
A Fast Index for Semistructured
Data

RightOrder IncorporatedMoshe Shadmon

VLDB Conference, 2001

RightOrder IncorporatedGisli R. Hjaltason

Computer Science Division

University of California

Michael J. Franklin

Department of Computer Science Stanford
University

Neal Sample

Department of Computer Science Stanford
University

Brian F. Cooper

2003.10.7 KINS Cho younggoo

Outline

• Background
– Simple Path Expression
– General Path Expression

• Introduction
• Index Fabric

– Overview
– Trie, Patricia trie
– Search, Insert, Split
– Designator
– Raw Path, Refined Path

• Experiment
– Basic edge-mapping, STORED
– Result

Simple Path Expression

A simple path expression specifies a sequence of tags starting from the root of
the XML.

“Find invoices where the buyer is ABC Corp”

The Query asks for XML Documents that contain the root-to-leaf path
“invoice.buyer.name.’ABC Corp’.”

Invoice

buyer

name address

seller

name address

item

*

General Path Expression

A.(B1|B2).C
results in searches for A.B1.C and A.B2.C

A.*.C
means find every <C> that has an ancestor <A>

General path expressions are vital for dealing with
data that has irregular or changing structure because
they allow for alternates, optional tags and wildcards.

Introduction

• This paper suggests a method that encodes paths as
strings, and inserts those strings into a special index
that is highly optimized for long and complex keys.
– “Index Fabric”

• This paper discusses how “raw paths” are used to
optimize ad hoc queries over semistructured data, and
how “refined paths” optimize specific access paths.

Basic Idea

invoice

buyer

name address

seller

name address

item

*

i

b

n a n a

t
s

Overview of the index fabric

• The Trie is a tree for storing strings
– There is one node for every common prefix.

– The strings are stored in extra leaf nodes.

• The Patricia trie is a compact representation of a trie
– All nodes with one child are merged with their parents.

• The Index Fabric is based on Patricia tries.

Trie

A trie is a tree that stores strings by representing each character in the string
as an edge on the path from the root to a leaf.

Tries are searched by starting at the root of the tree, and following the edges
that correspond to the characters of the search key.

Key : cat

cat

cat

cat

Trie Example

C

A

T

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

C

A

T R

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

C

A

T R

E

M

L

O

M

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

C

A

T R

E

M

L

O

M

E

L

V

…CAT

C

A

T R

E

M

L

O

M

E

L

V

N

I

V

A

L

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

C

A

T R

E

M

L

O

M

E

L

V

N

I

V

A

L

N

Patricia Trie
Key : cat

cat

cat

• Patricia tries are a compact form of tries

– retain the same ability to search for strings.

– nodes with only one child have been removed.

• The length of keys do not affect the size of the trie.

Patricia Trie Example

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

0
CAT

…CAT

0

2
CA

T R

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

0

2
CA

T R

LEMON
CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

0

2

CA

T R

2

LE

MONVEL

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

0

2

CA

T R

2

LE

NIVAL

MONVEL

CAT
CAR
LEMON
LEVEL
CARNIVAL
CAN

0

2

CA

N R

2

LE

NIVAL

MONVEL
T

Index Fabric
Patricia Tries are unbalanced structures. In real databases, this unbalance can
become large, and result in performance degradation.

A search over the multilayer index requires one “block read” per layer,
the search is “balanced”.

Multiple layers into the Patricia trie.

…CAT

…AT

0
A

R T
2

C

…CAR

0

Level 1 Level 0

Search
Key : castle

castle

castle

castle

castle

Insertion into index fabric

• Keys are inserted into the multilayer trie using
a two step process
– The key is inserted in the lowest layer PT using the

normal PT insertion algorithm.

– If after creating new nodes there are now too many
nodes to fit in the block, the block must be split

Splitting a block

Both subtries resulting from the split should
be of approximately equal size to maintain
good space utilization of the disk blocks.

A new layer, level 1 is created.

A far pointer (with the same level
as the split edge) points to the new block.

A direct (unlabeled) pointer points
to the old block.

label

0

2

CA

SH T

2

FA

STR

0

2

CA

SH T

2

FA

STR

0
F

Level 0Level 1

Splitting a block
Add castle

Splitting a block

New node in level 1
Near link added

Castle added

0

2

CA

SH T

2

FA

STR

0
F

0

2

CA

S T

2

FA

STR

0
F

H TLE

0

2

CA

S T

2

FA

STR

0
F

H TLE

2

C

S

Splitting a block
Castiron added

Splitting a block

New node in level 1
Far link to near link

C

0

2

CA

S T

2

FA

STR

0
F

H
T

2

IRON LE

S
0

2

CA

3
S T

2

FA

STR

0
F

H
T

2

IRON LE

S
3

T

C

Designator

The designator encode path expressions as strings. The designator-encoded String is
inserted into the Index Fabric.

Data paths are encoded using designators

<invoice>
<buyer>

<name>ABC Corp</name>
</buyer>

</invoice>

<invoice> ~> I <buyer> ~> B <name> ~> N

The string “IBNABC Corp” has the same meaning as the XML fragment.

A mapping is maintained between designators and element tags,
called the designator dictionary.

Raw Path

Raw paths index the hierarchical structure of the XML by encoding
root-to-leaf paths as strings.

XML

Designator Dictionary

Raw
Path

Refined Path

We can create a refined path that is tuned for a frequently occurring query over
the XML.
Such as “find the invoices where company ‘ABC Corp’ sold to company ‘Acme
Inc’.” Answering this query involves finding <buyer> tags that are siblings of a <
seller> tag within the same <invoice> tag.

First, we assign a designator, such as “Z,” to the path and create a key of the
form “Z ABC Corp Acme Inc.”

Experimental Setup

• All experiments used
– the same installation of the RDMBS,

– Pentium III 866MHz, 512MB

• To evaluate performance, an XML data set is indexed using
both the Index Fabric and the DBMS’s native B-tree.

• Two different methods of indexing the XML via the RDMBS
are used.
– Basic edge mapping

– STORED

Basic edge-mapping

Jane DoeNULL1

Author10

Labelchildidparentid

The basic edge-mapping treats the XML as a set of nodes and edges.
The database has two tables, roots(id, label) and edges(parentid, childid, label).

<book><author>Jane Doe</author></book>

The following key-compressed B-tree indexes are created for experiments.

• An index on roots(id), and an index on roots(label).
• An idex on edges(parentid), and index on edges(childid), and an index on
edges(label).

book0

labelid

STORED

STORED system uses data mining to extract schemas
from the data based on frequently occurring structures.

The extracted schemas are used to create “storage-
mapped tables”.

Most of the data can be stored in the storage-mapped
tables, while more irregularly structured data must be
stored in overflow buckets, similar to the edge mapping.

STORED

The SM tablesidentified for the DBLP data
• inproceedings, conference papers, articles, journal papers.

Conferenceand journal paperthat does not fit into the SM tables
is stored in overflow bucketsalong with other types of publications.

The following key-compressed B-tree indexes are created.
• An index on each of the author attributes in the inproceedings and
Articles SM tables.
• An index on the booktitle attribute in the inproceedings table.
• An index on the id attribute of each SM table.

Data set & Query
The data set is the DBLP.

over 180,000 documents, 72Mb of data
grouped into eight classes (journal, article, book, etc.).

<article key="Codd70">
<author>E. F. Codd</author>
<title>A Relational Model of Data for Large Shared Data Banks.</title>
<volume>13</volume>

…
<ee>db/journals/cacm/Codd70.html</ee>
<cdrom>CACMs1/CACM13/P377.pdf</cdrom>

</article>

48 different publisher
7,000 different author
10,000 different author
10,000 different pair
10,000 different pair

Result

A: book.publisher.X
B: inproceeding.author.X
C: *.author.X
D: *.author.X & author.Y
E: *.author.X & year.Y

