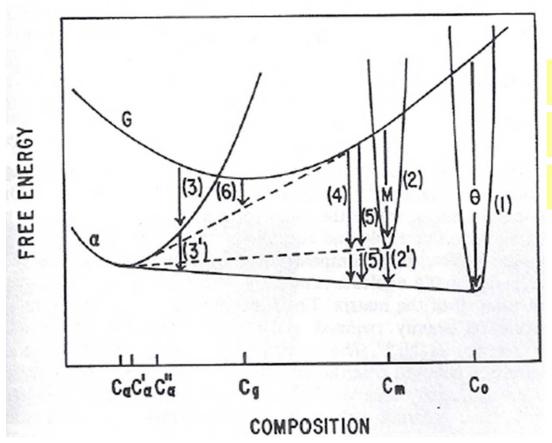
# Amorphous vs Nanocrystalline

- 1) Microstructural observation XRD, (HR)TEM, EXAFS ...
- 2) Thermal analysisDSC (Differential Scanning Calorimetry): Measure heat absorbed or liberated during heating or cooling
  - cf) a) glass → nucleation & growth (perfect random)
    - b) *local clustering*: quenched-in nuclei → *only growth*
    - c) Nanocrystalline → growth

## 5.3 Crystallization Modes in Melt-Spun Ribbons

Variables: solid solubility, number of stable & metastable intermetallic phases, composition




#### FIGURE 5.5

Hypothetical free energy vs. composition diagram for the Fe-rich Fe-B alloy system. The variation of free energy with composition is represented for the equilibrium  $\alpha$ -Fe solid solution and the Fe<sub>2</sub>B phases and the metastable Fe<sub>3</sub>B phase and the glassy phase. The use of the common tangent approach will help in determining the compositions of the individual phases. The solid common tangent line represents the stable equilibrium between  $\alpha$ -Fe and Fe<sub>2</sub>B phases, while the dotted common tangent lines represent the metastable equilibrium between  $\alpha$ -Fe and Fe<sub>3</sub>B phases and  $\alpha$ -Fe and glassy phases.

# Crystallization Behaviors in Metallic Glass

Metallic glasses crystallize by a nucleation and growth process.

The driving force is the free energy difference between the glass and the appropriate crystalline phase.  $\rightarrow$  (Free energy vs. Composition diagram)



Crystallization mechanisms

- 1. Polymorphous Crystallization
- 2. Eutectic Crystallization
- 3. Primary Crystallization

G: Glass

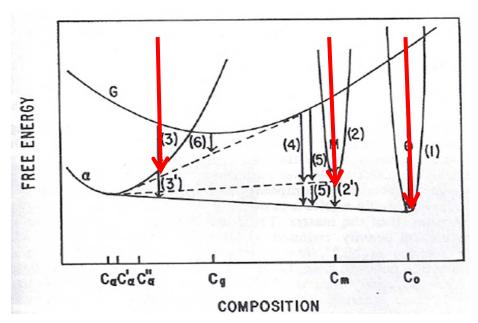
α: Solid solution (Crystalline phase)

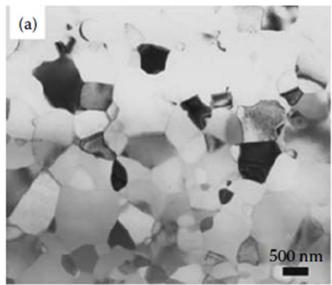
 $\theta$ : Intermetallic phase

M: metastable phase



Figure 10.7 Hypothetical free energy diagram to illustrate the crystallization of a metallic glass. G,  $\alpha$ ,  $\theta$ , M are respectively the free energy curves of the glass, a terminal solid solution, a stable intermetallic phase, and a metastable phase. Stable equilibrium is indicated by the solid line; metastable equilibrium by the broken lines. The numbered arrows refer to the devitrification processes described in the text


## Crystallization mechanisms


(a) <u>Polymorphous transformation</u> of the glass to a crystalline phase of the same composition.

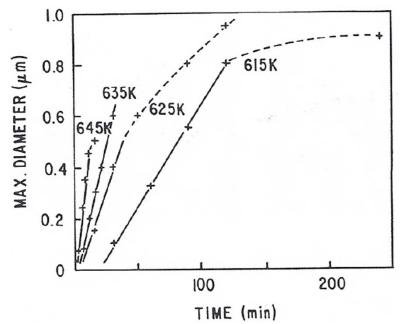
The product may be either  $\theta$  (1) or M(2) or a supersaturated solid solution  $\alpha$ (3).

In the latter two cases <u>subsequent</u> <u>decomposition</u> can occur to the equilibrium mixture of  $\alpha$  and  $\theta$  (2' and 3')

#### **1. Polymorphous Crystallization:** single crystalline phase without any change in composition






Polymorphous crystallization in a  $Ti_{50}Ni_{25}Cu_{25}$  BMG alloy on annealing for 28 min at 709 K.

### Growth rates and morphologies

$$u = a_0 v_0 \left\{ \exp \left[ \frac{-\Delta F_a}{kT} \right] \right\} \left\{ 1 - \exp \left[ \frac{-\Delta F_v}{kT} \right] \right\}$$

 $\Delta F_a$  = activation energy for an atom to leave the matrix and attach itself to the growing phase

 $\Delta F_v$ =The molar free energy difference btw C and G



Growth kinetics of  $\rm Zr_2Ni$  crystals in glass of same composition. The broken lines indicate crystal impingement.

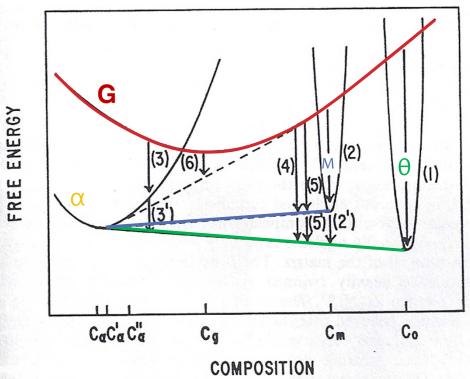
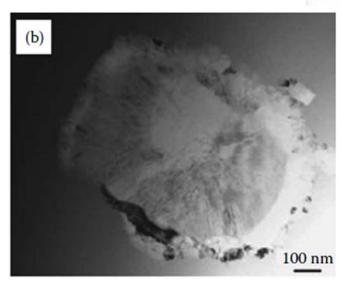


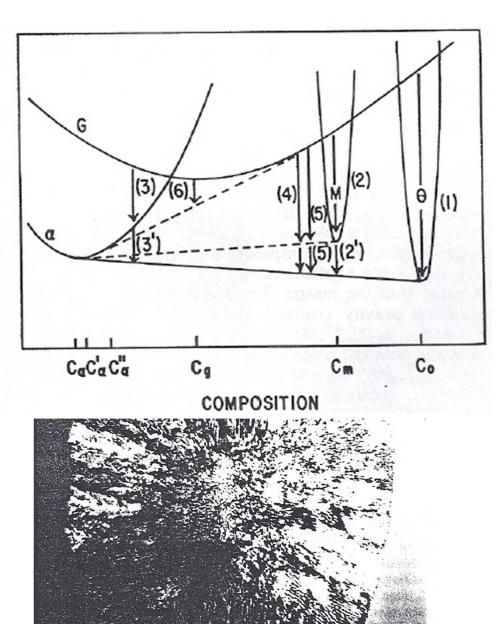

Figure 10.7 Hypothetical free energy diagram to illustrate the crystallization of a metallic glass. G,  $\alpha$ ,  $\theta$ , M are respectively the free energy curves of the glass, a terminal solid solution, a stable intermetallic phase, and a metastable phase. Stable equilibrium is indicated by the solid line; metastable equilibrium by the broken lines. The numbered arrows refer to the devitrification processes described in the text

## Crystallization mechanisms


(b) <u>Eutectic crystallization</u> of liquids

The glass can reduce its free energy to a point on the common tangent between either  $\alpha$  and  $\theta$  (4) or  $\alpha$  and M(5).

In the case of the metastable eutectic between  $\alpha$  and M subsequent further decomposition to  $\alpha$  and  $\theta$  can occur. (4' and 5')


## 2. Eutectic Crystallization

- Largest driving force
- can occur in the whole concentration range between the stable or metastable phases (Even though the whole transformation takes place in the solid state and therefore it should be more appropriately called a eutectoid crystallization, the term "eutectic" has come to stay, presumably because the stating material (the glass) is more liquid-like.)

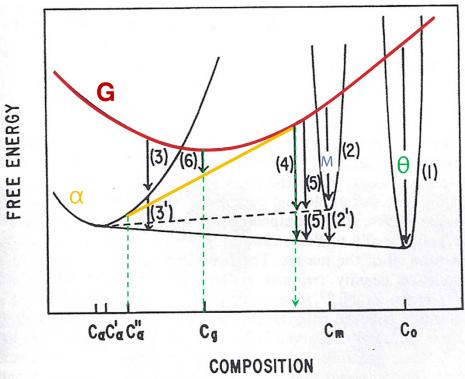


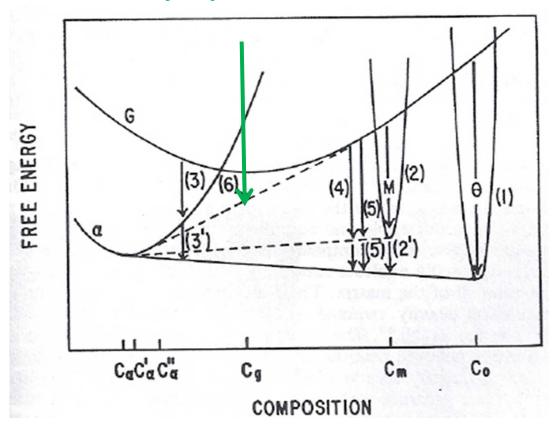
FREE ENERGY

Eutectic crystallization in  $Zr_{62.5}Cu_{22.5}Al_{10}Fe_5$  glassy alloy annealed for 10 min. at 713K.



Barrel shaped eutectic crystal in  $Fe_{40}Ni_{40}P_{14}B_6$  annealed for 13 min. at  $385^{\circ}C$ 





Figure 10.7 Hypothetical free energy diagram to illustrate the crystallization of a metallic glass. G,  $\alpha$ ,  $\theta$ , M are respectively the free energy curves of the glass, a terminal solid solution, a stable intermetallic phase, and a metastable phase. Stable equilibrium is indicated by the solid line; metastable equilibrium by the broken lines. The numbered arrows refer to the devitrification processes described in the text

## Crystallization mechanisms

(c) <u>Primary crystallization</u> of supersaturated solid solution (6)

Since the  $\alpha$  has a composition  $c_{\alpha}$ " which is less than that of the glass  $c_{g}$  solute is rejected from the growing crystals into the glass (4). Ultimately the untransformed, enriched glass (4) transforms by one of the other mechanisms discussed above.

## 3. Primary Crystallization



- Forms first from the glass phase
- Supersaturated solid solution
- Since the concentration of the solute in the  $\alpha$ -Fe phase is lower than that in the glassy phase, the solute (boron) atoms are rejected into the glassy phase and consequently the remaining glass phase becomes enriched in B until further crystallization is stopped.

