화합물 반도체 (IV-1) - Piezoelectricity

2007 / 가을 학기

Dipole moment = charge x distance (units: C-m)

Polarization = dipole moment / volume = density of dipole moment Units: C/m²

A uniformly polarized medium has charge accumulation at the surface

Polarization = P

dipole moment = QL

Polarization P = QL/(LA) = Q/A Surface charge due to polarization Q = PA

Piezoelectricity (P_{SP} =0.25C/m² in BaTiO₃)

Mechanical stress --> motion of ions --> polarization.

- Only possible in crystal structures with no centre of inversion (out of all point groups, 12 have centre of inversion).
- Polarization --> internal electric field or voltage

Piezoelectricity (I)

Structure 1: ⊖ (Cross-Hatched), Reference Ion Center of Inversion ⇒ No Piezoelectricity

Piezoelectricity (II)

Structure 2:
(Cross-Hatched), Reference Ion

Piezoelectronic Properties of Compound Semiconductors

Hexagonal Wurtzite Structure

- GaAs · Zinc blende structure
 - No PE or SP effect in <100> direction
 - PE coefficient <111> ~0.15 C/m²
 - No PE/SP 'doping' reported

- GaN/AIN · Wurtzite structure
 - c-axis growth direction
 - PE coefficient in cdirection ~1 C/m²
 - PE/SP 'doping' demonstrated

Polarity of Wurtzite GaN

Spontaneous and Piezoelectric Polarization

Piezoelectric Polarization : P_{PE} $P_{PE} = e_{33}\varepsilon_z + e_{31}(\varepsilon_x + \varepsilon_y)$ $\varepsilon_z = (c - c_0)/c_0, \ \varepsilon_x = \varepsilon_y = (a - a_0)/a_0.$ Also, $\varepsilon_z = -2\frac{C_{13}}{C_{33}}\varepsilon_x$ Therefore, $P_{PE} = 2\frac{a - a_0}{a_0}\left(e_{31} - e_{33}\frac{C_{13}}{C_{33}}\right)$

where ε_z : strain, e_{33} : piezoelectric coefficient C_{13} : elastic constant

Wurtzite	AIN	GaN	InN
$a_0(\text{\AA})$	3.112	3.189	3.54
<i>c₀</i> (Å)	4.982	5.185	5.705
P_{SP} (C/m ²)	-0.081 (5x10 ¹³ cm ⁻²)	-0.029	-0.032

Sapphire ; a_0 (Å) = 4.758, c_0 (Å) = 12.991

 $\left(e_{31} - e_{33} \frac{C_{13}}{C_{33}}\right) < 0$ for AlGaN

For tensile strained AlGaN,
P_{PE} is negative.
(positive direction : cation to the nearest anion along c axis)

Basic Parameters of Wurtzite GaN, AlN, and InN

Parameters	GaN	AlN	InN
$a_{\rm lc}$ (Å) at $T = 300$ K	3.189	3.112	3.545
$c_{\rm lc}$ (Å) at $T = 300$ K	5.185	4.982	5.703
E_g (eV)	3.510	6.25	0.78
α (meV/K)	0.909	1.799	0.245
β (K)	830	1462	624
$\Delta_{\rm cr}~({\rm eV})$	0.010	-0.169	0.040
Δ_{so} (eV)	0.017	0.019	0.005
m_e^{\parallel}	0.20	0.32	0.07
m_e^{\perp}	0.20	0.30	0.07
c_{13} (GPa)	106	108	92
c ₃₃ (GPa)	398	373	224
$P_{\rm sp}({\rm C/m^2})$	-0.034	-0.090	-0.042
$e_{31}(C/m^2)$	-0.33	-0.48	-0.57
e_{33} (C/m ²)	0.65	1.55	0.97

(Ref.) I. Vurgaftman and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," Journal of Applied Physics, p. 3675-3696, Sept. 2003

Polarization-Induced Sheet Charge – Ga Face

 $\sigma = P(top) - P(bottom)$ = $(P_{SP} + P_{PE})_{top} - (P_{SP} + P_{PE})_{bottom}$

➡ Two-Dimensional electrons at AlGaN/GaN interface

Band diagram under polarization

 $\Delta E_{\rm C} = 0.7[E_{\rm g}(x) - E_{\rm g}(0)]$ E_g(x) = 6.13x +3.42(1-x) - x(1-x) where x = A1 alloy composition

AlGaN/GaN/AlGaN/GaN band line-up with polarization, no charge transfer, no interface charge (2DEG)

2D holes at GaN/AlGaN interface

Polarization-Induced Sheet Charge – N Face

2D holes at AlGaN/GaN interface

Two-Dimensional holes at AlGaN/GaN interface

2D electrons at GaN/AlGaN interface

Normal Piezo HFET (Ga-Face) on AlN buffer

Piezo induced HFET 2DEG on <u>Ga-face</u> AlN nucleation layer

No 2DEG when using GaN (N-face) buffer

Normal 2DEG on Ga-Face GaN/AlGaN

Ref: O. Ambacher, et al, J. Appl. Phys, p. 334, 2000

Inverted 2DEG on N-Face GaN/AlGaN

Critical Thickness of AlGaN on GaN

Maximum 2DEG Concentration in AlGaN/GaN Structure

Band Diagram of GaN/AlGaN Modulation Doped Structure

Ref : T. R. Prunty, et al, 2000 IEEE/Cornell Conf. on High Performance Devices

2DEG of GaN/AlGaN Modulation Doped Structure

Schottky Barrier Height on AlGaN : $\phi_B = (1 + 1.9 \text{ x}) \text{ eV}$

2DEG Concentration in AlGaN/GaN HEMT Structure

InGaN/AlGaN Structure

GaN/AlInGaN Structure

Ref : E. T. Yu et al., J.V.S.T.-B, p. 1742-1749, 1999

Power Density Performance for AlGaN/GaN HFET

- Advantages
- High bandgap material, High breakdown field, >10x power density
- Good thermal conductivity, High temperature operation
- Challenges
- Large wafer availability, Manufacturability, Reliability

Quantum-Confined Stark Effect

Spontaneous and piezoelectric polarization cause:

1. band bending

2. charge separation in QW

- Red shift of the emission
- Low recomination efficiency
- High threshold current

Avoiding the QCSE

- Induce growth in non-polar GaN directions such as [1100], on substrates such as LiAlO₂ [à la Paul-Drude-Institut, Berlin, Germany]
- Homoepitaxial Growth on non-polar GaN substrates derived from **bulk** crystal growth
- Growth of lattice-matched quaternary Al_xIn_yGa_{1-x-y}N compositions

Light Emission from GaN/AlGaN Quantum Well

Ref : P. Waltereit et al., Nature, p. 865-867, 2000

Schottky Barrier Enhancement with Polarization Effect (I)

Schottky Barrier Enhancement with Polarization Effect (II)

Barrier : $N_{d1} = 1 \times 10^{18} \text{ cm}^{-3}$, $N_{d2} = 5 \times 10^{17} \text{ cm}^{-3}$, $d_1 + d_2 = 300 \text{ Å}$, $\phi_b^{\text{GaN}} = 1.0 \text{ V}$

Ref : E. T. Yu et al., J.V.S.T.-B, p. 1742-1749, 1999

26

Enhanced Barrier HFET

Ref : E. T. Yu et al., J.V.S.T.-B, p. 1742-1749, 1999