Chapter 3. Stability and Reactivity

- \Box Thermodynamic stability: ΔH ; feasibility of reactions
 - ◆ stability of hydrocarbons: □ 256 Table 3.1 & □ 257 top
- □ How to estimate ΔH : $\Delta H < 0$, exothermic
 - bond dissociation energy (BDE) of the reactants & products

 $O\Delta H = \Delta H_{R} - \Delta H_{P} \cong \Sigma BDE_{(formed)} - \Sigma BDE_{(broken)}; \square 259 \text{ top}$

♦ BDE_(product) from electronegativity (χ): L. Pauling; <u>□ 259</u> ○ stabilization energy (SE): <u>□ 260 Table 3.3</u>

 \bigcirc CH₃-X < pri-C-X < sec-C-X < tert-C-X: \square 261 top

- group equivalent methods: $\sum \Delta H_{(\text{componet group})}$; $\square 262 \text{ top}$
- computational methods: MM4, ab initio & DFT; relavance
- no information on solvation effects & rate of reactions

Chemical Kinetics

Quantitative relationship of reactivity & structure rate: detailed insight into the reaction mechanisms \Box Transition-state theory: $k_{r(\text{decomp.})} \cong 6-10^{12}/\text{sec}$ An <u>activated complex</u> going to product at very fast rate $A + B \rightleftharpoons TS \rightarrow C$: rate = $k_{\mu}[A][B], k_{\mu} \propto \Delta G^{\ddagger}; \square 271 \& 272$ \odot solvent effect for ΔS^{\ddagger} : -6.6 cal/mol· $\circ C$ for solvolysis of *t*-butyl chloride; greater ordering of solvent Potential energy changes in reactions reaction energy profiles: TS vs intermediate with time

oone/two/three-step reactions: rate-determining step;
275

Reaction coordinate for a single-step reaction

Potential Energy Changes in Reactions

Principle of microscopic reversibility

◆ a reaction follows the lower energy pathway: (de)bromination
 ○ the same pathway in the forward direction will be followed in the reverse reaction: the lowest energy barrier for either process

□ 2/3-D Reaction energy diagrams

◆2-D: change in two bonds; <u>□ 276 bot.</u> & <u>□ 277 Fig. 3.3</u>
○Albery-More O'Ferrall-Jencks: energy in 3-D: <u>□ 278 Fig. 3.4</u>
◆reaction cube: changes in 3 bonds; <u>□ 279 Fig. 3.6</u>

omore bonding changes: cubes with cubes

□ Computation of energy surfaces: E_{TS} = minimum

evaluation of energy as a function of structural changes

Microscopic Reversibility: Di(de)bromination

Kinetics and Mechanisms

Rate: detailed insight into the reaction mechanisms
 How to determine the reaction mechanism

- 1. Postulate all the plausible mechanisms
- 2. Eliminate those mechanisms from the postulated mechanisms incompatible with the observed kinetics

○steady-state approximation: reactive intermediates; <u>□ 282</u>

- the rate of consumption \cong the rate of formation: $\square 283$

○ base-catalyzed aldol condensation: <u>284</u>

- Information only about the RDS & the preceding steps
- composition but no structure about the transition state

Thermodynamic Stability and Rate (I)

□ Kinetic vs thermodynamic control: □ 286 Fig. 3.8

- kinetic enolates: bulky strong base, aprotic solvent; <u>287</u>
 thermodynamic control: equilibration via an enol form
- \Box Correlations between ΔG^o and ΔG^{\ddagger}
 - •Are more exothermic reactions faster? = $\Delta G^{\ddagger} \propto \Delta G^{o}$?
 - ♦Hammond's postulate: <u>□ 290 Fig. 3.11</u>

oindirect information about the structure of transition states

- two states occurring consecutively with nearly the same energy closely resembles each other in structure
- resemblance of TS structures to reactants or products

 \bigcirc electrophilic aromatic substitution: bromination; $\square 290-292$

Kinetic vs Thermodynamic Control: Example

thermodynamic

kinetic

Thermodynamic Stability and Rate (II)

\Box Correlations between ΔG^o and ΔG^{\ddagger}

- ♦ Bell-Evans-Polyani relationship: $Ea \propto \Delta H$; <u>□ 288-9</u>
- ◆[Home Study] 3.3.2.3 The Marcus Equation: □ 293-6
- □ Curtin-Hammett principle: <u>□ 296 Fig. 3.17</u>
 - effect of conformational equilibria on a chemical reaction
 - "the product ratio is not determined by relative stability of the products (ΔG_c) but primarily by the relative energy of the two TS ($\Delta \Delta G^{\ddagger}$)"
 - o 'the ratio of conformers (or tautomers) of reactants can not be deduced from the product ratio'
 - example: elimination reactions; antiperiplanar conformation

An Extreme Case

Linear Free-Energy Relationships (I)

□ Hammett equation: rates & equilibria; <u>□ 336 Fig. 3.25</u>

- hydrolysis of ethyl benzoates & acidity of benzoic acids
- $\bullet \log k/k_o = m \log K/K_o \rightarrow \Delta(\Delta G^{\ddagger}) = m \Delta(\Delta G); \square 336-7 (3.42-3)$
- $\bullet \log K/K_o = \sigma \rho, \ \log k/k_o = \sigma \rho : m = \rho ; \square 337 (3.44-5)$
 - $\circ \sigma$, substituent constant (*m* or *p*-): ability to donate or withdraw electron density from a reaction site; \square 339 <u>Table 3.36</u>

 $\circ \rho$, reaction constant (1 for PhCO₂H in water): sensitivity of a particular reaction to the substituent effects; \Box 340 Table 3.27

♦ saponification of ArCO₂Me: ρ = + 2.38; <u>339 bottom</u>

O(+): EWG substituents facilitate the reaction

 $\odot 2.38$: more sensitive to substituent effects than those of PhCO₂H

Linear Relationship between Rates & Equilibria

12

Linear Free-Energy Relationships (II)

□ Correlation with the reaction mechanism:

♦ solvolysis rates of ArCH₂CI: ρ = - 1.31; <u>340 bottom</u>

O(-): EDG substituents facilitate the reaction

o1.31: a bit more sensitive to substituent effects

- $\bullet \sigma$ from pK_a of the substituted benzoic acid: <u>339 bottom</u>
- \Box σ : combination of 3 factors; <u>338 Fig. 3.26</u>
 - \bullet resonance effect: π -electron delocalization
 - \blacklozenge inductive effect: polarization through σ bonds; polar effects
 - field effect: polarization through space; geometry of molecules

Field Effect: Through-space Electrostatic Interaction

p*K_a* = 6.07

p*K_a* = 5.67

Linear Free-Energy Relationships (III)

- \Box Modifications of the Hammett equation: $\sigma_m \& \sigma_p$
 - correction for the additional resonance contribution
 - OHammet values: a mixture of resonance and polar effects
 - o Taft values: direct resonance; $\sigma^+ \& \sigma^+$, <u>a 341 top</u>
 - OYukawa-Tsuno equation: <u>□ 341 eqn. 3.48</u>
 - Odual-substituent-parameter equation: $\sigma = \sigma_I + \sigma_R$, polar effects (σ_I) & resonance effect (σ_R) ; \square 341 eqn. 3.49

o addition of electronegativity & polarizability: <u>342 eqn. 3.50</u>

♦ classification of substituent groups: <u>□ 343 Scheme 3.5</u>

Linear Free-Energy Relationships (IV)

Application to the reaction mechanisms

♦ basic hydrolysis of aryl esters: $\rho = +2.38$; 🛄 339 bottom

 \bigcirc negatively charged intermediate \cong TS: RDS; \square 343 bottom

 $\odot\ensuremath{\mathsf{the}}$ more electrophilic carbonyl of the esters due to EWG

♦ solvolysis of diaryl chlorides in EtOH: $\rho = -4.2$; <u>□ 340 bot.</u>

○ positively charged intermediate \cong TS: RDS; <u>□ 344 top</u>

Nonlinear Hammett plots

change in the mechanism: TS or RDS; <u>344 bottom</u>

 \odot semicarbazone: ρ = +3.5 for ERGs & ρ = -0.25 for EWGs

♦ aliphatics: additional steric and conformational factors

Electronic Substituent Effects (I)

□ Substituent effects: classification

- ♦ electronic, steric and structure-specific effects
- ◆electronic: resonance & polar effects (inductive & field)
 ○unrelated resonance and polar effects: □ 299 Scheme 3.1

□ Carbocations: positive empty orbitals; <u>□ 300 mid.</u>

- (+)-charge in a less electronegative p orbital
- $CH_3^+ < CH_2^+ < CH^+ < C^+$: polar & delocalization; <u>301 bot</u>.
- ◆ stabilization of conjugated ions: □ 302-3 Table 3.9 & 3.10
- •stabilization by substituents: \square 305 <u>Table 3.12</u> obetter β-stabilization: Si, Sn, Hg; \square 307 middle

Electronic Substituent Effects (II)

□ Carbanions: negative filled orbitals; <u>□ 307 bottom</u>

- (-)-charge in a more electronegative orbital: $sp^3 < sp^2 < sp$
- ◆ stability of *sp*³ carbanions: polarizability; □ 309 <u>Table 3.14</u>
 much smaller substituent effects than those with carbocations
- ◆ stabilization by substituents: □ 309 Table 3.15

odelocalization (BH₂, CH=CH₂, NO₂) & polarizability (CI to SiH₃)

Radicals: half-filled nonbonding orbital; <u>311 mid.</u>

- ♦planar $CH_3 \bullet (p/sp^2)$ & trigonal = $CH \bullet (sp^2/sp^2)$
- \bullet weak β-C-H: disproportionation of radicals; <u> \square 311 bottom</u>
- ◆ stability of hydrocarbon C•: BDE of C-H; □ 258 Table 3.2

Electronic Substituent Effects (III)

□ Radicals (continued)

- ◆ stabilized by EWGs or ERGs: □ 318 Table 3.20
 - Odelocalization of unpaired e⁻: <u>□ 313 middle</u> & □ 314 Fig. 3.19
- ♦ captodative radicals: very weak C-H; <u>□ 316 Table 3.18</u>

□ Addition to carbonyls: reactivity; <u>□ 319 middle</u>

- ♦ reinforcing polar and resonance effects: \square 319 bottom $\bigcirc C^- < HN^- < O^- < H_2N < RO < F$
- ♦ charge density & bond orders: □ 321 Fig. 3.20
- ◆addition and elimination mechanism: □ 331 Scheme 3.3

Kinetic Isotope Effect

□ Replacement by an isotope: D(T) vs H; □ 332 Fig. 3.24

- no effect on chemical reactivity but some effects on rate
- ♦ primary kinetic isotope effect: $BE_{C-D} > BE_{C-H}$ at RDS (> 2)
 maximum effect: H equally bound to at the TS; $k_H/k_D \cong 7$ minimum effect: very reactant- or product-like TS; $k_H/k_D \cong 1$
- ♦ information on a reaction mechanism: □ 334 Scheme 3.4
 - position of the TS: high $k_{\rm H}/k_{\rm D}$ → close to the midpoint along the reaction pathway
- ◆secondary kinetic isotope effect: □ 334 Scheme 3.4

owhen the C-H bond is not directly involved in the reaction

 $\bigcirc \alpha$: $k_{\rm H}/k_{\rm D}$ > 1: normal ($sp^3 \rightarrow sp^2$: C-H loosening); $k_{\rm H}/k_{\rm D}$ < 1: inverse ($sp^2 \rightarrow sp^3$: C-H tightening); β: <u>□ 334 bottom</u> (normal)

Catalysis by Acids & Bases (I)

□ Catalysts: not affect the equilibrium but the rate

- ♦ when the conjugate acid/base is more reactive: <u>□ 345 bottom</u>
- Quantitative kinetic study
 - specific acid catalysis: depends on equilibrium of protonation of the reactant; independent of conc. & identity of acid
 formation of hemiacetal of benzaldehyde in MeOH: <u>347 top</u>; rate = k [H+][PhCHO][MeOH]
 - ◆general acid catalysis: depends on conc. & the nature of acid ○RDS: H+ transfer; <u>348 Fig. 3.27</u> (Brönsted catalysis law)
 - solvent isotope effect: D₂O vs H₂O (acidity: D₃O⁺ > H₃O⁺)
 inverse kinetic isotope effect: specific acid catalysis
 normal kinetic isotope effect: general acid catalysis

Catalysis by Acids & Bases (II)

\square Acidity functions (H_o): \square 350 <u>Table 3.28</u>

♦ 'pH' of very concentrated acidic solutions: relative H⁺ activity

□ Lewis acids: Li+, Zn²⁺, BF₃, La(OR)₃

♦ formation of a donor-acceptor complex: □ 355

o structure: EtO-CO-CH(Me)-O-CO-CH=CH₂ & TiCl₄; <u>□ 355 bottom</u>

odonors become more electronegative: carbonyl – more reactive to
 Nu, ether/sulfide – better leaving group, hydroxyl – more acidic

◆ strength of complexation: <u>the HSAB principle</u>

o the better matched, the stronger: □ 356 Scheme 4.3

◆relative acidity: steric & stereoelectronic; □ 356 Table 3.29

The Hard-Soft Acid-Base Principle: an example

Solvent Effects

□ Classification of solvents: □ 360 Table 3.33

♦polar vs nonpolar; protic vs aprotic

□ Ionization power: Y values; □ 362 Table 3.34

◆polarity & structure: ionization of *t*-BuCl; □ 361 Fig. 3.33

□ Effect on the charged TS: □ 360 Scheme 3.7 & Fig. 4.12

- nonpolar & aprotic: effective for the less charge separation
- Effect on the nucleophilicity of anions
 - ♦ reactivity: more reactive in aprotic solvents
 - ♦ solubility: loose ion pair; crown ethers

