
Join Algorithms for XML Query
Processing

Structural Joins: A Primitive for Efficient XML
Query Pattern Matching [ICDE 2002]

Holistic Twig Joins: Optimal XML Pattern
Matching [ACM SIGMOD 2002]

Presented by Juyong Jin

2

Overview

� Two approaches about indexing and query
processing

� Use specialized methods for semi-structured data

� Represent XML data in relational tables

� Join algorithms for XML Query Processing

� Structural Joins

� The tree-merge join, The stack-tree join

� Holistic Twig Joins

� The path join and twig join (extend the stack-tree join)

3

How should we organize and
query XML data?

� Solution 1

� Use specialized storage methods, and query
evaluation techniques for semi-structured data.

� 1-index, A(k) index, APEX, etc.

� Solution 2

� Represent XML data in relational tables

� (DocId, StartPos, EndPos, LevelNum) representation

� decompose XML data into tables and use join algorithms
to answer queries.

4

Storing and indexing XML data in
relational databases

� Decompose the structural information into
tables and use them to answer queries

� off-the-shelf query processing

� reduce the volume of accessed data

� mature relational DB technology

� optimization techniques

� Index the elements and text of the XML data
by their position

� (DocId, StartPos : EndPos, LevelNum) encoding

� expensive joins during query processing

5

Encoding elements and text based on
their positions

XML

book (1,1:19,1)

title (1,2:4,2) authors (1,5:15,2) year (1,16:18,2)

(1,3,3)
author

(1,6:8,3)
author

(1,9:11,3)
2000
(1,17,3)

Jane

(1,7,4)

Jone

(1,10,4)

� (DocId, StartPos : EndPos, LevelNum) representation

author
(1,12:14,3)

Shim

(1,13,4)

Structural relationship
Element e1 is an ancestor of element e2 in the
same document iff:
- e1.DocId = e2.DocId
- e1.StartPos < e2.StartPos
&& e1.EndPos > e2.EndPos

If the above hold and, in addition,
e1.LevelNum+1 = e2.LevelNum, then e1 is the
parent of e2

6

Answering queries using the
encoding

31191

3861

314121

LevelNumEndPosStartPosDocId

� The encoding is used to index the position of each
element and text

� Example of database mapping (single edge table)

� Each table is sorted by (DocId, StartPos)

author table

11911

LevelNumEndPosStartPosDocId

book table

7

Answering queries using the
encoding (cont’d)

� The query is broken into binary parent-child or
ancestor-descendent relationships

� Example of XML Query
� book[title=‘XML’]//author[.=‘jane’]

� Broken to:
� book/title

� title/XML

� book//author

� author/jane

� Each binary query is executed as a join, and their
results are “stitched” together

book

title

XML jane

author

8

How to process the binary joins

� The “heart” of XML query processing is the
algorithm that joins the elements table to
retrieve the result for each individual query
component

� Structural Joins [ICDE 2002]

� The tree-merge join algorithm

� The stack-tree join algorithm

9

The tree-merge join algorithm

� Query: A//D

� Let AList, DList be the lists of each element

� e.g., paper//author

� AList = { APEX, XTRACT, …}, DList = { Shim, Min, …}

� Extension of relational merge joins with the multiple
inequality conditions

457452

328152

256451

333251

234231

AList

522202

518172

672681

549471

432301

DList

10

Analysis of the tree-merge join
algorithm

� Does NOT guarantee O(|AList| + |DList|)

� Buffer is not considered for convenience

� O(|AList|+|DList|)

� where no two nodes in AList are themselves related by an
ancestor-descendant relationship

� O(|AList|*|DList|)

� where multiple nodes in AList are themselves related by an
ancestor-descendant relationship

11

Worst case for the tree-merge
join algorithm

� Example Query: A/D

...

a1

a2

an

d1 d2n

d2n-1d2

dn+1dn

AList

The tree-merge join algorithm does not
have worst-case time complexity linear.

a1
a2

...

d1

d2

dn

dn+1

...

d2n-1

d2n

...an

DList

12

The stack-tree join algorithm

a4

a3

a2

a1

d4

d5

d6

d3

d2

d1

AList DList Stack

a1

Outputa1

a2

d1

a3

d2 d3

d4

a4

d5 d6

The stack always has a sequence of ancestor nodes
1. If current AList & DList are not a descendant of the current

top of the stack � Pop
2. Else if current AList is an ancestor of the current DList

� Push & advance AList
3. Else � Output & advance DList

a2a3a4

a1,d1
a2,d1
a1,d2
a3,d2
a1,d3
a3,d3
a1,d4
a1,d5
a4,d5
a1,d6
a4,d6

13

Analysis of the stack-tree join
algorithm and …

� Guarantee O(|AList| + |DList|)

� better worst-case complexity than the tree-merge join
algorithm

� Limitation of the binary join algorithms

� If a query is complex (contains many binary
relationship), intermediate result sizes can get
large.

� even when the input and output sizes are more
manageable

14

Extension of the stack-tree join
algorithm

� Holistic Twig Joins [SIGMOD 2002]

� The path join and twig join algorithms

� extend the basic stack-join algorithm

� Multiple stacks are used to avoid merging the
intermediate results.

� The path join algorithm for path queries only

� e.g., book//author//name

� The twig join algorithm for branching expressions

� e.g., book[title=‘XML’]//author[.=‘jane’]

15

Stack encoding and query results

� Stack encoding and query results

� Key idea

� Repeatedly construct stack encoding of partial and total
answers to the query path pattern

� In the constructing process, remove partial answers from
the stacks that cannot be extended to total answers

Stack SB

b3

b4

Stack SA

a1

a3

Stack SC

c3

a3,b4,c3
a1,b4,c3
a1,b3,a3

Query results

Query: a//b//c

16

The path join algorithm

� Example query : a//b//c a1

a2

b1

b2

c1 c2

b3

a3

b4 c5

c3 c4

Sc

c1c2

Sb

b1b2

Output

c3,b4,a3
c3,b4,a1
c3,b3,a1

c1,b2,a1
c2,b2,a1Sa

a1

a2a3
b3

b4
c3c4c5 c4,b4,a3

c4,b4,a1
c4,b3,a1
c5,b3,a1

1. If current element is not a descendent of
my stack� Pop from Sme

2. Push to Scurrent element

3. If current element is a leaf � Output and
Pop from Sleaf

17

Limitation of the path join

� If a query is a twig of multiple paths
� The path join may decompose the twig into
multiple root-to-leaf pattern.

� Many intermediate results may not be part of any
final answer.

allauthors

author author

fn ln

author

john doe

fn ln

jane poe

fn ln

jane doe

author

fn

jane doe

ln

Query

18

The twig join algorithm

� the twig join applies multiple path-join at the same
time.

� Key difference between the path join and twig join
� When a element is pushed on its stack, it should have all the
descendent elements satisfying the query.

� A element which can not be a final result should not be pushed
on the stack

� No intermediate solution is large than the final answer

� optimal in the size of intermediate results

Each individual root-to-leaf path is guaranteed to be
merge-joinable with at least one of the other root-to-leaf paths.

19

The twig join algorithm (cont’d)

� Example query: a[//b//c][//d//e]

Sc Sb

Sa

Se Sd

a1

b1

c1

d1

a2

d2

e1

a3

c3

d3

e2

root

b2

c2

a3

c2,b2,a3

Output

c3,b2,a3
e2,d3,a3

d3e2

b2c3c2

20

Experimental Evaluation

� Experimental Setting

� PIII 550Mhz, RAM 768MB, disk 2GB

� synthetic data

� 1,000,000 nodes, 6 labels (A1,A2…,A6)

� real-world data

� “unfolded” DBLP data set

� For each paper, coauthor name is replaced with the
actual information for that author

� depth 805 and around 3 million nodes

21

Binary structural joins VS. the
path join

� Execution time (synthetic data)

A1

A2

A3

A5

A6

A4

Query

22

Twigs: the path join VS. the twig
join

� Execution time (synthetic data)

A1

A2

A3

A5

A6

A4 A7

Query

23

Twigs: the path join VS. the twig
join (cont’d)

� Number of solutions (synthetic data)

A1

A2

A3

A5

A6

A4 A7

Query

24

Conclusion

� Structural Joins (2-way join)

� The tree-merge join algorithm

� The stack-tree join algorithm

� worst case complexity better than the tree-merge join

� Holistic Twig Joins (n-way join)

� The path join algorithm

� superior to any binary structural joins

� The Twig join algorithm

� optimal in the size of intermediate results

