화합물 반도체 (II-3) Heterostructure Growth

2007 / 가을 학기

Compliant Substrate : Thin Template decoupled from Mechanical Host

(Ref) Progress in Crystal Growth and Characterization, p. 1-55, 2000 critical thickness of InGaAs on GaAs compliant substrate - as a function of substrate thickness h_S

SOI Compliant Substrate

TABLE I. Theoretical dislocation density in SiGe (2% mismatch) grown on conventional Si substrates and SOI compliant substrates.

	Dislocation density in epilayers		
Epilayer thickness (nm)	grown on Si	grown on SOI	
10 100 1000	$5.4 \times 10^{10}/\text{cm}^2$ $1.6 \times 10^7/\text{cm}^2$ $3.0 \times 10^3/\text{cm}^2$	5.4×10 ⁸ /cm ² 1.6×10 ⁵ /cm ² 16/cm ²	

TEM Study of SiGe Thin Films

* Threading Dislocation Density : 10^6 cm $^{-2} \Rightarrow 10^4$ cm $^{-2}$

- * Surface Roughness : 10 nm ⇒ 1 nm
- * SiGe Buffer Thickness : 6~10 μm ⇒ 1 μm

(Ref) J. Crystal Growth, p. 761, 2001

Ge Growth on Structured Si Substrate

Ultrathin Low Temp. SiGe Buffer for Ge on Si

various devices demonstrated including 95nm n-MODFET

125nm Ge PMOS - IMEC (IEDM, 2006)

70nm Ge PMOS - SEMATECH (2007)

GaAs/Ge/Si Approach of U. Texas (I)

GaAs/Ge/Si Approach of U. Texas (II)

QinetiQ/Intel's InSb FET on Si

Intel/IQE's InGaAs QW-FET on Si

IMF Arrays for Lattice-Mismatched System

Schematic of periodic IMF

Periodic IMF array (TEM)

Interfacial Misfit Dislocations (IMF)

InAs on GaP * GaP is lattice matched with Si. (From Jerry Woodall) (Ref.) V. Gopal, J. Vac. Sci. Technol. B, p. 1767, Jul/Aug 1999

IMF ⇒ ionized donor 10¹³ cm⁻²

Dislocation Density; 10¹⁰ cm⁻²

Molecular-Mechanics Simulation of IMF Arrays

GaSb Laser on GaAs Substate utilizing IMF Arrays

Lateral Epitaxial Overgrowth (LEO) of GaN Layers

MOCVD Growth with Periodically Grooved Substrate

TD densities threading dislocation densities $\sim 2 \times 10^7 \text{ cm}^{-2}$ $\sim 2 \times 10^8 \text{ cm}^{-2}$ GaN void groove terrace terrace 2µm

Ref.: S. Mochizuki, et al., Journal of Crystal Growth, pp. 1065–1069, 2002

Pendeo-Epitaxy

Ref.: R. F. Davis, et al., Acta Materialia 51, pp. 5961-5979, 2003

Orientation-dependent Growth in ELO

Two-Step ELO

Dislocation density - $2x10^7$ cm⁻² over the entire surface

Ref. : P. Vennegues, et al., J. Appl. Phys., pp. 4175-4181, 2000

Cantilever Epitaxy – Effects of Mesa Width

 dislocation densities 3 – 5x10⁷/cm² for 0.75µm mesa width

Ref. : D. M. Follstaedt, et al., Appl. Phys. Lett., pp. 2758-2760, Oct. 2002

21

Nanoheteroepitaxy of GaN on Si Nanopillar Arrays

- Si nanopillars on a (111) Si substrate with an anodic-Al₂O₃ membrane, etch-mask process
- The diameter of nanopillars
 ~ 20–60 nm with spacing of 110 nm
- dislocation densities

 below 10⁸/cm² (mainly stacking faults)

Ref. : S. D. Hersee, et al., J. Appl. Phys. 97, 124308, 2005

Surface Morphology of Ga/N-Face GaN

N-Face GaN

N-face GaN is rough and discontinuous, with more impurities and defects, and poor optical and electrical properties.

Ga-Face GaN

Defect	HVP	HVPE GaN			
(cm^{-3})	Ga polar	N polar			
[0]	4×10^{17}	2×10^{19}			
[Mg]	4×10^{16}	2×10^{17}			
[C]	5×10^{16}	2×10^{17}			
$\left[\mathrm{V}_{\mathrm{Ga}} ight]$	$\leq 10^{15}$	7×10^{17}			

Control of GaN Surface Polarity in MOCVD Growth

Piramidal Inversion Domains

G. Martinez-Criado, et al, "Study of inversion domain pyramids formed during the GaN:Mg growth," Solid-State Electronics, p. 565-568, 2003

HVPE-Grown Quasi-Bulk GaN

Ga + HCl → GaCl (800-900°C)

GaCl + NH₃ → GaN (1000-1100°C)

- * Substrate separation after growth
 - up to 100μ m/hr growth rate
 - ~ 1/10 consumption of NH₃ compared with MOCVD
 - ~ 1/10 low cost of pure metals-
- 330 and 400 μ m thick GaN wafers in three sizes (10 mm, 18 mm and 2 inch)
- Cree offers \$ 2,400 for a 0.5 inch GaN substrate
- dislocation densities as low as 3 x 10^6 cm⁻²

* TDI - HVPE-grown GaN-on-sapphire template for LED epi-growth. (\$120 for 2 inch)

- $2\sim5 \ \mu m$ GaN buffer with dislocation densities of $10^8 \ cm^{-2}$ (without low-temp. buffer)

Laser Lift-off for GaN HVPE Film

GaN LED Fabricated by Laser Lift-off Technique

Ref. : C-F. Chu, et al., J. Appl. Phys., pp. 3916-3922, April 2004

Stress Reduction with Low-Temperature AlN Interlayer

Average tensile stress of 1.3µm thick GaN layer grown on 12nm thick AlN buffer

- Relaxed AlN buffer at low temp growth

Sample	T _{AlN} [°C]	Curvature radius [m]	Total stress [GPa]	a-AlGaN [Å]	a-GaN [Å]
А	630	14.7	-0.01	3.1653	3.1899
В	900	7.9	0.46	3.1665	3.1923
С	1145	2.9	1.13	3.1923	3.1923

Ref.: J. Blasing, et al., Appl. Phys. Lett., pp. 2722–2724, 7 October 2002

AlGaN Grown on GaN with Various Interlayers

AlGaN:Si 2 μ m LT-AlN 20nm GaN 1.4 μ m LT-AlN 20nm C-Al ₂ O ₃ (a)	AlGaN:Si AlGaN 10 LT-AIN 2 GaN 1.4 LT-AIN 2 C-Al ₂ C (b)	2μm 00nm 00nm μm 00nm 03	AlGaN:Si 2μm AlGaN 20nm GaN 1.4μm LT-AlN 20nm C-Al ₂ O ₃ (c)	Ten AlN 4nm/A Super (Al ₀	period AlGaN 36nm rlattices _{.2} GaN)
Interlayer Su	(i	FWHM in 0002) ω scan (arcmin)	F <u>W</u> HM in (2024)ω scan (arcmin)	Density of etch pits (cm ⁻²)	Mobility (cm ² /V s) and concentration (cm ⁻³)
No Crack LT-A1N Severa LT-A1N and SLs Crac SLs Crac Directly on Sapphire Crac	network 1 cracks k free k free k free	9.5 12.4 12.1 6.4 14.6	14.6 18.2 16.9 11.8 23.3	6×10^{9} 4×10^{9} 2×10^{9} 7×10^{9}	Mob.: 87, Con.: 3.0×10 ¹⁸ Mob.: 161, Con.: 2.5×10 ¹⁸ Mob.: 38, Con.: 2.2×10 ¹⁸

Ref.: Q. C. Chen, et al., Appl. Phys. Lett., pp. 4961–4963, 23 December 2002

Reduced Dislocation Densities with SiH₄ Treatment

Etched surface with SiH₄ treatment at 1100°C for 300s

TD densities ~ $1x10^8$ cm⁻² (without SiH₄ treatment, ~ $1x10^9$ cm⁻²)

Ref.: K. Pakula, et al., Journal of Crystal Growth 267, pp. 1-7, 2004

Bulk GaN Growth

- Bulk GaN growth with pressures of 15,000 atm and temperatures of 1600°C → 10 mm in diameter with TD densities of 100 cm⁻² (commercialized by Topgan for research)
- 1~2 inch bulk AlN growth with sublimation recondensation process → appropriate for Al-rich AlGaN growth for DUV laser diodes (commercialized by Crystal IS)

Ref. : Compound Semiconductor Magazine, Juy, Oct. 2004

Effects of Dislocations on Light Emission Efficiency

Effects of Dislocations on LED Performance

Effects of Dislocations on Reverse Leakage Current

Effects of Dislocations on Hall Mobility

Ref. : M. N. Gurusinghe, et al., Physical Review B 67, 235208, 2003

Hetero-Epitaxy with the Defect-Free QD Buffer layer

GaSb epilayer on GaAs sub.

Thin barrier InAs HEMT grown using InAs QD/GaSb Buffer

GaN Nanotube

Ref: J. Goldberger, et al., NATURE, pp. 599-602, APRIL 2003

Nano-rod Formation on Si substrate with no Catalysis

High Brightness InGaN/GaN MQW Nanorod LED

