Join Algorithms for XML Query

!'_ Processing

Structural Joins: A Primitive for Efficient XML
Query Pattern Matching [ICDE 2002]

Holistic Twig Joins: Optimal XML Pattern
Matching [ACM SIGMOD 2002]

Presented by Juyong Jin

i Overview

= Two approaches about indexing and query
processing
= Use specialized methods for sem/-structured data
= Represent XML data in relational tables

= Join algorithms for XML Query Processing
= Structural Joins
= The tree-merge join, The stack-tree join

= Holistic Twig Joins
= The path join and twig join (extend the stack-tree join)

How should we organize and
i query XML data?

= Solution 1

= Use specialized storage methods, and query
evaluation techniques for semi-structured data.
= 1-index, A(k) index, APEX, etc.

= Solution 2

= Represent XML data in relational tables
= (Docld, StartPos, EndPos, LevelNum) representation

= decompose XML data into tables and use join algorithms
to answer queries.

Storing and indexing XML data in
i relational databases

= Decompose the structural information into
tables and use them to answer queries
= Off-the-shelf query processing
= reduce the volume of accessed data
= mature relational DB technology
= optimization techniques
= Index the elements and text of the XML data
by their position
= (Docld, StartPos : EndPos, LevelNum) encoding
= expensive joins during query processing

Encoding elements and text based on
their positions

= (Docld, StartPos : EndPos, LevelNum) representation

book (1,1:19,1)

/\

title (1,2:4,2) authors (1,5:15,2) year (1,16:18,2)

' / \ Structural relationship
Element e, is an ancestor of element e, in the
XML author author same document iff:
(1,3,3) (1,6:8,3) |(1,9:11,3) |- e,.Docld = e,.Docld
- e,.StartPos < e,.StartPos
Jane Jone && e,.EndPos > e,.EndPos

(1,7,4) (1,10,4) (1

(a)]

If the above hold and, in addition,
e,.LevelNum+1 = e,.LevelNum, then e, is the
parent of e,

Answering queries using the

i encoding

= The encoding is used to index the position of each
element and text

= Example of database mapping (single edge table)
= Each table is sorted by (Docld, StartPos)

book table

Docld | StartPos | EndPos | LevelNum
1 1 19 1

author table

Docld | StartPos | EndPos | LevelNum
1 6 8 3

1 9 11 3

1 12 14 3

Answering queries using the
i encoding (cont'd)

= The query is broken into binary parent-child or
ancestor-descendent relationships

= Example of XML Query

' . book
= book[title="XML']//author[.="jane’]
= Broken to: /\
= book/title title author
. title/XML l ’

= book//author

_ XML jane
= author/jane

= Each binary query is executed as a join, and their
results are “stitched” together

i How to process the binary joins

= The “heart” of XML query processing is the
algorithm that joins the elements table to

retrieve the result for each individual query
component

= Structural Joins [ICDE 2002]
= The tree-merge join algorithm
= The stack-tree join algorithm

The tree-merge join algorithm

= Query: A//D
= Let AList, DList be the lists of each element

= e.g., paper//author
= AList = { APEX, XTRACT, ...}, DList = { Shim, Min, ...}

= Extension of relational merge joins with the multiple
inequality conditions

DList

—— 1 |30 |32

1 |68 |72

AList

1 23 |34 |2
1 25 |33 |3
1 |45 |56 |2
2 15 |28 |3
2 |45 |57 |4

Q||| U1l O ||| LT[N

\Hz 17 |18
[2 |20 |22

Analysis of the tree-merge join

i algorithm

= Does NOT guarantee O(|AList| + |DList|)

= Buffer is not considered for convenience

= O(|AList|+|DList|)

= Where no two nodes in AList are themselves related by an
ancestor-descendant relationship

= O(|AList|*|DList|)

= where multiple nodes in AList are themselves related by an
ancestor-descendant relationship

10

Worst case for the tree-merge
join algorithm

= Example Query: A/D DList
_ AList i
1 d,
/\ a,
d;
d a, dy d,
/\ dn+1
3
dz d2n-1 n
. d2n-1
an " d2n
/\ The tree-merge join algorithm does not
have worst-case time complexity linear.

d, dn+1 1

The stack-tree join algorithm

a, AList DList Stack Output
e g
/ \ —=>|a; | ==|d, | a1
3y d;
a, a; d, —y|a, | =m)|d, : alrgz
. \ =>|a; | =m)|d; | %a/C2
, @1,d;
—> ' d
== | d Rl
° Ch ' a,,ds
| a,,d;
The stack always has a sequence of ancestor nodes : al d
1. If current AList & DList are not a descendant of the current _ 46
top of the stack > Pop
2. Else if current AList is an ancestor of the current DList
- Push & advance Alist
3. Else &> Output & advance DList

Analysis of the stack-tree join
i algorithm and ...

= Guarantee O(|AList| + |DList|)

= better worst-case complexity than the tree-merge join
algorithm

= Limitation of the binary join algorithms

« If a query is complex (contains many binary
relationship), intermediate result sizes can get
large.

= even when the input and output sizes are more
manageable

13

Extension of the stack-tree join

i algorithm

= Holistic Twig Joins [SIGMOD 2002]

= The path join and twig join algorithms
= extend the basic stack-join algorithm

= Multiple stacks are used to avoid merging the
intermediate results.

= The path join algorithm for path queries only
= €.g., book//author//name

= The twig join algorithm for branching expressions
= e.g., book[title="XML']//author[.="jane’]

14

Stack encoding and query results

= Stack encoding and query results
Query: a//b//c

Stack S Stack S; Stack S, Query results
a3,D4/C3
~ b4 a3 allb4lc3
S b3 A allb3la3
= Key idea

= Repeatedly construct stack encoding of partial and total
answers to the query path pattern

= In the constructing process, remove partial answers from
the stacks that cannot be extended to total answers

i The path join algorithm

= Example query : a//b//c Output

r
I ClleIal :
Sc Sb Sa : CZIbZIal :
: C3r|t3)4ra3 |
C d
b a ' 3rY4/91 1
c // b4] a3 : C3’b3’a1 :
: 2 . | CasDsy23 :
| C4bgyay !
. c4,b3,a1 I
| b I
; Cs,D3d; |
1. If current element is not a descendent of F-=-----
my stack-> Pop from S_ .
2. Pushto S

current element
3. If current element is a leaf > Output and

Pop from S

leaf

i Limitation of the path join

= If @ query is a twig of multiple paths

= The path join may decompose the twig into
multiple root-to-leaf pattern.

= Many intermediate results may not be part of any

final answer.
allauthors Query
\
author author author author
fn | In fn | In fn/ In fn In
ey
jaLe p<~)e jo’hn dle jaLe d(l)e jane | doe 17

i The twig join algorithm

= the twig join applies multiple path-join at the same
time.

= Key difference between the path join and twig join

= When a element is pushed on its stack, it should have all the
descendent elements satisfying the query.

= A element which can not be a final result should not be pushed
on the stack

= No intermediate solution is large than the final answer
- optimal in the size of intermediate results

Each individual root-to-leaf path is guaranteedto be
merge-joinable with at least one of the other root-to-leaf paths.

18

i The twig join algorithm (cont'd)

= Example query: a[//b//c][//d//e]

Output root
s gl
SC Sb : Cz bz,a3 : /,\
b S : C3 b21a3 : al a2 a3
@ 1 e,,d,,a, |
2 2 a :._ i _3_ _3_: A /\
s, S, N b' d; | d, ;\ d'
e, d, Cy € &G &

i Experimental Evaluation

= Experimental Setting
= PIII 550Mhz, RAM 768MB, disk 2GB

» synthetic data
= 1,000,000 nodes, 6 labels (A,,A,...,A)

= real-world data
« unfolded” DBLP data set

= For each paper, coauthor name is replaced with the
actual information for that author

= depth 805 and around 3 million nodes

20

Binary structural joins VS. the

i path join

= Execution time (synthetic data)

Query 1 Binary Joins PathStack ----- -8S
60
Ay
| 50 -
A,
| 40 +
A
|3 30 +
'°|\4 20 4
A5 10
|
A O
6 21

Twigs: the path join VS. the twig

i join

= Execution time (synthetic data)

—4—355 —0—TwigStack —8—PathStack

Query a0
Al - 25 -
/A\ S .
A A &
o E
A, A % 10 -
] A
Lil 5 -
A, A, ; Q 0 . Q%

8% 990 109% 119 129 13%% 156% 17% 20% 24%
Fraction of data set with solutions

22

Twigs: the path join VS. the twig

i join (cont'd)

= Number of solutions (synthetic data)

—C— Partial TwigStack —8— Partial PathStack —a— Total

Query

Ay

[

\\

A A
A,

A;

Mumber of solutions

1000000

100000 1

10000

1000 +

100 +

10 +

1

8%

9% 10% 119 1296 13% 159% 179% 209 24%
Fraction of data set with solutions

23

i Conclusion

= Structural Joins (2-way join)
= The tree-merge join algorithm
= The stack-tree join algorithm
= worst case complexity better than the tree-merge join
= Holistic Twig Joins (n-way join)
= The path join algorithm
= Ssuperior to any binary structural joins

= The Twig join algorithm
= optimal in the size of intermediate results

24

