A Fast Index for Semistructured

Brian F. Cooper

Neal Sample

Michael J. Franklin

Gisli R. Hjaltason
Moshe Shadmon

Data

Department of Computer Science Stanford
University

Department of Computer Science Stanford
University

Computer Science Division
University of California

RightOrder Incorporated
RightOrder Incorporated

VLDB Conference, 2001

2003.10.7 KINS Cho younggoo

Outline

e Background
— Simple Path Expression
— General Path Expression

e Introduction

* Index Fabric
— Overview
— Trie, Patricia trie
— Search, Insert, Split
— Designator
— Raw Path, Refined Path

« Experiment
— Basic edge-mapping, STORED
— Result

Simple Path Expression

A simple path expression specifies a sequence of taggagt@om the root of
the XML.

“Find invoices where the buyer is ABC Corp”

sinvoice=
shuvers=
=name=ABC Corps=/names=
zaddresg=1 Industrial Wave/address-=
= /buyers=
zgellers
<hame=Acme Inc</names
<address=2 Acme Rd. </addrezs=
</aellers
<item count=3=saw</item=
<item count=2=drill</item=
</involices

The Query asks for XML Documents that contain thé-todeaf path
“invoice.buyer.name.’ABC Corp’.”

General Path Expression

A.(B,|B,).C
results in searches for A,

Py

>and A.B.C

A*.C
means find every <C> that has an ancestor <A>

General path expressions are vital for dealing with
data that has irregular or changing structure ksau
they allow for alternates, optional tags and wildsa

Introduction

e This paper suggests a method that encodes paths as
strings, and inserts those strings into a specthX
that is highly optimized for long and complex keys.
— “Index Fabric”

e This paper discusses how “raw paths” are used to
optimize ad hoc queries over semistructured dath, an
how “refined paths” optimize specific access paths.

Basic |ldea

sinvolces
<buvers=
<name=ABC Corp</name=
<address=1 Industrial Wave/address=
= /buyers=
<gellers
<name=Acme Inc</names
<zaddress=2 Acme Rd.</address=
</sellers
zitem count=3>gawe</item= _
zitem count=2=drill</item= I
</invoices

Overview of the index fabric

 The Trie Is a tree for storing strings
— There is one node for every common prefix.
— The strings are stored in extra leaf nodes.

 The Patricia trie iIs a compact representation toiea
— All nodes with one child are merged with theirqrds.

e The Index Fabric is based on Patricia tries.

Trie

A trie is a tree that stores strings by representing elaatacter in the string
as an edge on the path from the root to a leaf.

Tries are searched by starting at the root of thee &ned following the edges
that correspond to the characters of the search key.

Trie Example

CAT

CAR
LEMON
LEVEL
CARNIVAL
CAN

Patricia Trie

« Patricia tries are a compact form of tries
— retain the same ability to search for strings.
— nodes with only one child have been removed.

 The length of keys do not affect the size of the tri

Patricia Trie Example

CAT

CAR
LEMON
LEVEL
CARNIVAL
CAN

Index Fabric

Patricia Tries are unbalanced structures. In rdabaaes, this unbalance can
become large, and result in performance degradation

—> Multiple layers into the Patricia trie.

Level 1 Level O

A search over the multilayer index requires one “blaad” per layer,
the search is “balanced”.

Search

Level 2 Level | Level 0

AT

Arrres e ———y

Sansansan e

B .

o rmn e anjennana L e oSN o

[..] | fast

castle castle

L P
i
i

castle | |

castiron | .. |

Insertion Into index fabric

« Keys are inserted into the multilayer trie using
a two step process

— The key Is inserted in the lowest layer PT ushey t
normal PT insertion algorithm.

— If after creating new nodes there are now too many
nodes to fit in the blockhe block must be split

Splitting a block

Both subtries resulting from the split should
be of approximately equal size to maintain
good space utilization of the disk blocks.

A new layer, level 1 is created.

label

— A far pointer (with the same level
as the split edge) points to the new block.
.............................. » A direct (un|abe|ed) pointer points
to the old block.

Splitting a block

New node in level 1
Near link added

Splitting a block

Castiron added

New node in level 1
Far link to near link

Designator

The designator encode path expressions as stiihgsdesignator-encoded String is
inserted into the Index Fabric.

Data paths are encoded using designators

<invoice>
<buyer>
<name>ABC Corp</name>
</buyer>
</invoice>

<invoice> ~>1 <buyer>~>B <name>~>N

The string 1BNABC Corp” has the same meaning as the XML fragment.

A mapping is maintained between designators andezietags,
called thedesignator dictionary.

Raw Path

Raw paths index the hierarchical structure of thl by encoding
root-to-leaf paths as strings.

XML
«invoices=
<huver:
«name=ABC Corps</names
<address=1 Industrial Wave/address=
< /buyers
<gallers
<name=Acme Ince/mames
caddress=2 Acme Rd. </addresss FQE”ﬁV
< llers
<£§2m ggunt:apsaw:fitemp Path | B NABC CDrD
f«f.iter!n count=2>drille/items | B A 1 Industrial Wa};
invoices
) I S N Acme Inc
ISAZAcme Rd.
Designator Dictionary Hdcf,' ”2
cinvoices — | I T saw
<buver=-B iITLC =2
<name=— N
caddresas = A

cgeller=-58
citem=—T
<phone=-P
ccount=-C

count ({attributey = C’

Refined Path

We can create a refined path that is tuned forquémetly occurring query over

the XML.
Such as “find the invoices where company ‘ABC Cegd to company ‘Acme

Inc’.” Answering this query involves finding <buyer> tatigt are siblings of a <
seller> tag within the same <invoice> tag.

sinvoices=
«huver:
sname=ABC Corps=/name=
<address=1 Industrial Wav</address-s
= /buyer=
z=gellers
<name=Acme Inc</names
<address=2 Acme Rd.</addrezs=
</seller=
<litem count=2=szaw</item=
<item count=2=drill</item=
</invoices

First, we assign a designator, such as “Z,” to the patlcerate a key of the
form “Z ABC Corp Acme Inc.”

Experimental Setup

« All experiments used
— the same installation of the RDMBS,
— Pentium Il 866MHz, 512MB

* To evaluate performance, an XML data set is indax@ng
both the Index Fabric and the DBMS’s native B-tree.

« Two different methods of indexing the XML via tROMBS
are used.

— Basic edge mapping
— STORED

Basic edge-mapping

The basic edge-mapping treats the XML as a set of raouksdges.
The database has two tables, roots(id, label) andguiyentid, childid, label).

<book><author>Jane Doe</author></book>

id label

0 book

parentid | childid Label
0 1 Author
1 NULL Jane Doe

The following key-compressed B-tree indexes are aidateexperiments.

* An index on roots(id), and an index on roots(label)
* An idex on edges(parentid), and index on edgeslichjland an index on

edges(label).

STORED

STORED system uses data mining to extract schemas
from the data based on frequently occurring stinestu

The extracted schemas are used to createdge-
mapped tablé's

Most of the data can be stored in gterage-mapped
tables while more irreqgularly structured data must be
stored inoverflow bucketssimilar to the edge mapping.

STORED

The SM tablesdentified for the DBLP data
 inproceedingsconference papersarticles journal papers

Conferencendjournal paperthat does not fit into the SM tables
IS stored imoverflow bucketalong with other types of publications.

The following key-compressed B-tree indexes arateik

* An index on each of the author attributes in thaceedings and
Articles SM tables.

* An index on the booktitle attribute in the inprodaws table.
* An index on the id attribute of each SM table.

Data set & Query

The data set is the DBLP.

over 180,000 documents, 72Mb of data
grouped into eight classes (journal, article, botk) e

<article key="Codd70">
<author>E. F. Codd</author>
<title>A Relational Model of Data for Large Shatfedta Banks.</title>
<volume>13</volume>

<ee>db/journals/cacm/Codd70.html</ee>
<cdrom>CACMs1/CACM13/P377.pdf</cdrom>

</article>
Query Description
A Find books by publisher 48 different publisher
B Find conference papers by author 7,000 different author
C Find all publications by author 10,000 different author
D Find all publications by co-authors 10,000 different pair
E Find all publications by author and year 10,000 different pair

Result

moomwkr

Query Description A: book.publisher X
A Find books by publisher B: inproceeding.author.X
B‘ F%nd conterel_lce papers by author C: * author .X
C Find all publications by author .
D Find all publications by co-authors D: *.author.X & author.Y
E Find all publications by author and year E: *.author.X & year.Y
1/0 - Blocks Time - Seconds

Edge Map STORED Raw path |Refined path Edge Map | STORED Raw path |Refined path
value A | value A | value A | value A value A Jvalue A Jvalue A Jvalue A
416 1.0] 370 1.1 13 32.0 S S & 1.0 4 1.5] 0.83 | 7.2 & S
68788 |1.0] 26490 [2.6] 6950 | 9.9 S S 1017 |1.0] 293 |3.5] 81 12.6 & B
69925 |1.0] 61272 [1.1] 34305 | 2.0 | 20545 | 3.4 1056 |1.0] 649 |1.6] 397 | 2.7 | 236 | 4.5
353612 |1.00 171712 [2.1] 89248 | 4.0 | 17337 |20.4 5293 |1.0]| 2067 [2.6] 975 54 208 |25.4
327279 [1.0] 138386 |2.4] 113439 | 2.9 | 16529 | 19.8 4835 |1.0] 1382 |3.5] 1209 | 4.0 | 202 | 23.9

